Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T21:42:20.210Z Has data issue: false hasContentIssue false

A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme

Published online by Cambridge University Press:  12 January 2008

Hyam Abboud
Affiliation:
: Faculté des Sciences et de Génie Informatique, Université Saint-Esprit de Kaslik, B.P. 446 Jounieh, Liban. Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie (Paris 6), Boîte Courrier 187, 4, place Jussieu, 75252 Paris Cedex 05, France. [email protected] Faculté des Sciences, Université Saint-Joseph, B.P. 11-514 Riad El Solh, Beyrouth 1107 2050, Liban.
Toni Sayah
Affiliation:
Faculté des Sciences, Université Saint-Joseph, B.P. 11-514 Riad El Solh, Beyrouth 1107 2050, Liban.
Get access

Abstract

We study a two-grid scheme fully discrete in time andspace for solving the Navier-Stokes system. In the first step, thefully non-linear problem is discretized in space on a coarse gridwith mesh-size H and time step k. In the second step, theproblem is discretized in space on a fine grid with mesh-size hand the same time step, and linearized around the velocity u H computed in the first step. The two-grid strategy is motivated bythe fact that under suitable assumptions, the contribution ofu H to the error in the non-linear term, is measured in theL 2 norm in space and time, and thus has a higher-order than ifit were measured in the H 1 norm in space. We present thefollowing results: if h = H2 = k, then the global error ofthe two-grid algorithm is of the order of h, the same as wouldhave been obtained if the non-linear problem had been solveddirectly on thefine grid.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

H. Abboud, V. Girault and T. Sayah, Two-grid finite element scheme for the fully discrete time-dependent Navier-Stokes problem. C. R. Acad. Sci. Paris, Ser. I 341 (2005).
H. Abboud, V. Girault and T. Sayah, Second-order two-grid finite element scheme for the fully discrete transient Navier-Stokes equations. Preprint, http://www.ann.jussieu.fr/publications/2007/R07040.html.
R.-A. Adams, Sobolev Spaces. Academic Press, New York (1975).
Arnold, D., Brezzi, F. and Fortin, M., A stable finite element for the Stokes equations. Calcolo 21 (1984) 337344. CrossRef
P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978).
Girault, V. and Lions, J.-L., Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugal. Math. 58 (2001) 2557.
Girault, V. and Lions, J.-L., Two-grid finite-element schemes for the transient Navier-Stokes equations. ESAIM: M2AN 35 (2001) 945980. CrossRef
V. Girault and P.-A. Raviart, Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms, in Springer Series in Computational Mathematics 5, Springer-Verlag, Berlin (1986).
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Monographs and Studies in Mathematics 24. Pitman, Boston, (1985).
F. Hecht and O. Pironneau, FreeFem++. See: http://www.freefem.org.
O.A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow. (In Russian, 1961), First English translation, Gordon & Breach, New York (1963).
Layton, W., A two-level discretization method for the Navier-Stokes equations. Computers Math. Applic. 26 (1993) 3338. CrossRef
Layton, W. and Lenferink, W., Two-level Picard-defect corrections for the Navier-Stokes equations at high Reynolds number. Applied Math. Comput. 69 (1995) 263274.
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969).
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications I. Dunod, Paris (1968).
J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967).
Temam, R., Une méthode d'approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98 (1968) 115152. CrossRef
Wheeler, M.F., A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM. J. Numer. Anal. 10 (1973) 723759. CrossRef
J. Xu, Some Two-Grid Finite Element Methods. Tech. Report, P.S.U. (1992).
Xu, J., A novel two-grid method of semilinear elliptic equations. SIAM J. Sci. Comput. 15 (1994) 231237. CrossRef
Two-grid, J. Xu finite element discretization techniques for linear and nonlinear PDE. SIAM J. Numer. Anal. 33 (1996) 17591777.