Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T06:08:20.028Z Has data issue: false hasContentIssue false

ELASTIC GRAPHS

Published online by Cambridge University Press:  13 August 2019

DYLAN P. THURSTON*
Affiliation:
Department of Mathematics, Indiana University, Bloomington, IN 47405, USA; [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An elastic graph is a graph with an elasticity associated to each edge. It may be viewed as a network made out of ideal rubber bands. If the rubber bands are stretched on a target space there is an elastic energy. We characterize when a homotopy class of maps from one elastic graph to another is loosening, that is, decreases this elastic energy for all possible targets. This fits into a more general framework of energies for maps between graphs.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author 2019

References

Bell, M. C. and Schleimer, S., ‘Slow north-south dynamics on 𝓟𝓜𝓛’, Groups Geom. Dyn. 11(3) (2017), 11031112.Google Scholar
Bestvina, M., ‘A Bers-like proof of the existence of train tracks for free group automorphisms’, Fund. Math. 214(1) (2011), 112.Google Scholar
Bestvina, M. and Handel, M., ‘Train tracks and automorphisms of free groups’, Ann. of Math. (2) 135(1) (1992), 151.Google Scholar
Brooks, R. L., Smith, C. A. B., Stone, A. H. and Tutte, W. T., ‘The dissection of rectangles into squares’, Duke Math. J. 7 (1940), 312340.Google Scholar
Cannon, J. W., Floyd, W. J. and Parry, W. R., ‘Squaring rectangles: the finite Riemann mapping theorem’, inThe Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Special Functions (Brooklyn, NY, 1992), Contemporary Mathematics, 169 (American Mathematical Society, Providence, RI, 1994), 133212.Google Scholar
Chelkak, D. and Smirnov, S., ‘Discrete complex analysis on isoradial graphs’, Adv. Math. 228(3) (2011), 15901630.Google Scholar
de Verdière, Y. C., ‘Réseaux électriques planaires. I’, Comment. Math. Helv. 69(3) (1994), 351374.Google Scholar
de Verdière, Y. C., Gitler, I. and Vertigan, D., ‘Réseaux électriques planaires. II’, Comment. Math. Helv. 71(1) (1996), 144167.Google Scholar
Curtis, E. B., Ingerman, D. and Morrow, J. A., ‘Circular planar graphs and resistor networks’, Linear Algebra Appl. 283(1–3) (1998), 115150.Google Scholar
Dejean, B., Gorski, C. and Thurston, D., ‘Dirichlet energies of 3-marked elastic graphs’. in preparation, Based on an REU project, http://www.math.indiana.edu/reu/2016/reu2016.pdf.Google Scholar
Douady, A. and Hubbard, J. H., ‘A proof of Thurston’s topological characterization of rational functions’, Acta Math. 171(2) (1993), 263297.Google Scholar
Duffin, R. J., ‘The extremal length of a network’, J. Math. Anal. Appl. 5 (1962), 200215.Google Scholar
Duffin, R. J., ‘Potential theory on a rhombic lattice’, J. Combin. Theory 5 (1968), 258272.Google Scholar
Eells, J. and Fuglede, B., Harmonic Maps between Riemannian Polyhedra, Cambridge Tracts in Mathematics, 142 (Cambridge University Press, Cambridge, 2001).Google Scholar
Ferrand, J., ‘Fonctions préharmoniques et fonctions préholomorphes’, Bull. Sci. Math. (2) 68 (1944), 152180.Google Scholar
Francaviglia, S. and Martino, A., ‘Metric properties of outer space’, Publ. Mat. 55(2) (2011), 433473.Google Scholar
Fuglede, B., ‘Extremal length and functional completion’, Acta Math. 98 (1957), 171219.Google Scholar
Gromov, M. and Schoen, R., ‘Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one’, Publ. Math. Inst. Hautes Études Sci. 76 (1992), 165246.Google Scholar
He, Z.-X. and Schramm, O., ‘On the convergence of circle packings to the Riemann map’, Invent. Math. 125(2) (1996), 285305.Google Scholar
Isaacs, R. P., ‘A finite difference function theory’, Univ. Nac. Tucumán. Revista A. 2 (1941), 177201.Google Scholar
Kahn, J., ‘A priori bounds for some infinitely renormalizable quadratics: I. Bounded primitive combinatorics’, Preprint ims06-05, Stony Brook IMS, 2006, arXiv:math/0609045v2.Google Scholar
Kahn, J., Pilgrim, K. M. and Thurston, D. P., ‘Conformal surface embeddings and extremal length’, Preprint, 2015, arXiv:1507.05294.Google Scholar
Kennelly, A. E., ‘Equivalence of triangles and stars in conducting networks’, Electrical World and Engineer 34 (1899), 413414.Google Scholar
Kerckhoff, S. P., ‘The asymptotic geometry of Teichmüller space’, Topology 19(1) (1980), 2341.Google Scholar
Kojima, S., Mizushima, S. and Tan, S. P., ‘Circle packings on surfaces with projective structures’, J. Differential Geom. 63(3) (2003), 349397.Google Scholar
Korevaar, N. J. and Schoen, R. M., ‘Sobolev spaces and harmonic maps for metric space targets’, Comm. Anal. Geom. 1(3–4) (1993), 561659.Google Scholar
Lovász, L., ‘Discrete analytic functions: an exposition’, inSurveys in Differential Geometry, Vol. IX, Surveys in Differential Geometry, 9 (Int. Press, Somerville, MA, 2004), 241273.Google Scholar
Mercat, C., ‘Discrete Riemann surfaces and the Ising model’, Comm. Math. Phys. 218(1) (2001), 177216.Google Scholar
Palmer, D. R., ‘Toward computing extremal quasiconformal maps via discrete harmonic measured foliations’, A.B. thesis, Harvard University, Cambridge, MA, November 2015.Google Scholar
Penner, R. C. and Harer, J. L., Combinatorics of Train Tracks, Annals of Mathematics Studies, 125 (Princeton University Press, Princeton, NJ, 1992).Google Scholar
Picard, J., ‘Stochastic calculus and martingales on trees’, Ann. Inst. Henri Poincaré Probab. Stat. 41(4) (2005), 631683.Google Scholar
Pinkall, U. and Polthier, K., ‘Computing discrete minimal surfaces and their conjugates’, Exp. Math. 2(1) (1993), 1536.Google Scholar
Rodin, B. and Sullivan, D., ‘The convergence of circle packings to the Riemann mapping’, J. Differential Geom. 26(2) (1987), 349360.Google Scholar
Smirnov, S., ‘Critical percolation in the plane’, Preprint, 2001, arXiv:0909.4499.Google Scholar
Smirnov, S., ‘Discrete complex analysis and probability’, inProceedings of the International Congress of Mathematicians, Vol. I (Hindustan Book Agency, New Delhi, 2010), 595621.Google Scholar
Stephenson, K., Introduction to Circle Packing (Cambridge University Press, Cambridge, 2005).Google Scholar
Thurston, D. P., ‘From rubber bands to rational maps: a research report’, Res. Math. Sci. 3 (2016), Art. 15, arXiv:1502.02561.Google Scholar
Thurston, D. P., ‘A positive characterization of rational maps’, Preprint, 2016, arXiv:1612.04424.Google Scholar
Thurston, W. P., ‘Zippers and univalent functions’, inThe Bieberbach Conjecture (West Lafayette, Ind., 1985), Mathematical Surveys and Monographs, 21 (American Mathematical Society, Providence, RI, 1986), 185197.Google Scholar
Wolf, M., ‘On the existence of Jenkins–Strebel differentials using harmonic maps from surfaces to graphs’, Ann. Acad. Sci. Fenn. Ser. A I Math. 20(2) (1995), 269278.Google Scholar