Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T05:28:34.981Z Has data issue: false hasContentIssue false

The Plectic Weight Filtration on Cohomology of Shimura Varieties and Partial Frobenius

Published online by Cambridge University Press:  12 April 2021

Zhiyou Wu*
Affiliation:
Max Planck Institute for Mathematics, Bonn53111, Germany; E-mail: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that there is a natural plectic weight filtration on the cohomology of Hilbert modular varieties in the spirit of Nekovář and Scholl. This is achieved with the help of Morel’s work on weight t-structures and a detailed study of partial Frobenius. We prove in particular that the partial Frobenius extends to toroidal and minimal compactifications.

Type
Number Theory
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Ayoub, Joseph and Zucker, Steven, ‘Relative Artin motives and the reductive Borel-Serre compactification of a locally symmetric variety’, Invent. Math., 188(2) (2012), 277427.CrossRefGoogle Scholar
Beĭlinson, A. A., Bernstein, J. and Deligne, P., ‘Faisceaux pervers’, in Analysis and Topology on Singular Spaces, I (Luminy, 1981), Vol. 100 of Astérisque (Société Mathématique de France, Paris, 1982), 5171.Google Scholar
Blasius, Don, ‘Hilbert modular forms and the Ramanujan conjecture’, in Noncommutative Geometry and Number Theory (Springer, Vieweg 2006), 3556.CrossRefGoogle Scholar
Blasius, Don and Rogawski, Jonathan D., ‘Motives for Hilbert modular forms’, Invent. Math., 114(1) (1993), 5587.CrossRefGoogle Scholar
Burgos, José I. and Wildeshaus, Jörg, ‘Hodge modules on Shimura varieties and their higher direct images in the Baily-Borel compactification’, in Annales Scientifiques de l’Ecole Normale Supérieure, Vol. 37 (Elsevier, 2004), 363413.Google Scholar
Deligne, P., Cohomologie étale, Vol. 569 of Lecture Notes in Mathematics (Springer, Berlin, 1977).CrossRefGoogle Scholar
Deligne, Pierre and de Shimura, Travaux, Lecture Notes in Math., 244 (1971), 123165.CrossRefGoogle Scholar
Deligne, Pierre. Théorie de Hodge: II. Publications Mathématiques de l’IHÉS, Tome 40 (1971), pp. 557.CrossRefGoogle Scholar
Deligne, Pierre. La conjecture de Weil: II. Publications Mathématiques de l’IHÉS, Tome 52 (1980), pp. 137252.CrossRefGoogle Scholar
Dimitrov, Mladen, ‘Compactifications arithmétiques des variétés de Hilbert et formes modulaires de Hilbert pour ${\varGamma}_1\left(c,n\right)$’, in Geometric Aspects of Dwork Theory, Vols. I, II (Walter de Gruyter, Berlin, 2004), 527554.CrossRefGoogle Scholar
Faltings, Gerd and Chai, Ching-Li Degeneration of abelian varieties With an appendix by David Mumford of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] (Springer-Verlag, Berlin, 1990), xii+316.Google Scholar
Freitag, Eberhard, Hilbert Modular Forms (Springer, Berlin, 1990).CrossRefGoogle Scholar
Grothendieck, Alexander, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (North-Holland Publishing Co., Amsterdam; Masson & Cie, Éditeur, Paris, 1968).Google Scholar
Hida, Haruzo, $p$-Adic Automorphic Forms on Shimura Varieties. Springer Monographs in Mathematics (Springer, New York, 2004).CrossRefGoogle Scholar
Illusie, Luc, Laszlo, Yves and Orgogozo, Fabrice, eds., Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents (Société Mathématique de France, Paris, 2014), 363-364. With the collaboration of Déglise, Frédéric, Moreau, Alban, Pilloni, Vincent, Raynaud, Michel, Riou, Joël, Stroh, Benoît, Temkin, Michael and Zheng, Weizhe.Google Scholar
Imai, Naoki and Mieda, Yoichi, ‘Toroidal compactifications of Shimura varieties of PEL type and its applications’, in Algebraic Number Theory and Related Topics 2011 Research Institute for Mathematical Sciences, Kyoto, 2013), 324.Google Scholar
Kottwitz, Robert E., ‘Points on some Shimura varieties over finite fieldsJ. Amer. Math. Soc., 5(2) (1992), 373444.CrossRefGoogle Scholar
Lan, Kai-Wen, Arithmetic Compactifications of PEL-Type Shimura Varieties, Number 36 (Princeton University Press, Princeton, NJ, 2013).Google Scholar
Lan, Kai-Wen and Stroh, Benoît, ‘Nearby cycles of automorphic étale sheaves’, Compos. Math., 154(1) (2018), 80119.CrossRefGoogle Scholar
Morel, Sophie, ‘Cohomologie d’intersection des variétés modulaires de Siegel suite’, Compos. Math., 147(6) (2011), 16711740.CrossRefGoogle Scholar
Morel, Sophie, ‘Mixed $ \ell $-adic complexes for schemes over number fields’, (2019), Preprint.Google Scholar
Mumford, David, Abelian Varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5 (Oxford University Press, London, 1970).Google Scholar
Nair, Arvind N., ‘Mixed structures in Shimura varieties and automorphic forms, Preprint.Google Scholar
Nekovář, Jan, ‘Eichler-Shimura relations and semisimplicity of étale cohomology of quaternionic Shimura varieties’, Ann. Sci. de l’École Norm. Supérieure. Quatrième Série, 51(5) (2018), 11791252.CrossRefGoogle Scholar
Nekovář, J. and Scholl, A. J., ‘Introduction to plectic cohomology’, in Advances in the Theory of Automorphic Forms and Their $L$-Functions, Vol. 664 of Contemp. Math., (American Mathematical Society, Providence, RI, 2016) 321337.Google Scholar
Nekovář, J. and Scholl, A. J., Plectic Hodge Theory I (2017), Preprint.Google Scholar
Pink, Richard, Arithmetical Compactification of Mixed Shimura Varieties, Vol. 209 of Bonner Mathematische Schriften [Bonn Mathematical Publications] (Universität Bonn, Mathematisches Institut, Bonn, Germany, 1990).Google Scholar
Pink, Richard, ‘On $l$-adic sheaves on Shimura varieties and their higher direct images in the Baily-Borel compactification’, Math. Ann., 292(2) (1992), 197240.CrossRefGoogle Scholar
Tian, Yichao and Xiao, Liang, ‘$p$-Adic cohomology and classicality of overconvergent Hilbert modular forms’, Astérisque, 382 (2016), 73162. The Stacks Project, Available at http://stacks.math.columbia.edu.Google Scholar
Wildeshaus, Jörg, ‘On the interior motive of certain Shimura varieties: the case of Hilbert-Blumenthal varieties’, Int. Math. Res. Not. IMRN (10), 2012 (2012), 23212355.Google Scholar