Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T06:35:02.579Z Has data issue: false hasContentIssue false

The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel

Published online by Cambridge University Press:  23 May 2013

L. Decin
Affiliation:
Instituut voor Sterrenkunde, Celestijnenlaan 200D, 3001 Leuven, Belgium
N. L.J. Cox
Affiliation:
Instituut voor Sterrenkunde, Celestijnenlaan 200D, 3001 Leuven, Belgium
P. Royer
Affiliation:
Instituut voor Sterrenkunde, Celestijnenlaan 200D, 3001 Leuven, Belgium
A.J. van Marle
Affiliation:
Instituut voor Sterrenkunde, Celestijnenlaan 200D, 3001 Leuven, Belgium
B. Vandenbussche
Affiliation:
Instituut voor Sterrenkunde, Celestijnenlaan 200D, 3001 Leuven, Belgium
Get access

Abstract

The interaction between stellar winds and the interstellar medium (ISM) can create complex bow shocks. We have studied the bow shock region around Betelgeuse using Herschel PACS images at 70, 100, and 160 μm and SPIRE images at 250, 350, and 500 μm. These data were complemented with ultraviolet GALEX data, near-infrared WISE data, and radio 21 cm GALFA-HI data.

The infrared Herschel images of the environment around Betelgeuse are spectacular, showing the occurrence of multiple arcs at  ~6–7′ from the central target and the presence of a linear bar at  ~9′. Remarkably, no large-scale instabilities are seen in the outer arcs and linear bar. The dust temperature in the outer arcs varies between 40 and 140 K, with the linear bar having the same colour temperature as the arcs. The inner envelope shows clear evidence of a non-homogeneous clumpy structure (beyond 15′′). The non-homogeneous distribution of the material even persists until the collision with the ISM. A strong variation in brightness of the inner clumps at a radius of  ~2′ suggests a drastic change in mean gas and dust density  ~32 000 yr ago. Using hydrodynamical simulations (see van Marle & Decin, these proceedings), we try to explain the observed morphology of the bow shock around Betelgeuse.

Different hypotheses, based on observational and theoretical constraints, are formulated to explain the origin of the multiple arcs and the linear bar and the fact that no large-scale instabilities are visible in the bow shock region. We infer that the two main ingredients for explaining these phenomena are a non-homogeneous mass-loss process and the influence of the Galactic magnetic field. The linear bar is probably an interstellar structure illuminated by Betelgeuse itself.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cox, N.L.J., Kerschbaum, F., van Marle, A.-J., et al., 2012, A&A, 537, A35
Decin, L., Cox, N.L.J., Royer, P., et al., 2012, A&A, 548, A113
Decin, L., Royer, P., Cox, N.L.J., et al., 2011, A&A, 534, A1
Dgani, R., 1998, Rev. Mex. Astron. Astrofis. Conf. Ser., Vol. 7, ed. R.J. Dufour & S. Torres-Peimbert, 149
Dgani, R., & Soker, N., 1998, ApJ, 495, 337 CrossRef
Dgani, R., van Buren, D., & Noriega-Crespo, A., 1996, ApJ, 461, 927 CrossRef
Dickey, J.M., & Garwood, R.W., 1989, ApJ, 341, 201 CrossRef
Dupac, X., Bernard, J.-P., Boudet, N., et al., 2003, A&A, 404, L11
Groenewegen, M.A.T., Waelkens, C., Barlow, M.J., et al., 2011, A&A, 526, A162
Harper, G.M., Brown, A., & Guinan, E.F., 2008, AJ, 135, 1430 CrossRef
Keppens, R., Tóth, G., Westermann, R.H.J., & Goedbloed, J.P., 1999, J. Plasma Phys., 61, 1 CrossRef
Kervella, P., Perrin, G., Chiavassa, A., et al., 2011, A&A, 531, A117
Kervella, P., Verhoelst, T., Ridgway, S.T., et al., 2009, A&A, 504, 115
Le Bertre, T., Matthews, L.D., Gérard, E., & Libert, Y., 2012, MNRAS, 422, 3433 CrossRef
Lim, J., Carilli, C.L., White, S.M., Beasley, A.J., & Marson, R.G., 1998, Nature, 392, 575 CrossRef
Mackey, J., Mohamed, S., Neilson, H.R., Langer, N., & Meyer, D.M.-A., 2012, ApJ, 751, L10 CrossRef
Miura, A., & Pritchett, P.L., 1982, J. Geophys. Res., 87, 7431 CrossRef
Noriega-Crespo, A., van Buren, D., Cao, Y., & Dgani, R., 1997, AJ, 114, 837 CrossRef
Pilbratt, G.L., Riedinger, J.R., Passvogel, T., et al., 2010, A&A, 518, L1
Rodgers, B., & Glassgold, A.E., 1991, ApJ, 382, 606 CrossRef
Ueta, T., Izumiura, H., Yamamura, I., et al., 2008, PASJ, 60, 407
Ueta, T., Speck, A.K., Stencel, R.E., et al., 2006, ApJ, 648, L39 CrossRef
Ueta, T., Stencel, R.E., Yamamura, I., et al., 2010, A&A, 514, A16
Verhoelst, T., Decin, L., van Malderen, R., et al., 2006, A&A, 447, 311
Vishniac, E.T., 1994, ApJ, 428, 186 CrossRef