Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T17:45:01.040Z Has data issue: false hasContentIssue false

Boussinesq/Boussinesq systems for internal waveswith a free surface, and the KdV approximation

Published online by Cambridge University Press:  03 October 2011

Vincent Duchêne*
Affiliation:
Département de Mathématiques et Applications, UMR 8553, École Normale Supérieure, 45 rue d'Ulm, 75230 Paris Cedex 05, France. [email protected]
Get access

Abstract

We study here some asymptotic models for the propagation of internal and surface waves in a two-fluid system. We focus on the so-called long wave regime for one-dimensional waves, and consider the case of a flat bottom. Following the method presented in [J.L. Bona, T. Colin and D. Lannes,Arch. Ration. Mech. Anal. 178 (2005) 373–410] for the one-layer case, we introduce a new family of symmetric hyperbolic models, that are equivalent to the classical Boussinesq/Boussinesq system displayed in [W. Choi and R. Camassa, J. Fluid Mech. 313 (1996) 83–103]. We study the well-posedness of such systems, and the asymptotic convergence of their solutions towards solutions of the full Euler system. Then, we provide a rigorous justification of the so-called KdV approximation, stating that any bounded solution of the full Euler system can be decomposed into four propagating waves, each of them being well approximated by the solutions of uncoupled Korteweg-de Vries equations. Our method also applies for models with the rigid lid assumption, using the Boussinesq/Boussinesq models introduced in [J.L. Bona, D. Lannes and J.-C. Saut, J. Math. Pures Appl. 89 (2008) 538–566]. Our explicit and simultaneous decomposition allows to study in details the behavior of the flow depending on the depth and density ratios, for both the rigid lid and free surface configurations. In particular, we consider the influence of the rigid lid assumption on the evolution of the interface, and specify its domain of validity. Finally, solutions of the Boussinesq/Boussinesq systems and the KdV approximation are numerically computed, using a Crank-Nicholson scheme with a predictive step inspired from [C. Besse,C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 1427–1432;C. Besse and C.H. Bruneau,Math. Mod. Methods Appl. Sci. 8 (1998) 1363–1386].

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T.B., Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29 (1967) 559592. CrossRef
Benjamin, T.B., Bona, J.L. and Mahony, J.J., Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A 272 (1972) 4778. CrossRef
Besse, C., Schéma de relaxation pour l'équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 14271432. CrossRef
Besse, C. and Bruneau, C.H., Numerical study of elliptic-hyperbolic Davey-Stewartson system: dromions simulation and blow-up. Math. Mod. Methods Appl. Sci. 8 (1998) 13631386. CrossRef
Bona, J.L., Chen, M. and Saut, J.-C., Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory. J. Nonlinear Sci. 12 (2002) 283318. CrossRef
Bona, J.L., Colin, T. and Lannes, D., Long wave approximations for water waves. Arch. Ration. Mech. Anal. 178 (2005) 373410. CrossRef
Bona, J.L., Lannes, D. and Saut, J.-C., Asymptotic models for internal waves. J. Math. Pures Appl. 89 (2008) 538566. CrossRef
Boussinesq, J., Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. C. R. Acad. Sci. Paris Sér. A-B 72 (1871) 755759.
Boussinesq, J., Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17 (1872) 55108.
Chazel, F., On the Korteweg-de Vries approximation for uneven bottoms. Eur. J. Mech. B Fluids 28 (2009) 234252. CrossRef
Choi, W. and Camassa, R., Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech. 313 (1996) 83103. CrossRef
Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T., Sharp global well-posedness for KdV and modified KdV on $\mathbb R$ and $\mathbb T$. J. Amer. Math. Soc. 16 (2003) 705749 (electronic). CrossRef
Craig, W., An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Commun. Partial Differ. Equ. 10 (1985) 7871003. CrossRef
Craig, W., Guyenne, P. and Kalisch, H., Hamiltonian long-wave expansions for free surfaces and interfaces. Comm. Pure Appl. Math. 58 (2005) 15871641. CrossRef
Djordjevic, V.D. and Redekopp, L.G., The fission and disintegration of internal solitary waves moving over two-dimensional topography. J. Phys. Oceanogr. 8 (1978) 10161024. 2.0.CO;2>CrossRef
Duchêne, V., Asymptotic shallow water models for internal waves in a two-fluid system with a free surface. SIAM J. Math. Anal. 42 (2010) 22292260. CrossRef
M. Duruflé and S. Israwi, A numerical study of variable depth KdV equations and generalizations of Camassa-Holm-like equations. Preprint, available at http://hal.archives-ouvertes.fr/hal-00454495/en/.
Funakoshi, M. and Oikawa, M., Long internal waves of large amplitude in a two-layer fluid. J. Phys. Soc. Japan 55 (1986) 128144. CrossRef
Grimshaw, R., Pelinovsky, E. and Talipova, T., The modified korteweg-de vries equation in the theory of large-amplitude internal waves. Nonlin. Process. Geophys. 4 (1997) 237250. CrossRef
Guyenne, P., Large-amplitude internal solitary waves in a two-fluid model. C. R. Mec. 334 (2006) 341346. CrossRef
K.R. Helfrich and W.K. Melville, Long nonlinear internal waves, in Annual review of fluid mechanics 38. Palo Alto, CA (2006) 395–425.
Kakutani, T. and Yamasaki, N., Solitary waves on a two-layer fluid. J. Phys. Soc. Japan 45 (1978) 674679. CrossRef
Kato, T. and Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41 (1988) 891907. CrossRef
Kenig, C.E., Ponce, G. and Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46 (1993) 527620. CrossRef
Keulegan, G.H., Characteristics of internal solitary waves. J. Res. Nat. Bur. Stand 51 (1953) 133140. CrossRef
Koop, C.G. and Butler, G., An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech. 112 (1981) 225251. CrossRef
Korteweg, D.J. and De Vries, G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 5 (1895) 422443. CrossRef
Lannes, D., Secular growth estimates for hyperbolic systems. J. Diff. Equ. 190 (2003) 466503. CrossRef
D. Lannes, A stability criterion for two-fluid interfaces and applications. preprint arXiv:1005.4565.
Leone, C., Segur, H. and Hammack, J.L., Viscous decay of long internal solitary waves. Phys. Fluids 25 (1982) 942944. CrossRef
Long, R.R., Long waves in a two-fluid system. J. Meteorol. 13 (1956) 7074. 2.0.CO;2>CrossRef
Matsuno, Y., A unified theory of nonlinear wave propagation in two-layer fluid systems. J. Phys. Soc. Japan 62 (1993) 19021916. CrossRef
Michallet, H. and Barthélemy, E., Ultrasonic probes and data processing to study interfacial solitary waves. Exp. Fluids 22 (1997) 380386. CrossRef
Michallet, H. and Barthélemy, E., Experimental study of interfacial solitary waves. J. Fluid Mech. 366 (1998) 159177. CrossRef
Ono, H., Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39 (1975) 10821091. CrossRef
Ostrovsky, L.A. and Stepanyants, Y.A., Internal solitons in laboratory experiments: comparison with theoretical models. Chaos 15 (2005) 128.
Sakai, T. and Redekopp, L.G., Models for strongly-nonlinear evolution of long internal waves in a two-layer stratification. Nonlin. Process. Geophys. 14 (2007) 3147. CrossRef
Schneider, G. and Wayne, C.E., The long-wave limit for the water wave problem. I. The case of zero surface tension. Commun. Pure Appl. Math. 53 (2000) 14751535. 3.0.CO;2-V>CrossRef
Segur, H. and Hammack, J.L., Soliton models of long internal waves. J. Fluid Mech. 118 (1982) 285304. CrossRef
M.E. Taylor, Partial differential equations, III Nonlinear equations, Applied Mathematical Sciences 117. Springer-Verlag, New York (1997).
Walker, L.R., Interfacial solitary waves in a two-fluid medium. Phys. Fluids 16 (1973) 17961804. CrossRef
Zakharov, V.E., Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (1968) 190194. CrossRef