Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T09:38:23.076Z Has data issue: false hasContentIssue false

Removing holes in topological shape optimization

Published online by Cambridge University Press:  21 September 2007

Philippe Guillaume
Affiliation:
MIP, UMR 5640, INSA Département de Mathématiques Complexe Scientifique de Rangueil, 31077 Toulouse Cedex 4, France; [email protected]
Maatoug Hassine
Affiliation:
ENIT-LAMSIN et Département de Mathématiques, Faculté des Sciences de Monastir, 5019 Monastir, Tunisia; [email protected]
Get access

Abstract

The gradient based topological optimization tools introduced during thelast ten years tend naturally to modify the topology of a domain by creating small holes inside the domain. Once these holes have been created, they usually remainunchanged, at least during the topological phase of the optimizationalgorithm. In this paper, a new asymptotic expansion is introduced which allows to decide whether an existing hole must be removed or not forimproving the cost function. Then, two numerical examples are presented:the first one compares topological optimization with standard shape optimization, and the second one, issued from a lake oxygenation problem, illustrates the use of the new asymptotic expansion.


Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Abdelwahed, M. Amara, F. El Dabaghi and M. Hassine, A numerical modelling of a two phase flow for water eutrophication problems. ECCOMAS 2000, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelone, 11–14 September (2000).
G. Allaire and A. Henrot, On some recent advances in shape optimization. C. R. Acad. Sci. Paris, Ser. II B 329 (2001) 383–396.
Allaire, G. and Kohn, R., Optimal bounds on the effective behavior of a mixture of two well-orded elastic materials. Quart. Appl. Math. 51 (1996) 643674. CrossRef
Allaire, G., Jouve, F. and Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363393. CrossRef
S. Amstutz, M. Masmoudi and B. Samet, The topological asymptotic for the Helmholtz equation. SIAM J. Contr. Optim. 42 (2003) 1523–1544.
Bello, J.A., Fernández-Cara, E., Lemoine, J. and Simon, J., The differentiability of the drag with respect to the variations of a lipschitz domain in a Navier-Stokes flow. SIAM J. Control Optim. 35 (1997) 626640. CrossRef
M. Bendsoe, Optimal topology design of continuum structure: an introduction. Technical report, Departement of mathematics, Technical University of Denmark, DK2800 Lyngby, Denmark (1996).
M. Bendsoe, N. Olhoff and O. Sigmund, IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer (2006).
F. Brezzi and M. Fortin, Mixed and hybrid finite element method, Springer Series in Computational Mathematics 15. Springer Verlag- New York (1991).
Buttazzo, G. and Dal Maso, G., Shape optimization for Dirichlet problems: Relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 1749. CrossRef
Céa, J., Conception optimale ou identification de forme, calcul rapide de la dérivée directionnelle de la fonction coút. RAIRO Math. Modél. Anal. Numér. 20 (1986) 371402. CrossRef
J. Céa, A. Gioan and J. Michel, Quelques résultats sur l'identification de domains. Calcolo (1973).
Céa, J., Garreau, S., Guillaume, P. and Masmoudi, M., The shape and topological optimizations connection. Comput. Methods Appl. Mech. Engrg. 188 (2000) 713726. CrossRef
Chipot, M. and Dal Maso, G., Relaxed shape optimization: the case of nonnegative data for the Dirichlet problems. Adv. Math. Sci. Appl. 1 (1992) 4781.
P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland (1978).
R. Dautray and J. Lions, Analyse mathémathique et calcul numérique pour les sciences et les techniques. Masson, collection CEA (1987).
Garreau, S., Guillaume, P. and Masmoudi, M., The topological asymptotic for pde systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 17561778. CrossRef
V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and Algorithms. Springer Verlag (1986).
Glowinski, R. and Pironneau, O., Toward the computational of minimun drag profile in viscous laminar flow. Appl. Math. Model. 1 (1976) 5866. CrossRef
P. Guillaume, Dérivées d'ordre supérieur en conception optimale de forme. Ph.D. thesis, Université Paul Sabatier, Toulouse, France (1994).
Guillaume, P. and Masmoudi, M., Computation of high order derivatives in optimal shape design. Numer. Math. 67 (1994) 231250. CrossRef
Guillaume, P. and Sid Idris, K., The topological asymptotic expansion for the Dirichlet Problem. SIAM J. Control. Optim. 41 (2002) 10521072. CrossRef
Guillaume, P. and Sid Idris, K., Topological sensitivity and shape optimization for the Stokes equations. SIAM J. Control Optim. 43 (2004) 131. CrossRef
Gunzburger, M.D. and Kim, H., Existence of an optimal solution of a shape control problem for the stationary Navier-Stokes equations. SIAM J. Control Optim. 36 (1998) 895909. CrossRef
Hassine, M. and Masmoudi, M., The topological sensitivity analysis for the Quasi-Stokes problem. ESAIM: COCV 10 (2004) 478504. CrossRef
J. Jacobsen, N. Olhoff and E. Ronholt, Generalized shape optimization of three-dimensionnal structures using materials with optimum microstructures. Technical report, Institute of Mechanical Engineering, Aalborg University, DK-9920 Aalborg, Denmark (1996).
J.L. Lions and E. Magenes, Problèmes aux limites non homogenes et applications. Dunod (1968).
M. Masmoudi, The topological asymptotic, in Computational Methods for Control Applications, H. Kawarada and J. Periaux Eds., International Séries Gakuto (2002).
Masmoudi, M., Pommier, J. and Samet, B., The topological asymptotic expansion for the Maxwell equations and some applications. Inverse Probl. 21 (2005) 547564. CrossRef
V. Mazja, S.A. Nazarov and B.A. Plamenevski, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. I, Birkhäuser (2000).
Pironneau, O., On optimum profiles in Stokes flow. J. Fluid Mech. 59 (1973) 117128. CrossRef
O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984).
A. Schumacher, Topologieoptimierung von bauteilstrukturen unter verwendung von lopchpositionierungkrieterien. Ph.D. thesis, Universitat-Gesamthochschule-Siegen (1995).
Shœnauer, M., Kallel, L. and Jouve, F., Mechanical inclusions identification by evolutionary computation. Revue européenne des éléments finis 5 (1996) 619648. CrossRef
J. Simon, Domain variation for Stokes flow, in Lect. Notes Control Inform. Sci. 159, X. Li and J. Yang Eds., Springer, Berlin (1990) 28–42.
J. Simon, Domain variation for drag Stokes flows, in Lect. Notes Control Inform. Sci. 114, A. Bermudez Eds., Springer, Berlin (1987) 277–283.
Sokolowski, J. and Zochowski, A., On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 12511272 (electronic) CrossRef
Sokolowski, J. and Zochowski, A., Modelling of topological derivatives for contact problems. Numer. Math. 102 (2005) 145179. CrossRef
R. Temam, Navier Stokes equations (1985).