Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T04:43:17.934Z Has data issue: false hasContentIssue false

The Minimum Mass for a Dwarf Galaxy

Published online by Cambridge University Press:  11 July 2011

J. Bland-Hawthorn
Affiliation:
Sydney Institute for Astronomy, University of Sydney, School of Physics A28, NSW 2006, Australia
R. Sutherland
Affiliation:
Research School of Astronomy & Astrophysics, Australian National University, Cotter Rd., Weston, ACT 2611, Australia
T. Karlsson
Affiliation:
Sydney Institute for Astronomy, University of Sydney, School of Physics A28, NSW 2006, Australia
Get access

Abstract

A widely held view is that a “mini halo” with much less than 108M in dark matter is unlikely to retain any baryons because even a single SN event is expected to sweep out all of the gas. But we show that a clumpy medium is much less susceptible to SN sweeping (particularly if it is off-centred) because the coupling efficiency of the explosive energy is much lower than for a diffuse interstellar medium. With the aid of the sophisticated 3D hydro code Fyris, we show that baryons are retained and stars are formed in dark matter haloes down to 3 × 106M. The gas survives the SN explosion and is enriched with specific abundance yields of the discrete events. The smallest galaxies may not contribute a large fraction of baryons and dark matter to the formation of galaxies. But they are likely to carry important chemical signatures that were laid down in the earliest epochs of star formation, as we show. We discuss the results in light of the newly discovered, very metal poor, damped Lyα systems and ultra-faint dwarf galaxies.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, T., et al., 2002, Science, 295, 93CrossRef
Barkana, R., & Loeb, A., 1999, ApJ, 523, 54CrossRef
Beers, T., & Christlieb, N., 2005, ARA&A, 43, 531CrossRef
Bland-Hawthorn, J., et al., 2011, ApJ, in press
Bland-Hawthorn, J., et al., 2007, ApJ, 670, L109CrossRef
Clark, P., et al., 2008, ApJ, 672, 757CrossRef
Cooke, R., et al., 2010, MNRAS, in press [arXiv:1011.0733]
Efstathiou, G., 1992, MNRAS, 256, 43PCrossRef
Erni, P., et al., 2006, A&A, 451, 19
Gnedin, N., 2000, ApJ, 542, 535CrossRef
Heger, A., & Woosley, S., 2002, ApJ, 567, 532CrossRef
Karlsson, T., et al., 2011, Rev. Mod. Phys., in press
Kirby, E., et al., 2010, ApJS, 191, 352CrossRef
Lucatello, S., et al., 2006, ApJ, 652, L37CrossRef
McGaugh, S., et al., 2010, ApJ, 708, L14CrossRef
MacLow, M., & Ferrara, A., 1999, 513, 142
Martin, N., et al., 2008, ApJ, 684, 1075CrossRef
Nichols, M., & Bland-Hawthorn, J., 2009, ApJ, 707, 1642CrossRef
Okamoto, T., et al., 2008, MNRAS, 390, 920CrossRef
Okrochkov, M., & Tumlinson, J., 2010, ApJ, 716, L41CrossRef
Pancino, E., et al., 2010, A&A, in press [arXiv:1012.4756]
Peebles, P., & Dicke, R., 1968, ApJ, 154, 891CrossRef
Peebles, P., 1993, Principles of Physical Cosmology (PUP)
Pettini, M., et al., 2002, A&A, 391, 21
Pettini, M., et al., 2008, MNRAS, 391, 1499CrossRef
Penprase, B., et al., 2010, ApJ, 721, 1PCrossRef
Strigari, L., et al., 2008, ApJ, 678, 614CrossRef
Sutherland, R., 2010, Ap&SS, 327, 173
Tolstoy, E., et al., 2009, ARAA, 47, 371CrossRef
Tsuribe, T., & Omukai, K., 2008, ApJ, 676, L45CrossRef
Walker, M., et al., 2009, ApJ, 704, 1274CrossRef