Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T15:43:37.241Z Has data issue: false hasContentIssue false

Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation

Published online by Cambridge University Press:  29 November 2011

Ann C. Raddant
Affiliation:
Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
Andrew F. Russo*
Affiliation:
Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
*
*Corresponding author: Andrew F. Russo. E-mail: [email protected]

Abstract

Over the past two decades, a convergence of basic and clinical evidence has established the neuropeptide calcitonin-gene-related peptide (CGRP) as a key player in migraine. Although CGRP is a recognised neuromodulator of nociception, its mechanism of action in migraine remains elusive. In this review, we present evidence that led us to propose that CGRP is well poised to enhance neurotransmission in migraine by both peripheral and central mechanisms. In the periphery, it is thought that local release of CGRP from the nerve endings of meningeal nociceptors following their initial activation by cortical spreading depression is critical for the induction of vasodilation, plasma protein extravasation, neurogenic inflammation and the consequential sensitisation of meningeal nociceptors. Mechanistically, we propose that CGRP release can give rise to a positive-feedback loop involved in localised increased synthesis and release of CGRP from neurons and a CGRP-like peptide called procalcitonin from trigeminal ganglion glia. Within the brain, the wide distribution of CGRP and CGRP receptors provides numerous possible targets for CGRP to act as a neuromodulator.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Pietrobon, D. and Striessnig, J. (2003) Neurobiology of migraine. Nature Reviews Neuroscience 4, 386-398CrossRefGoogle ScholarPubMed
2Headache Classification Committee of the International Headache Society (2004) The International Classification of Headache Disorders: 2nd edition. Cephalalgia 24 Suppl 1, 9-160Google Scholar
3Wimalawansa, S.J. (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocrine Reviews 17, 533-585CrossRefGoogle ScholarPubMed
4van Rossum, D., Hanisch, U.K. and Quirion, R. (1997) Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neuroscience & Biobehavioral Reviews 21, 649-678CrossRefGoogle ScholarPubMed
5Russo, A.F. and Dickerson, I.M. (2006) CGRP: A multifunctional neuropeptide. In Handboook Neurochem Molec Neurobiol (3rd edn) Lajtha, A., ed.), pp. 391-426, Springer, New York, NYCrossRefGoogle Scholar
6Recober, A. and Russo, A.F. (2009) Calcitonin gene-related peptide: an update on the biology. Current Opinion in Neurology 22, 241-246CrossRefGoogle ScholarPubMed
7Tajti, J. et al. (1999) Messenger molecules and receptor mRNA in the human trigeminal ganglion. Journal of the Autonomic Nervous System 76, 176-183CrossRefGoogle ScholarPubMed
8Eftekhari, S. et al. (2010) Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience 169, 683-696CrossRefGoogle ScholarPubMed
9Messlinger, K. (2009) Migraine: where and how does the pain originate? Experimental Brain Research 196, 179-193CrossRefGoogle ScholarPubMed
10Messlinger, K. et al. (1993) Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. Anatomy and Embryology (Berlin) 188, 219-237CrossRefGoogle Scholar
11Liu, Y., Broman, J. and Edvinsson, L. (2008) Central projections of the sensory innervation of the rat middle meningeal artery. Brain Research 1208, 103-110CrossRefGoogle ScholarPubMed
12Brain, S.D. and Grant, A.D. (2004) Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiological Reviews 84, 903-934CrossRefGoogle ScholarPubMed
13Edvinsson, L. et al. (2002) Effect of the CGRP receptor antagonist BIBN4096BS in human cerebral, coronary and omental arteries and in SK-N-MC cells. European Journal of Pharmacology 434, 49-53CrossRefGoogle ScholarPubMed
14Moreno, M.J. et al. (2002) Efficacy of the non-peptide CGRP receptor antagonist BIBN4096BS in blocking CGRP-induced dilations in human and bovine cerebral arteries: potential implications in acute migraine treatment. Neuropharmacology 42, 568-576CrossRefGoogle ScholarPubMed
15Oliver, K.R. et al. (2002) Immunohistochemical localization of calcitonin receptor-like receptor and receptor activity-modifying proteins in the human cerebral vasculature. Journal of Cerebral Blood Flow Metabolism 22, 620-629CrossRefGoogle ScholarPubMed
16Ottosson, A. and Edvinsson, L. (1997) Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia 17, 166-174CrossRefGoogle ScholarPubMed
17Theoharides, T.C. et al. (2005) The role of mast cells in migraine pathophysiology. Brain Research and Brain Research Reviews 49, 65-76CrossRefGoogle ScholarPubMed
18Skofitsch, G. and Jacobowitz, D.M. (1985) Calcitonin gene-related peptide coexists with substance P in capsaicin sensitive neurons and sensory ganglia of the rat. Peptides 6, 747-754CrossRefGoogle ScholarPubMed
19Lundberg, J.M. et al. (1985) Co-existence of substance P and calcitonin gene-related peptide-like immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin. European Journal of Pharmacology 108, 315-319CrossRefGoogle ScholarPubMed
20Lee, Y. et al. (1985) Distribution of calcitonin gene-related peptide in the rat peripheral nervous system with reference to its coexistence with substance P. Neuroscience 15, 1227-1237CrossRefGoogle ScholarPubMed
21Lennerz, J.K. et al. (2008) Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. Journal of Comparative Neurology 507, 1277-1299CrossRefGoogle ScholarPubMed
22Fischer, M.J. (2010) Calcitonin gene-related peptide receptor antagonists for migraine. Expert Opinion on Investigational Drugs 19, 815-823CrossRefGoogle ScholarPubMed
23Marquez de Prado, B., Hammond, D.L. and Russo, A.F. (2009) Genetic enhancement of calcitonin gene-related peptide-induced central sensitization to mechanical stimuli in mice. Journal of Pain 10, 992-1000CrossRefGoogle ScholarPubMed
24Storer, R.J., Akerman, S. and Goadsby, P.J. (2004) Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. British Journal of Pharmacology 142, 1171-1181CrossRefGoogle ScholarPubMed
25Fischer, M.J., Koulchitsky, S. and Messlinger, K. (2005) The nonpeptide calcitonin gene-related peptide receptor antagonist BIBN4096BS lowers the activity of neurons with meningeal input in the rat spinal trigeminal nucleus. Journal of Neuroscience 25, 5877-5883CrossRefGoogle ScholarPubMed
26Levy, D., Burstein, R. and Strassman, A.M. (2005) Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Annals of Neurology 58, 698-705CrossRefGoogle ScholarPubMed
27Archbold, J.K. et al. (2011) Structural insights into RAMP modification of secretin family G protein-coupled receptors: implications for drug development. Trends in Pharmacological Sciences 32, 591-600CrossRefGoogle ScholarPubMed
28Barwell, J. et al. (2011) Calcitonin and calcitonin receptor-like receptors: common themes with family B GPCRs? British Journal of Pharmacology Jun 7. doi: 10.1111/j.1476-5381.2011.01525.x. [Epub ahead of print]Google Scholar
29Evans, B.N. et al. (2000) CGRP-RCP, a novel protein required for signal transduction at calcitonin gene-related peptide and adrenomedullin receptors. Journal of Biological Chemistry 275, 31438-31443CrossRefGoogle ScholarPubMed
30McLatchie, L.M. et al. (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333-339CrossRefGoogle ScholarPubMed
31Zhang, Z., Dickerson, I.M. and Russo, A.F. (2006) Calcitonin gene-related peptide receptor activation by receptor activity-modifying protein-1 gene transfer to vascular smooth muscle cells. Endocrinology 147, 1932-1940CrossRefGoogle ScholarPubMed
32Russo, A.F. (2007) Ramping it up: RAMP1 and the implications for migraine. Pharmacogenomics 8, 687-690CrossRefGoogle ScholarPubMed
33Zhang, Z. et al. (2007) Sensitization of calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion. Journal of Neuroscience 27, 2693-2703CrossRefGoogle ScholarPubMed
34ter Haar, E. et al. (2010) Crystal structure of the ectodomain complex of the CGRP receptor, a class-B GPCR, reveals the site of drug antagonism. Structure 18, 1083-1093CrossRefGoogle ScholarPubMed
35Hilairet, S. et al. (2001) Agonist-promoted internalization of a ternary complex between calcitonin receptor-like receptor, receptor activity-modifying protein 1 (RAMP1), and beta-arrestin. Journal of Biological Chemistry 276, 42182-42190CrossRefGoogle ScholarPubMed
36Heroux, M. et al. (2007) Functional calcitonin gene-related peptide receptors are formed by the asymmetric assembly of a calcitonin receptor-like receptor homo-oligomer and a monomer of receptor activity-modifying protein-1. Journal of Biological Chemistry 282, 31610-31620CrossRefGoogle Scholar
37Villalon, C.M. and Olesen, J. (2009) The role of CGRP in the pathophysiology of migraine and efficacy of CGRP receptor antagonists as acute antimigraine drugs. Pharmacology & Therapeutics 124, 309-323CrossRefGoogle ScholarPubMed
38Goadsby, P.J., Edvinsson, L. and Ekman, R. (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Annals of Neurology 28, 183-187CrossRefGoogle ScholarPubMed
39Juhasz, G. et al. (2003) NO-induced migraine attack: strong increase in plasma calcitonin gene-related peptide (CGRP) concentration and negative correlation with platelet serotonin release. Pain 106, 461-470CrossRefGoogle ScholarPubMed
40Gallai, V. et al. (1995) Vasoactive peptide levels in the plasma of young migraine patients with and without aura assessed both interictally and ictally. Cephalalgia 15, 384-390CrossRefGoogle ScholarPubMed
41Goadsby, P.J., Lipton, R.B. and Ferrari, M.D. (2002) Migraine—current understanding and treatment. New England Journal of Medicine 346, 257-270CrossRefGoogle ScholarPubMed
42Tvedskov, J.F. et al. (2005) No increase of calcitonin gene-related peptide in jugular blood during migraine. Annals of Neurology 58, 561-568CrossRefGoogle ScholarPubMed
43Tfelt-Hansen, P. and Le, H. (2009) Calcitonin gene-related peptide in blood: is it increased in the external jugular vein during migraine and cluster headache? A review. Journal of Headache and Pain 10, 137-143CrossRefGoogle ScholarPubMed
44Bellamy, J.L., Cady, R.K. and Durham, P.L. (2006) Salivary levels of CGRP and VIP in rhinosinusitis and migraine patients. Headache 46, 24-33CrossRefGoogle ScholarPubMed
45Cady, R.K. et al. (2009) Elevated saliva calcitonin gene-related peptide levels during acute migraine predict therapeutic response to rizatriptan. Headache 49, 1258-1266CrossRefGoogle ScholarPubMed
46Hansen, J.M. et al. (2010) Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia 30, 1179-1186CrossRefGoogle ScholarPubMed
47Lassen, L.H. et al. (2002) CGRP may play a causative role in migraine. Cephalalgia 22, 54-61CrossRefGoogle ScholarPubMed
48Asghar, M.S. et al. (2011) Evidence for a vascular factor in migraine. Annals of Neurology 69, 635-645CrossRefGoogle ScholarPubMed
49Hansen, J.M. et al. (2008) Familial hemiplegic migraine type 2 does not share hypersensitivity to nitric oxide with common types of migraine. Cephalalgia 28, 367-375CrossRefGoogle Scholar
50Hansen, J.M. et al. (2011) Calcitonin gene-related peptide does not cause migraine attacks in patients with familial hemiplegic migraine. Headache 51, 544-553CrossRefGoogle Scholar
51Ophoff, R.A. et al. (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87, 543-552CrossRefGoogle ScholarPubMed
52De Fusco, M. et al. (2003) Haploinsufficiency of ATP1A2 encoding the Na+ /K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nature Genetics 33, 192-196CrossRefGoogle Scholar
53Dichgans, M. et al. (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366, 371-377CrossRefGoogle ScholarPubMed
54Juhasz, G. et al. (2005) Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia 25, 179-183CrossRefGoogle ScholarPubMed
55Olesen, J. et al. (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. New England Journal of Medicine 350, 1104-1110CrossRefGoogle ScholarPubMed
56Connor, K.M. et al. (2009) Randomized, controlled trial of telcagepant for the acute treatment of migraine. Neurology 73, 970-977CrossRefGoogle ScholarPubMed
57Ho, T.W. et al. (2008) Randomized controlled trial of an oral CGRP receptor antagonist, MK-0974, in acute treatment of migraine. Neurology 70, 1304-1312CrossRefGoogle ScholarPubMed
58MerckReport (2011) Merck announces second quarter 2011 financial results. http://www.fiercebiotech.com/press-releases/merck-announces-second-quarter-2011-financial-results-0Google Scholar
59ClinicalTrials.gov (2009) MK0974 for migraine prophylaxis in patients with episodic migraine. http://clinicaltrials.gov/ct2/show/NCT00797667?term=telcagepant&rank=11Google Scholar
60Ho, T.W., Edvinsson, L. and Goadsby, P.J. (2010) CGRP and its receptors provide new insights into migraine pathophysiology. Nature Reviews Neurology 6, 573-582CrossRefGoogle ScholarPubMed
61Seybold, V.S. (2009) The role of peptides in central sensitization. In Handbook of Experimental Pharmacology, Ed: Canning, B.J. and Spina, D., Springer-Vertag, Berlin & Heidelberg, 194, pp. 451-491CrossRefGoogle Scholar
62Ebersberger, A. et al. (2000) Differential effects of calcitonin gene-related peptide and calcitonin gene-related peptide 8-37 upon responses to N-methyl-D-aspartate or (R, S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate in spinal nociceptive neurons with knee joint input in the rat. Neuroscience 99, 171-178CrossRefGoogle ScholarPubMed
63Gu, X.L. and Yu, L.C. (2007) The colocalization of CGRP receptor and AMPA receptor in the spinal dorsal horn neuron of rat: a morphological and electrophysiological study. Neuroscience Letters 414, 237-241CrossRefGoogle Scholar
64Menon, S. et al. (2011) Association study of calcitonin gene-related polypeptide-alpha (CALCA) gene polymorphism with migraine. Brain Research 1378, 119-124CrossRefGoogle ScholarPubMed
65Anttila, V. et al. (2010) Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nature Genetics 42, 869-873Google ScholarPubMed
66Iversen, H.K., Olesen, J. and Tfelt-Hansen, P. (1989) Intravenous nitroglycerin as an experimental model of vascular headache. Basic characteristics. Pain 38, 17-24CrossRefGoogle ScholarPubMed
67Christiansen, I. et al. (1999) Glyceryl trinitrate induces attacks of migraine without aura in sufferers of migraine with aura. Cephalalgia 19, 660-667; discussion 626CrossRefGoogle ScholarPubMed
68Lassen, L.H., Thomsen, L.L. and Olesen, J. (1995) Histamine induces migraine via the H1-receptor. Support for the NO hypothesis of migraine. Neuroreport 6, 1475-1479CrossRefGoogle ScholarPubMed
69Schytz, H.W. et al. (2009) PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 132, 16-25CrossRefGoogle ScholarPubMed
70O'Connor, T. and van der Kooy, D. (1988) Enrichment of a vasoactive neuropeptide (calcitonin gene related peptide) in the trigeminal sensory projection to the intracranial arteries. Journal of Neuroscience 8, 2468-2476CrossRefGoogle Scholar
71Markowitz, S., Saito, K. and Moskowitz, M.A. (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. Journal of Neuroscience 7, 4129-4136CrossRefGoogle Scholar
72McCulloch, J. et al. (1986) Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proceedings of the National Academy of Sciences USA 83, 5731-5735CrossRefGoogle ScholarPubMed
73Olesen, J. et al. (2009) Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurology 8, 679-690CrossRefGoogle ScholarPubMed
74Chan, K.Y. et al. (2011) Potential mechanisms of prospective antimigraine drugs: a focus on vascular (side) effects. Pharmacology & Therapeutics 129, 332-351CrossRefGoogle ScholarPubMed
75Diener, H.C. (2003) RPR100893, a substance-P antagonist, is not effective in the treatment of migraine attacks. Cephalalgia 23, 183-185CrossRefGoogle Scholar
76Sixt, M.L., Messlinger, K. and Fischer, M.J. (2009) Calcitonin gene-related peptide receptor antagonist olcegepant acts in the spinal trigeminal nucleus. Brain 132, 3134-3141CrossRefGoogle ScholarPubMed
77Edvinsson, L. (2008) CGRP blockers in migraine therapy: where do they act? British Journal of Pharmacology 155, 967-969CrossRefGoogle ScholarPubMed
78Tfelt-Hansen, P. and Olesen, J. (2011) Possible site of action of CGRP antagonists in migraine. Cephalalgia 31, 748-750CrossRefGoogle ScholarPubMed
79Lambracht-Hall, M., Dimitriadou, V. and Theoharides, T.C. (1990) Migration of mast cells in the developing rat brain. Brain Research Developmental Brain Research 56, 151-159CrossRefGoogle ScholarPubMed
80Wedemeyer, J., Tsai, M. and Galli, S.J. (2000) Roles of mast cells and basophils in innate and acquired immunity. Current Opinion of Immunology 12, 624-631CrossRefGoogle ScholarPubMed
81Hakim-Rad, K., Metz, M. and Maurer, M. (2009) Mast cells: makers and breakers of allergic inflammation. Current Opinion in Allergy and Clinical Immunology 9, 427-430CrossRefGoogle ScholarPubMed
82Prussin, C. and Metcalfe, D.D. (2003) IgE, mast cells, basophils, and eosinophils. Journal of Allergy and Clinical Immunology 111, S486-S494CrossRefGoogle ScholarPubMed
83Low, N.C. and Merikangas, K.R. (2003) The comorbidity of migraine. CNS Spectrums 8, 433-434, 437-444CrossRefGoogle ScholarPubMed
84Koziol, J.A. et al. (1993) The natural history of interstitial cystitis: a survey of 374 patients. Journal of Urology 149, 465-469CrossRefGoogle ScholarPubMed
85Warnock, J.K. and Clayton, A.H. (2003) Chronic episodic disorders in women. Psychiatric Clinics of North America 26, 725-740CrossRefGoogle ScholarPubMed
86Theoharides, T.C. (1983) Mast cells and migraines. Perspectives in Biology and Medicine 26, 672-675CrossRefGoogle ScholarPubMed
87Tepper, S.J. (2004) New thoughts on sinus headache. Allergy and Asthma Proceedings 25, 95-96Google ScholarPubMed
88Theoharides, T.C. and Kalogeromitros, D. (2006) The critical role of mast cells in allergy and inflammation. Annals of the New York Academy of Science 1088, 78-99CrossRefGoogle Scholar
89Rozniecki, J.J. et al. (1999) Morphological and functional demonstration of rat dura mater mast cell-neuron interactions in vitro and in vivo. Brain Research 849, 1-15CrossRefGoogle ScholarPubMed
90Burstein, R., Collins, B. and Jakubowski, M. (2004) Defeating migraine pain with triptans: a race against the development of cutaneous allodynia. Annals of Neurology 55, 19-26CrossRefGoogle ScholarPubMed
91Durham, P.L. and Russo, A.F. (1999) Regulation of calcitonin gene-related peptide secretion by a serotonergic antimigraine drug. Journal of Neuroscience 19, 3423-3429CrossRefGoogle ScholarPubMed
92Bowen, E.J. et al. (2006) Tumor necrosis factor-alpha stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons. Journal of Neurochemistry 96, 65-77CrossRefGoogle ScholarPubMed
93Levy, D. et al. (2007) Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 130, 166-176CrossRefGoogle ScholarPubMed
94Strassman, A.M. and Levy, D. (2006) Response properties of dural nociceptors in relation to headache. Journal of Neurophysiology 95, 1298-1306CrossRefGoogle ScholarPubMed
95Waeber, C. and Moskowitz, M.A. (2005) Migraine as an inflammatory disorder. Neurology 64, S9-15CrossRefGoogle ScholarPubMed
96Launay, J.M. et al. (1987) Histamine-release and migraine. Revue de Médecine Interne 8, 273-275CrossRefGoogle ScholarPubMed
97Heatley, R.V. et al. (1982) Increased plasma histamine levels in migraine patients. Clinical Allergy 12, 145-149CrossRefGoogle ScholarPubMed
98Sjaastad, O. and Sjaastad, O.V. (1977) Histamine metabolism in cluster headache and migraine. Catabolism of 14C histamine. Journal of Neurology 216, 105-117CrossRefGoogle Scholar
99Krabbe, A.A. and Olesen, J. (1980) Headache provocation by continuous intravenous infusion of histamine. Clinical results and receptor mechanisms. Pain 8, 253-259CrossRefGoogle ScholarPubMed
100Lassen, L.H. et al. (1996) Histamine inhalation is a specific but insensitive laboratory test for migraine. Cephalalgia 16, 550-553CrossRefGoogle ScholarPubMed
101Schwenger, N. et al. (2007) Interaction of calcitonin gene-related peptide, nitric oxide and histamine release in neurogenic blood flow and afferent activation in the rat cranial dura mater. Cephalalgia 27, 481-491CrossRefGoogle ScholarPubMed
102Lassen, L.H. et al. (1996) Histamine-1 receptor blockade does not prevent nitroglycerin induced migraine. Support for the NO-hypothesis of migraine. European Journal of Clinical Pharmacology 49, 335-339CrossRefGoogle Scholar
103Rossi, P., Fiermonte, G. and Pierelli, F. (2003) Cinnarizine in migraine prophylaxis: efficacy, tolerability and predictive factors for therapeutic responsiveness. An open-label pilot trial. Functional Neurology 18, 155-159Google ScholarPubMed
104Lewis, D.W. et al. (2004) Prophylactic treatment of pediatric migraine. Headache 44, 230-237CrossRefGoogle ScholarPubMed
105Togha, M., Ashrafian, H. and Tajik, P. (2006) Open-label trial of cinnarizine in migraine prophylaxis. Headache 46, 498-502CrossRefGoogle ScholarPubMed
106Diener, H.C. et al. (2006) Aspirin in the treatment of acute migraine attacks. Expert Review of Neurotherapeutics 6, 563-573CrossRefGoogle ScholarPubMed
107Silberstein, S.D. and Goadsby, P.J. (2002) Migraine: preventive treatment. Cephalalgia 22, 491-512CrossRefGoogle ScholarPubMed
108Monro, J., Carini, C. and Brostoff, J. (1984) Migraine is a food-allergic disease. Lancet 2, 719-721CrossRefGoogle ScholarPubMed
109Sheftell, F. et al. (2000) Montelukast in the prophylaxis of migraine: a potential role for leukotriene modifiers. Headache 40, 158-163CrossRefGoogle Scholar
110de Souza, , Carvalho, D. et al. (2002) Asthma plus migraine in childhood and adolescence: prophylactic benefits with leukotriene receptor antagonist. Headache 42, 1044-1047CrossRefGoogle Scholar
111Brandes, J.L. et al. (2004) Montelukast for migraine prophylaxis: a randomized, double-blind, placebo-controlled study. Headache 44, 581-586CrossRefGoogle ScholarPubMed
112Clemons, A. et al. (2011) Amitriptyline and prochlorperazine inhibit proinflammatory mediator release from human mast cells: possible relevance to chronic fatigue syndrome. Journal of Clinical Psychopharmacology 31, 385-387CrossRefGoogle ScholarPubMed
113Pannese, E. et al. (2003) Satellite cell reactions to axon injury of sensory ganglion neurons: increase in number of gap junctions and formation of bridges connecting previously separate perineuronal sheaths. Anatomy and Embryology (Berlin) 206, 337-347CrossRefGoogle ScholarPubMed
114Hansson, E. and Ronnback, L. (2003) Glial neuronal signaling in the central nervous system. FASEB Journal 17, 341-348CrossRefGoogle ScholarPubMed
115Eberhardt, M. et al. (2009) Glyceroltrinitrate facilitates stimulated CGRP release but not gene expression of CGRP or its receptor components in rat trigeminal ganglia. Neuropeptides 43, 483-489CrossRefGoogle ScholarPubMed
116Vause, C.V. and Durham, P.L. (2010) Calcitonin gene-related peptide differentially regulates gene and protein expression in trigeminal glia cells: findings from array analysis. Neuroscience Letters 473, 163-167CrossRefGoogle ScholarPubMed
117Thalakoti, S. et al. (2007) Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache 47, 1008-1023; discussion 1024-1005CrossRefGoogle ScholarPubMed
118Capuano, A. et al. (2009) Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology. Molecular Pain 5, 43CrossRefGoogle ScholarPubMed
119De Corato, A. et al. (2011) Trigeminal satellite cells express functional calcitonin gene-related peptide receptors, whose activation enhances interleukin-1beta pro-inflammatory effects. Journal of Neuroimmunology J Neuroimmunol. 2011 Aug 15;237(1-2):39-46CrossRefGoogle ScholarPubMed
120Watkins, L.R., Milligan, E.D. and Maier, S.F. (2001) Spinal cord glia: new players in pain. Pain 93, 201-205CrossRefGoogle ScholarPubMed
121Cao, H. and Zhang, Y.Q. (2008) Spinal glial activation contributes to pathological pain states. Neuroscience and Biobehavioral Review 32, 972-983CrossRefGoogle ScholarPubMed
122Recober, A. et al. (2009) Role of calcitonin gene-related peptide in light-aversive behavior: implications for migraine. Journal of Neuroscience 29, 8798-8804CrossRefGoogle ScholarPubMed
123Russo, A.F. et al. (2009) Positive-feedback regulation of CGRP synthesis in a preclinical migraine model. Cephalalgia 29, 86Google Scholar
124Amara, S.G. et al. (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298, 240-244CrossRefGoogle ScholarPubMed
125Moya, F., Nieto, A. and JL, R.C. (1975) Calcitonin biosynthesis: evidence for a precursor. European Journal of Biochemistry/FEBS 55, 407-413CrossRefGoogle ScholarPubMed
126Park, K.Y. et al. (2011) Epigenetic regulation of the calcitonin gene-related peptide gene in trigeminal glia. Cephalalgia 31, 614-624CrossRefGoogle ScholarPubMed
127Kristiansen, K.A. and Edvinsson, L. (2010) Neurogenic inflammation: a study of rat trigeminal ganglion. Journal of Headache and Pain 11, 485-495CrossRefGoogle ScholarPubMed
128Tajti, J. et al. (2011) Organ culture of the trigeminal ganglion induces enhanced expression of calcitonin gene-related peptide via activation of extracellular signal-regulated protein kinase 1/2. Cephalalgia 31, 95-105CrossRefGoogle ScholarPubMed
129Buhaescu, I., Yood, R.A. and Izzedine, H. (2010) Serum procalcitonin in systemic autoimmune diseases – where are we now? Seminars in Arthritis and Rheumatism 40, 176-183CrossRefGoogle ScholarPubMed
130Martinez, J.M. et al. (2001) Late immunoneutralization of procalcitonin arrests the progression of lethal porcine sepsis. Surgical Infection (Larchmt) 2, 193-202; discussion 202-193CrossRefGoogle ScholarPubMed
131Turan, H. et al. (2011) Procalcitonin levels in migraine patients. Canadian Journal of Neurological Sciences 38, 124-128CrossRefGoogle ScholarPubMed
132Sexton, P.M. et al. (2008) Procalcitonin has bioactivity at calcitonin receptor family complexes: potential mediator implications in sepsis. Critical Care Medicine 36, 1637-1640CrossRefGoogle ScholarPubMed
133Olesen, J., Larsen, B. and Lauritzen, M. (1981) Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Annals of Neurology 9, 344-352CrossRefGoogle ScholarPubMed
134Lauritzen, M. (1994) Pathophysiology of the migraine aura. The spreading depression theory. Brain 117(Pt 1), 199-210CrossRefGoogle ScholarPubMed
135Hadjikhani, N. et al. (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proceedings of the National of Academy Science USA 98, 4687-4692CrossRefGoogle ScholarPubMed
136Ayata, C. et al. (2006) Suppression of cortical spreading depression in migraine prophylaxis. Annals of Neurology 59, 652-661CrossRefGoogle ScholarPubMed
137Wolthausen, J. et al. (2009) Are cortical spreading depression and headache in migraine causally linked? Cephalalgia 29, 244-249CrossRefGoogle ScholarPubMed
138Hauge, A.W. et al. (2009) Effects of tonabersat on migraine with aura: a randomised, double-blind, placebo-controlled crossover study. Lancet Neurology 8, 718-723CrossRefGoogle ScholarPubMed
139Colonna, D.M. et al. (1994) Calcitonin gene-related peptide promotes cerebrovascular dilation during cortical spreading depression in rabbits. American Journal of Physiology 266, H1095-H1102Google ScholarPubMed
140Wahl, M. et al. (1994) Involvement of calcitonin gene-related peptide (CGRP) and nitric oxide (NO) in the pial artery dilatation elicited by cortical spreading depression. Brain Research 637, 204-210CrossRefGoogle Scholar
141Piper, R.D. et al. (1993) Cortical spreading depression does not result in the release of calcitonin gene-related peptide into the external jugular vein of the cat: relevance to human migraine. Cephalalgia 13, 180-183; discussion 149CrossRefGoogle Scholar
142Bolay, H. et al. (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nature Medicine 8, 136-142CrossRefGoogle Scholar
143Zhang, X. et al. (2010) Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. Journal of Neuroscience 30, 8807-8814CrossRefGoogle ScholarPubMed
144Zhang, X. et al. (2011) Activation of central trigeminovascular neurons by cortical spreading depression. Annals of Neurology 69, 855-865CrossRefGoogle ScholarPubMed
145Moskowitz, M.A. (1993) Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 43, S16-S20Google ScholarPubMed
146Kunkler, P.E. and Kraig, R.P. (2003) Hippocampal spreading depression bilaterally activates the caudal trigeminal nucleus in rodents. Hippocampus 13, 835-844CrossRefGoogle ScholarPubMed
147Buzzi, M.G., Bonamini, M. and Moskowitz, M.A. (1995) Neurogenic model of migraine. Cephalalgia 15, 277-280CrossRefGoogle ScholarPubMed
148Jakubowski, M. et al. (2007) Sensitization of central trigeminovascular neurons: blockade by intravenous naproxen infusion. Neuroscience 148, 573-583CrossRefGoogle ScholarPubMed
149Zhang, X.C. et al. (2011) Tumor necrosis factor-alpha induces sensitization of meningeal nociceptors mediated via local COX and p38 MAP kinase actions. Pain 152, 140-149CrossRefGoogle ScholarPubMed
150Noseda, R. et al. (2010) Changes of meningeal excitability mediated by corticotrigeminal networks: a link for the endogenous modulation of migraine pain. Journal of Neuroscience 30, 14420-14429CrossRefGoogle ScholarPubMed
151Edelmayer, R.M. et al. (2009) Medullary pain facilitating neurons mediate allodynia in headache-related pain. Annals of Neurology 65, 184-193CrossRefGoogle ScholarPubMed
152Dobolyi, A. et al. (2005) Calcitonin gene-related peptide-containing pathways in the rat forebrain. Journal of Comparative Neurology 489, 92-119CrossRefGoogle ScholarPubMed
153Skofitsch, G. and Jacobowitz, D.M. (1985) Autoradiographic distribution of 125I calcitonin gene-related peptide binding sites in the rat central nervous system. Peptides 6, 975-986CrossRefGoogle ScholarPubMed
154Yashpal, K. et al. (1992) Quantitative autoradiographic distribution of calcitonin gene-related peptide (hCGRP alpha) binding sites in the rat and monkey spinal cord. Journal of Comparative Neurology 322, 224-232CrossRefGoogle ScholarPubMed
155Noseda, R. et al. (2010) A neural mechanism for exacerbation of headache by light. Nature Neuroscience 13, 239-245CrossRefGoogle ScholarPubMed
156Noseda, R. and Burstein, R. (2011) Advances in understanding the mechanisms of migraine-type photophobia. Current Opinion in Neurology 24, 197-202CrossRefGoogle ScholarPubMed
157Okamoto, K. et al. (2010) Bright light activates a trigeminal nociceptive pathway. Pain 149, 235-242CrossRefGoogle ScholarPubMed
158Selby, G. and Lance, J.W. (1960) Observations on 500 cases of migraine and allied vascular headache. Journal of Neurology, Neurosurgery & Psychiatry 23, 23-32CrossRefGoogle ScholarPubMed
159Drummond, P.D. (1986) A quantitative assessment of photophobia in migraine and tension headache. Headache 26, 465-469CrossRefGoogle ScholarPubMed
160Freedman, M.S. et al. (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284, 502-504CrossRefGoogle ScholarPubMed
161Afridi, S.K. et al. (2005) A positron emission tomographic study in spontaneous migraine. Archives of Neurology 62, 1270-1275CrossRefGoogle ScholarPubMed
162Liu, H. et al. (2011) Immumohistochemical localization of the CLR/RAMP1 receptor complex in the trigeminovascular system of the cynomologus monkey. Headache 51, 6Google Scholar
163Burstein, R. et al. (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. Journal of Neurophysiology 79, 964-982CrossRefGoogle ScholarPubMed
164Kresse, A., Jacobowitz, D.M. and Skofitsch, G. (1995) Detailed mapping of CGRP mRNA expression in the rat central nervous system: comparison with previous immunocytochemical findings. Brain Research Bulletin 36, 261-274CrossRefGoogle ScholarPubMed
165Summ, O. et al. (2010) Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus. Brain 133, 2540-2548CrossRefGoogle ScholarPubMed
166Gauriau, C. and Bernard, J.F. (2004) Posterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat. Journal of Neuroscience 24, 752-761CrossRefGoogle Scholar
167de Lacalle, S. and Saper, C.B. (2000) Calcitonin gene-related peptide-like immunoreactivity marks putative visceral sensory pathways in human brain. Neuroscience 100, 115-130CrossRefGoogle ScholarPubMed
168Yasui, Y., Saper, C.B. and Cechetto, D.F. (1991) Calcitonin gene-related peptide (CGRP) immunoreactive projections from the thalamus to the striatum and amygdala in the rat. Journal of Comparative Neurology 308, 293-310CrossRefGoogle Scholar
169Campeau, S. and Watson, S.J. Jr., (2000) Connections of some auditory-responsive posterior thalamic nuclei putatively involved in activation of the hypothalamo–pituitary–adrenocortical axis in response to audiogenic stress in rats: an anterograde and retrograde tract tracing study combined with Fos expression. Journal of Comparative Neurology 423, 474-4913.0.CO;2-S>CrossRefGoogle ScholarPubMed
170Coolen, L.M. et al. (2003) Parvocellular subparafascicular thalamic nucleus in the rat: anatomical and functional compartmentalization. Journal of Comparative Neurology 463, 117-131CrossRefGoogle ScholarPubMed
171Coolen, L.M. et al. (2003) Afferent connections of the parvocellular subparafascicular thalamic nucleus in the rat: evidence for functional subdivisions. Journal of Comparative Neurology 463, 132-156CrossRefGoogle ScholarPubMed
172Ma, W. et al. (2003) Localization and modulation of calcitonin gene-related peptide-receptor component protein-immunoreactive cells in the rat central and peripheral nervous systems. Neuroscience 120, 677-694CrossRefGoogle ScholarPubMed
173Edvinsson, L. et al. (2011) Cerebellar distribution of calcitonin gene-related peptide (CGRP) and its receptor components calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) in rat. Molecular and Cellular Neuroscience 46, 333-339CrossRefGoogle ScholarPubMed
174Hattar, S. et al. (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. Journal of Comparative Neurology 497, 326-349CrossRefGoogle ScholarPubMed
175Calvino, B. and Grilo, R.M. (2006) Central pain control. Joint Bone Spine 73, 10-16CrossRefGoogle ScholarPubMed
176Cooper, H.M. et al. (1994) Neuroanatomical pathways linking vision and olfaction in mammals. Psychoneuroendocrinology 19, 623-639CrossRefGoogle ScholarPubMed
177Elliott, A.S., Weiss, M.L. and Nunez, A.A. (1995) Direct retinal communication with the peri-amygdaloid area. Neuroreport 6, 806-808CrossRefGoogle ScholarPubMed
178Morin, L.P. and Blanchard, J.H. (1999) Forebrain connections of the hamster intergeniculate leaflet: comparison with those of ventral lateral geniculate nucleus and retina. Visual Neuroscience 16, 1037-1054CrossRefGoogle ScholarPubMed
179Sink, K.S. et al. (2011) Calcitonin gene-related peptide in the bed nucleus of the stria terminalis produces an anxiety-like pattern of behavior and increases neural activation in anxiety-related structures. Journal of Neuroscience 31, 1802-1810CrossRefGoogle ScholarPubMed
180D'Hanis, W., Linke, R. and Yilmazer-Hanke, D.M. (2007) Topography of thalamic and parabrachial calcitonin gene-related peptide (CGRP) immunoreactive neurons projecting to subnuclei of the amygdala and extended amygdala. Journal of Comparative Neurology 505, 268-291CrossRefGoogle ScholarPubMed
181Gebhart, G.F. (2004) Descending modulation of pain. Neuroscience & Biobehavioral Review 27, 729-737CrossRefGoogle ScholarPubMed
182Behbehani, M.M. (1995) Functional characteristics of the midbrain periaqueductal gray. Progress in Neurobiology 46, 575-605CrossRefGoogle ScholarPubMed
183Thiels, E., Hoffman, E.K. and Gorin, M.B. (2008) A reliable behavioral assay for the assessment of sustained photophobia in mice. Current Eye Research 33, 483-491CrossRefGoogle ScholarPubMed
184Recober, A. et al. (2009) CGRP-induced photophobia blocked by olcegepant and rizatriptan in a transgenic migraine model. Cephalalgia 29, 1Google Scholar
185Recober, A. et al. (2010) Induction of multiple photophobic behaviors in a transgenic mouse sensitized to CGRP. Neuropharmacology 58, 156-165CrossRefGoogle Scholar
186Russo, A.F. et al. (2009) A potential preclinical migraine model: CGRP-sensitized mice. Molecular and Cellular Pharmacology 1, 264-270Google ScholarPubMed
187Diener, H.C. et al. (2011) BI 44370 TA, an oral CGRP antagonist for the treatment of acute migraine attacks: results from a phase II study. Cephalalgia 31, 573-584CrossRefGoogle Scholar
188Hewitt, D.J. et al. (2011) Randomized controlled trial of the CGRP receptor antagonist MK-3207 in the acute treatment of migraine. Cephalalgia 31, 712-722CrossRefGoogle ScholarPubMed
189Shi, L. et al. (2011) In vitro characterization of a group of potent and selective human monoclonal antibodies against CGRP receptor. Headache 51(Suppl 1), 59Google Scholar
190Zeller, J. et al. (2008) CGRP function-blocking antibodies inhibit neurogenic vasodilatation without affecting heart rate or arterial blood pressure in the rat. British Journal of Pharmacology 155, 1093-1103CrossRefGoogle ScholarPubMed
191Sang, C.N. et al. (2004) LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia 24, 596-602CrossRefGoogle ScholarPubMed
192ClinicalTrials.gov (2011) Efficacy and safety of BGG492 in the treatment of migraine. http://clinicaltrials.gov/ct2/show/NCT00892203?term=BGG492&rank=7Google Scholar

Further reading, resources and contacts

Noseda, R., et al. (2010) A neural mechanism for exacerbation of headache by light. Nature Neuroscience 13, 239-245CrossRefGoogle ScholarPubMed
Levy, D., et al. (2007) Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 130, 166-176CrossRefGoogle ScholarPubMed
Summ, O., et al. (2010) Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus. Brain 133, 2540-2548CrossRefGoogle ScholarPubMed
Noseda, R., et al. (2010) A neural mechanism for exacerbation of headache by light. Nature Neuroscience 13, 239-245CrossRefGoogle ScholarPubMed
Levy, D., et al. (2007) Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 130, 166-176CrossRefGoogle ScholarPubMed
Summ, O., et al. (2010) Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus. Brain 133, 2540-2548CrossRefGoogle ScholarPubMed