Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T16:53:45.979Z Has data issue: false hasContentIssue false

The preparation, testing and standardization of typhoid vaccine

Published online by Cambridge University Press:  15 May 2009

A. Felix
Affiliation:
From the Central Enteric Reference Laboratory and Bureau, Public Health Laboratory Service (Medical Research Council)London
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The review of the laboratory evidence published since the introduction, ten years ago, of the alcohol-treated typhoid vaccine furnishes additional support for abandoning the old method of making typhoid vaccine. The alcohol-treated vaccine has advantages in regard to both the Vi-antibody response and the degree of systemic reactions produced.

2. The technique of the preparation of alcohol-killed and alcohol-preserved typhoid-paratyphoid vaccine has remained as originally described. The methods of selecting the vaccine strains and routinely examining the cultures have also remained unchanged.

3. The necessity of testing typhoid vaccines not only by active-immunity tests in mice but also for their antibody-stimulating properties is again stresssed. These tests consist of immunization of rabbits, estimation of their Vi- and O-agglutinin titres and passive-immunity tests in mice.

4. The most important sources of error in mouse-protection tests are:

(a) the use of a test culture of less than the maximum degree of mouse-virulence;

(b) the use of the mucin technique;

(c) immunization by intraperitoneal injections when the challenge dose also is given by this route.

Much of the experimental work on typhoid vaccine has been invalidated by these three pitfalls.

5. It is suggested that the mucin technique be abandoned in the assay of typhoid vaccine.

6. A source of error in the rabbit test is the presence of pre-formed Vi agglutinins. These are found in rabbits harbouring coliform organisms which possess the typhoid Vi antigen. Such rabbits do not respond to injections of typhoid Viantigen.

7. Standardization of the potency of typhoid vaccine has now become possible. Either an alcohol-preserved or a dried vaccine can serve as ‘standard vaccine’, to be used in combination with the ‘Provisional Standard Anti-typhoid Serum’. Both of these vaccines remain stable for a number of years.

8. Suggestions are briefly outlined for:

(a) the routine examination in the course of preparation of the vaccine;

(b) the official control of the potency of typhoid vaccine.

9.The paratyphoid components of T.A.B.C. vaccine can be standardized in an analogous manner.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1951

References

REFERENCES

Amaral, J. P. De & de Lacerda, P. M. G. (1947). Mem. Inst. Butantan, 20, 227.Google Scholar
Batson, H. C. (1949). Publ. Hlth Rep., Wash., Suppl. no. 212.Google Scholar
Batson, H. C., Landy, M. & Abrams, A. (1949). Publ. Hlth Rep., Wash. 64, 671.CrossRefGoogle Scholar
Batson, H. C., Landy, M. & Brown, M. (1950a). J. exp. Med. 91, 219.CrossRefGoogle Scholar
Batson, H. C., Landy, M. & Brown, M. (1950b). J. exp. Med. 91, 231.CrossRefGoogle Scholar
Boivin, A. (1939). C.R. Soc. Biol.Paris, 130, 403.Google Scholar
Boivin, A. & Mesrobeanu, L. (1933). C.R. Soc. Biol., Paris, 112, 76.Google Scholar
Boivin, A. & Mesrobeanu, L. (1938). C.R. Soc. Biol., Paris, 128, 837.Google Scholar
Buttle, G. A. H., Parish, H. J., Mcleod, M. & Stephenson, M. (1937). Lancet, 1, 681.CrossRefGoogle Scholar
Callender, G. R. & Luippold, G. F. (1943). J. Amer. med. Ass. 123, 319.CrossRefGoogle Scholar
Climie, H. (1942). J. Hyg., Camb. 42,411.Google Scholar
Craigie, J. & Brandon, K. F. (1936). J. Path. Bact. 43, 249.CrossRefGoogle Scholar
Craigie, J. & Yen, C. H. (1938). Canad. publ. Hlth J. 29, 484.Google Scholar
Cruickshank, J. C., Hobbs, B. C., McFarlan, M.A. & Maier, I. (1942). Brit. med. J. 2, 182.CrossRefGoogle Scholar
Drysdale, A. (1947). J. Hyg., Camb. 45, 46.CrossRefGoogle Scholar
Emergency PublicHealth Laboratory Service (1942). Mon. Bull. Emerg. publ. Hlth Lab. Serv., Lond.,1, Oct., p. 4.Google Scholar
Felix, A. (1938). J. Hyg., Camb. 38, 750.Google Scholar
Felix, A. (1941). Brit. med. J. 1, 391.CrossRefGoogle Scholar
Felix, A. (1944). Brit. med. Bull. 2, 269.CrossRefGoogle Scholar
Felix, A. & Anderson, E. S. (1951 a). J. Hyg., Camb. 49, 288.CrossRefGoogle Scholar
Felix, A. & Anderson, E. S. (1951 b). J. Hyg., Camb. 49, 349.CrossRefGoogle Scholar
Felix, A. & Bhatnagar, S. S. (1935). Brit. J. exp. Path. 16, 422.Google Scholar
Felix, A., Bhatnagar, S. S. & Pitt, R. M. (1934). Brit. J. exp. Path. 15, 346.Google Scholar
Felix, A., Krikorian, K. S. & Reitler, R. (1935). J. Hyg., Camb. 35, 421.CrossRefGoogle Scholar
Felix, A. & Olitzki, L. (1926). J. Immunol. 11, 31.CrossRefGoogle Scholar
Felix, A. & Petrie, G. F. (1938). J. Hyg., Camb. 38, 673.Google Scholar
Felix, A. & Pitt, R. M. (1934). Lancet, 1, 186.CrossRefGoogle Scholar
Felix, A. & Pitt, R. M. (1935). J. Hyg., Camb. 35, 428.CrossRefGoogle Scholar
Felix, A. & Pitt, R. M. (1936). Brit. J. exp. Path. 17, 81.Google Scholar
Felix, A. & Pitt, R. M. (1951). J. Hyg., Camb. 49, 92.CrossRefGoogle Scholar
Felix, A., Rainsford, S. G. & Stokes, E. J. (1941). Brit. med. J. 1, 435.CrossRefGoogle Scholar
Findlay, H. T. (1951). J. Hyg., Camb. 49, 111.CrossRefGoogle Scholar
Gohar, M. A. & Elian, A. (1942). J. trop. Med. (Hyg). 45, 41.Google Scholar
Grasset, E. (1939). Brit. med. J. 2, 58.CrossRefGoogle Scholar
Griffits, J. J. (1944). Publ. Hlth Rep., Wash. 59, 1515.CrossRefGoogle Scholar
Grinnell, F. B. (1932). J. exp. Med. 56, 907.CrossRefGoogle Scholar
Habel, K. & Weight, J. T. (1948). Publ. Hlth Rep., Wash. 63, 44.CrossRefGoogle Scholar
Henderson, D. W. (1939). Brit. J. exp. Path. 20, 1.Google Scholar
Henderson, D. W., Amies, C. R. & Steabben, D. B. (1940). Ann. Rep. Lister Inst. Prev. Med., Lond., p. 7.Google Scholar
Henderson, D. W. & Morgan, W. T. J. (1938). Brit. J. exp. Path. 19, 82.Google Scholar
Henderson, D. W., Peacock, S. & Richley, J. (1951). Lancet, 1, 618.CrossRefGoogle Scholar
Holt, R. L. (1948). Amer. J. publ.Hlth. 38, 481.CrossRefGoogle Scholar
Kauffmann, F. (1941 a). Amer. j. publ. Hlth, 38, 481Google Scholar
Die Bakteriologie der Salmonella-Gruppe. Copenhagen: Einar Munksgaard.Google Scholar
Kauffmann, F. (1941 b). Acta path. microbiol. scand. 18, 225.CrossRefGoogle Scholar
Kauffmann, F. (1947). Acta path. microbiol. scand. 24, 591.CrossRefGoogle Scholar
League of Nations Permanent Commission on Biological Standardization (1938). Bull. Hlth Org., L.o.N. 7, 700.Google Scholar
Longfellow, D. & Luippold, G. F. (1943). Amer. J. Hyg. 37, 206.Google Scholar
Loureiro, J. A. M. De (1946). Cadernos Cientificos, Lisbon, 1, 201.Google Scholar
Luippold, G. F. (1945). Amer. J. publ. HlPth 35, 153.CrossRefGoogle Scholar
Luippold, G. F. (1946). Amer. J. publ. Hlth 36, 15.CrossRefGoogle Scholar
Marmion, B. P. (1944). Mon. Bull. Min. Hlth, Emerg. Publ. Hlth. Lab. Serv., Lond. 3, 139.Google Scholar
Mason, J. H. (1947). Personal communication.Google Scholar
McClurkin, T. (1942). Personal communication.Google Scholar
Morgan, W. T. J. (1937). Biochem. J. 31, 2003.CrossRefGoogle Scholar
Ørskov, J.& Kauffmann, F. (1940).Z. ImmunForsch. 98, 359.Google Scholar
Ørskov, J. & Kauffmann, F. (1936). J. Hyg., Camb. 36, 514.Google Scholar
Pacheco, G. & Noronha, P. J. (1940). C.R. Soc. Biol., Paris, 133, 337.Google Scholar
Perry, H. M., Findlay, H. T. & Bensted, H. J. (1933). J. R. Army med. Cps, 61, 81.Google Scholar
Perry, H. M., Findlay, H. T. & Bensted, H. J. (1934). J. R. Army med. Cps, 62, 161.Google Scholar
Pfeiffer, B. & Issaeff (1894). Z. Hyg. InfektKr. 17, 355.CrossRefGoogle Scholar
Pfeiffer, B. & Kolle, W. (1896). Dtsch. med. Wschr. 22, 735.CrossRefGoogle Scholar
Philipson, J. (1937). Acta path. microbiol. scand. Suppl. no. 32.Google Scholar
Rainsford, S. G. (1942). J. Hyg., Camb. 42, 297.CrossRefGoogle Scholar
Raistrick, H. & Topley, W. W. C. (1934). Brit. J. exp. Path. 15, 113.Google Scholar
Rake, G. (1935). Proc. Soc. exp. Biol., N.Y. 32, 1523.CrossRefGoogle Scholar
Schutze, H. (1936). J. Hyg., Camb. 36, 559.CrossRefGoogle Scholar
Siler, J. F. (1936). Amer. J. publ. Hlth, 26, 219.CrossRefGoogle Scholar
Siler, J. F., Dunham, G. C., Longfellow, D. & Luippold, G. F. (1941). Immunization to Typhoid Fever. Baltimore:The Johns Hopkins Press.Google Scholar
Sobernheim, G. (1895). Z. Hyg. InfektKr. 20, 438.Google Scholar
Spitznagel, J. K. & Trainer, R. Y. (1949). J. Immunol. 62, 229.CrossRefGoogle Scholar
Topley, W. W. C., Raistrick, H., Wilson, J., Stacey, M., Challinor, S. W. & Clark, R. I. J. (1937). Lancet, 1, 252.CrossRefGoogle Scholar
Tunnicliff, R. (1940). J. infect. Dis. 66, 189.CrossRefGoogle Scholar
Weil, E. & Felix, A. (1920). Z. ImmunForsch. 29, 24.Google Scholar
Wright, A. E. & Semple, D. (1897). Brit. med. J. 1, 256.CrossRefGoogle Scholar