Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T01:13:49.389Z Has data issue: false hasContentIssue false

Death of mouse embryos that lack a functional gene for glucose phosphate isomerase

Published online by Cambridge University Press:  14 April 2009

John D. West*
Affiliation:
Department of Obstetrics and Gynaecology, University of Edinburgh, Centre for Reproductive Biology, 37 Chalmers Street, Edinburgh, EH3 9EW, UK
Jean H. Flockhart
Affiliation:
Department of Obstetrics and Gynaecology, University of Edinburgh, Centre for Reproductive Biology, 37 Chalmers Street, Edinburgh, EH3 9EW, UK
Josephine Peters
Affiliation:
MRC Radiobiology Unit, Chilton, Didcot, Oxfordshire, OX11 0RD, UK
Simon T. Ball
Affiliation:
MRC Radiobiology Unit, Chilton, Didcot, Oxfordshire, OX11 0RD, UK
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A null allele of the Gpi-1s structural gene, that encodes glucose phosphate isomerase (GPI-1; E.C. 5.3.1.9), arose in a mutation experiment and was designated Gpi-1sa-m1H. The viability of homozygotes has been investigated. No offspring homozygous for the null allele were produced by intercrossing two heterozygotes, so the homozygous condition was presumed to be embryonic lethal. Embryos were produced by crossing Gpi-1sa/null heterozygous females and Gpi-1sb/null heterozygous males. Homozygous null embryos were identified at different stages of development by electrophoresis and staining either for GPI-1 alone or GPI-1 plus phosphoglycerate kinase (PGK) activity. At 6½ and 7½ days post coitum homozygous null embryos were present at approximately the expected 25% frequency (37/165; 22·4% overall) although at 7½ days the homozygous null embryos tended to be small. By 8½ days most homozygous null embryos were developmentally retarded and had not developed significantly further than at 7½ days; some were dead or dying. By 9½ days the homozygous null conceptus was characterised by a small implantation site that contained trophoblast and often a small amount of extraembryonic membrane. Surviving trophoblast tissue was also detectable at 10½ days. Previous studies have shown that oocyte-coded GPI-1 persists only until 5½ or 6½ days. Survival of homozygous null embryos to 7½ or 8½ days and survival of certain extraembryonic tissue to 10½ days suggests that the homozygous null condition may not be cell-lethal although it is certainly embryo-lethal. Mutant cells that are deficient in glycolysis may use the pentose phosphate shunt to bypass the block in glycolysis created by the deficiency of glucose phosphate isomerase, and/or might be rescued by the transport, from the maternal blood, of energy sources other than glucose (such as glutamine). Either strategy may only permit slow cell growth that would not be adequate to support normal embryogenesis. Transport of maternal nutrients would be more efficient to the trophoblast and extraembryonic membranes and this may help to explain why these tissues survive for longer than the embryo itself. The morphological similarity between homozygous nulls and androgenetic conceptuses, where the trophoblast also survives better than the embryo, is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Ansell, J. D. & Micklem, H. S. (1986). Genetic markers for following cell populations. In Handbook of Experimental Immunology, vol 2 (ed. Weir, D. M.), 4th edn, pp. 56. 156. 18. Oxford: Blackwell Scientific Publications.Google Scholar
Barton, S. C., Surani, M. A. H. & Norris, M. L. (1984). Role of paternal and maternal genomes in mouse development. Nature 311, 374376.CrossRefGoogle ScholarPubMed
Blackburn, M. N., Chirgwin, J. M., James, G. T., Kempe, T. D., Parsons, T. F., Register, A. M., Schnackerz, K. D. & Noltmann, E. A. (1972). Pseudoisozymes of rabbit muscle phosphoglucose isomerase. Journal of Biological Chemistry 247, 11701179.CrossRefGoogle Scholar
Brinster, R. L. (1973). Parental glucose phosphate isomerase activity in three-day mouse embryos. Biochemical Genetics 9, 187191.CrossRefGoogle ScholarPubMed
Bucher, Th., Bender, W., Fundele, R., Hofner, H. & Linke, I. (1980). Quantitative evaluation of electrophoretic alloand isozyme patterns. FEBS Letters 115, 319324.CrossRefGoogle ScholarPubMed
Chapman, V. M., Whitten, W. K. & Ruddle, F. H. (1971). Expression of paternal glucose phosphate isomerase (Gpi-1) in preimplantation stages of mouse embryos. Developmental Biology 26, 153158.CrossRefGoogle ScholarPubMed
Chaput, M., Claes, V., Portelle, D., Cludts, L., Gravador, A., Burny, A., Gras, H. & Tartar, A. (1988). The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature 332, 454455.CrossRefGoogle ScholarPubMed
Duboule, D. & Burki, K. (1985). A fine analysis of glucose phosphate isomerase patterns in single preimplantation mouse embryos. Differentiation 29, 2528.CrossRefGoogle ScholarPubMed
Faik, P., Walker, J. I. H., Redmill, A. A. M. & Morgan, M. J. (1988). Mouse glucose-6-phosphate isomerase and neuroleukin have identical 3′ sequences. Nature 332, 455456.CrossRefGoogle ScholarPubMed
Fraenkel, D. G. & Levisohn, S. R. (1967). Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. Journal of Bacteriology 93, 15711578.CrossRefGoogle Scholar
Fraenkel, D. G. & Vinopal, R. T. (1973). Carbohydrate metabolism in bacteria. Annual Review of Microbiology 27, 69100.CrossRefGoogle Scholar
Garcia-Bellido, A. & Merriam, J. R. (1971). Genetic analysis of cell heredity in imaginal discs of Drosophila melanogaster. Proceedings of the National Academy of Sciences, U.S.A. 68, 22222226.CrossRefGoogle ScholarPubMed
Gilbert, S. F. & Solter, D. (1985). Onset of paternal and maternal Gpi-1 expression in preimplanation mouse embryos. Developmental Biology 109, 515517.CrossRefGoogle Scholar
Gurney, M. E. (1984). Suppression of cellular sprouting at the neuromuscular junction by immune sera. Nature 307, 546548.CrossRefGoogle ScholarPubMed
Gurney, M. E. (1988). (Untitled letter.) Nature 332, 456457.CrossRefGoogle Scholar
Gurney, M. E., Heinrich, S. P., Lee, M. R. and Ying, H.-S. (1986 a). Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurones. Science 234, 566574.CrossRefGoogle Scholar
Gurney, M. E., Apatoff, B. R., Spear, G. T., Baumel, M. J., Antel, J. P., Bania, M. B. & Reider, A. T. (1986 b) Neuroleukin: a lymphokine product of lectin-stimulated T cells. Science 234, 574581.CrossRefGoogle ScholarPubMed
Herrera, L. S. & Pascual, C. (1978). Genetical and biochemical studies of glucosephosphate isomerase deficient mutants in Saccharomyces cerevisae. Journal of General Microbiology 108, 305310.CrossRefGoogle Scholar
Jacobs, P. A., Wilson, C. M., Sprenkle, J. A., Rosenshein, N. B. & Migeon, B. R. (1980). Mechanism of origin of complete hydatidiform moles. Nature 286, 714716.CrossRefGoogle ScholarPubMed
Kajii, T. & Ohama, K. (1977). Androgenetic origin of hydatidiform mole. Nature 268, 633634.CrossRefGoogle ScholarPubMed
Maitra, P. K. (1971). Glucose and fructose metabolism in a phosphoglucoisomeraseless mutant of Saccharomyces cerevisiae. Journal of Bacteriology 107, 759769.CrossRefGoogle Scholar
McGrath, J. & Solter, D. (1984). Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179183.CrossRefGoogle ScholarPubMed
McKeehan, W. L. (1986). Glutaminolysis in animal cells. In Carbohydrate Metabolism in Cultured Cells (ed. Morgan, M. J.), pp. 111150. New York and London: Plenum Press.CrossRefGoogle Scholar
Morgan, M. J., Bowness, K. M. & Faik, P. (1983). Energy provision in Chinese hamster ovary cells. Biochemical Society Transactions 11, 725726.CrossRefGoogle Scholar
Morgan, M. J., Bowness, K. M. & Faik, P. (1981). Regulation of carbohydrate metabolism in cultured mammalian cells: energy provision in a glycolytic mutant. Bioscience Reports 1, 811817.CrossRefGoogle Scholar
Morgan, M. J. & Faik, P. (1980). The regulation of carbohydrate metabolism in animal cells: isolation of a glycolytic variant of chinese hamster ovary cells. Cell Biology International Reports 4, 121127.CrossRefGoogle ScholarPubMed
Morgan, M. J. & Faik, P. (1981). Carbohydrate metabolism in cultured animal cells. Bioscience Reports 1, 669686.CrossRefGoogle ScholarPubMed
Morgan, M. J. & Faik, P. (1986). The utilization of carbohydrates by animal cells. In Carbohydrate Metabolism in Cultured Cells (ed Morgan, M. J.), pp. 2975. New York and London: Plenum Press.CrossRefGoogle Scholar
Muirhead, H. & Shaw, P. J. (1974). Three-dimensional structure of pig muscle phosphoglucose isomerase at 6Å resolution. Journal of Molecular Biology 89, 195203.CrossRefGoogle Scholar
JrOelshlegel, F. J. & Brewer, G. J. (1972). New positive, tetrazolium-linked, staining method for use with electrophoresis of phosphoglycerate kinase. Experientia 28, 116117.CrossRefGoogle ScholarPubMed
Peters, J. & Ball, S. T. (1986). Induced mutations of Gpi-1s. Mouse News Letter 74, 92.Google Scholar
Peters, J. & Ball, S. T. (1990). Analysis of mutations of glucose phosphate isomerase-1, Gpi-1, in the mouse. In Progress in Clinical and Biological Research, vol. 340C, pp. 125132. New York: Alan R. Liss.Google Scholar
Pon, N. G., Schackerz, K. D., Blackburn, M. N., Chatterjee, G. C. & Noltman, E. A. (1970). Molecular weight and amino acid composition of five-times-crystallized phosphoglucose isomerase from rabbit skeletal muscle. Biochemistry 9, 15061514.CrossRefGoogle ScholarPubMed
Pouyssegur, J., Franchi, A., Salomon, J-C. & Silvestre, P. (1980). Isolation of a Chinese hamster fibroblast mutant defective in hexose transport and aerobic glycolysis: Its use to dissect the malignant phenotype. Proceedings of the National Academy of Sciences, U.S.A. 77, 26982701.CrossRefGoogle ScholarPubMed
Pretsch, W., Charles, D. J. & Merkle, S. (1989). X-linked glucose-6-phosphate dehydrogenase deficiency in Mus musculus. Biochemical Genetics 26, 89103.CrossRefGoogle Scholar
Quinn, P., Barros, C. & Whittingham, D. G. (1982) Preservation of hamster oocytes to assay the fertilizing capacity of human spermatozoa. Journal of Reproduction and Fertility 66, 161168.CrossRefGoogle ScholarPubMed
Reitzer, L. J., Wice, B. M. & Kennell, D. (1979). Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. Journal of Biological Chemistry 254, 26692676.CrossRefGoogle Scholar
Scopes, R. K. & Penny, I. F. (1971). Subunit sizes of muscle proteins, as determined by sodium dodecyl sulphate gel electrophoresis. Biochimica et Biophysica Acta 236, 409415.CrossRefGoogle ScholarPubMed
Sherman, M. I. & Chew, N. J. (1972). Detection of maternal esterase in mouse embryonic tissues. Proceedings of the National Academy of Sciences 69, 25512555.CrossRefGoogle ScholarPubMed
Soares, E. R. (1979). TEM-induced gene mutations at enzyme loci in the mouse. Environmental Mutagenesis 1, 1925.CrossRefGoogle ScholarPubMed
Wake, N., Takagi, N. and Sasaki, M. (1978). Androgenesis as a cause of hydatidiform mole. Journal of the National Cancer Institute 60, 5153.CrossRefGoogle ScholarPubMed
West, J. D. & Fisher, G. (1984). A new allele of the Gpi-1t temporal gene that regulates the expression of glucose phosphate isomerase in mouse oocytes. Genetical Research 44, 169181.CrossRefGoogle ScholarPubMed
West, J. D. & Flockhart, J. H. (1989). Genetic differences in glucose phosphate isomerase activity among mouse embryos. Development 107, 465472.CrossRefGoogle ScholarPubMed
West, J. D. & Green, J. F. (1983). The transition from oocyte-coded to embryo-coded glucose phosphate isomerase in the early mouse embryo. Journal of Embryology and Experimental Morphology 78, 127140.Google ScholarPubMed
West, J. D., Leask, R. & Green, J. F. (1986). Quantification of the transition from oocyte-coded to embryo-coded glucose phosphate isomerase in mouse embryos. Journal of Embryology and Experimental Morphology 97, 225237.Google ScholarPubMed
Zielke, H. R., Ozand, P. T., Tildon, J. T., Sevdalian, D. A. & Cornblath, M. (1976). Growth of human diploid fibroblasts in the absence of glucose utilization. Proceedings of the National Academy of Sciences U.S.A. 73, 41104114.CrossRefGoogle ScholarPubMed
Zielke, H. R., Ozand, P. T., Tildon, J. T., Sevdalian, D. A. & Cornblath, M. (1978). Reciprocal regulation of glucose and glutamine utilization by cultured human diploid fibroblasts. Journal of Cellular Physiology 95, 4148.CrossRefGoogle ScholarPubMed