Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T04:01:15.304Z Has data issue: false hasContentIssue false

Testing the programming of temperament and psychopathology in two independent samples of children with prenatal substance exposure

Published online by Cambridge University Press:  02 August 2018

Betty Lin*
Affiliation:
University of Utah
Brendan D. Ostlund
Affiliation:
University of Utah
Elisabeth Conradt
Affiliation:
University of Utah
Linda L. Lagasse
Affiliation:
Alpert Medical School of Brown University Women and Infants Hospital of Rhode Island
Barry M. Lester
Affiliation:
Alpert Medical School of Brown University Women and Infants Hospital of Rhode Island
*
Address correspondence and reprint requests to: Betty Lin, Department of Psychology, University of Utah, Salt Lake City, UT 84112; E-mail: [email protected].

Abstract

Prenatal programming models have rarely been applied to research on children with prenatal substance exposure, despite evidence suggesting that prenatal drug exposure is a form of stress that impacts neurodevelopmental outcomes and risk for psychopathology. Utilizing data from two longitudinal multisite studies comprising children prenatally exposed to substances as well as a nonexposed comparison group (Maternal Lifestyle Study, n = 1,388; Infant Development, Environment, and Lifestyle study, n = 412), we tested whether early phenotypic indicators of hypothesized programming effects, indexed by growth parameters at birth and infant temperament, served as a link between prenatal substance exposure and internalizing and externalizing behavior at age 5. Latent profile analysis indicated that individual differences in reactivity and regulation for infants prenatally exposed to substances was best characterized by four temperament profiles. These profiles were virtually identical across two independent samples, and demonstrated unique associations with adjustment difficulties nearly 5 years later. Results of path analysis using structural equation modeling also showed that increased prenatal substance exposure was linked to poorer growth parameters at birth, profiles of temperamental reactivity in infancy, and internalizing and externalizing behavior at age 5. This pathway was partially replicated across samples. This study was among the first to link known individual-level correlates of prenatal substance exposure into a specific pathway to childhood problem behavior. Implications for the developmental origins of a child's susceptibility to psychopathology as a result of intrauterine substance exposure are discussed.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first two authors contributed equally to this paper.

This work was supported by the following NIH grants: National Institute of Child Health and Human Development (NICHD) Neonatal Research Network and an interinstitute agreement with the National Institute on Drug Abuse (NIDA) through cooperative agreements: U10-DA-024119-01 and U10-HD-27904 (to B.M.L.); NICHD contract N01-HD-2-3159 (to B.M.L) and 1RO1DA014918 (to L.L.); and a Career Development Award from the NIDA 7K08DA038959-02 (to E.C.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Mental Health, the NIDA, or the NIH.

References

Abar, B., LaGasse, L. L., Derauf, C., Newman, E., Shah, R., Smith, L. M., … Lester, B. M. (2013). Examining the relationships between prenatal methamphetamine exposure, early adversity, and child neurobehavioral disinhibition. Psychology of Addictive Behaviors, 27, 662673. doi:10.1037/a0030157Google Scholar
Achenbach, T. M., & Rescorla, L. A. (2000). Manual for the ASEBA Preschool Forms & Profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families.Google Scholar
Aksan, N., Goldsmith, H. H., Smider, N. A., Essex, M. J., Clark, R., Hyde, J. S., … Vandell, D. L. (1999). Derivation and prediction of temperamental types among preschoolers. Developmental Psychology, 35, 958971.Google Scholar
Alati, R., Najman, J. M., O'Callaghan, M., Bor, W., Williams, G. M., & Clavarino, A. (2009). Fetal growth and behaviour problems in early adolescence: Findings from the Mater University study of pregnancy. International Journal of Epidemiology, 38, 13901400. doi:10.1093/ije/dyp252Google Scholar
Ashford, J., van Lier, P. A., Timmermans, M., Cuijpers, P., & Koot, H. M. (2008). Prenatal smoking and internalizing and externalizing problems in children studied from childhood to late adolescence. Journal of the American Academy of Child & Adolescent Psychiatry, 47, 779787. doi:10.1097/CHI.0b013e318172eefbGoogle Scholar
Bada, H. S., Das, A., Bauer, C. R., Shankaran, S., Lester, B., LaGasse, L., … Higgins, R. (2007). Impact of prenatal cocaine exposure on child behavior problems through school age. Pediatrics, 119, e348e359.Google Scholar
Bada, H. S., Das, A., Bauer, C. R., Shankaran, S., Lester, B., Wright, L. L., … Maza, P. L. (2002). Gestational cocaine exposure and intrauterine growth: Maternal Lifestyle Study. Obstetrics and Gynecology, 100, 916924. doi:10.1016/S0029-7844(02)02199-3Google Scholar
Barker, D. J., & Osmond, C. (1986). Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet, 327, 10771081.Google Scholar
Barker, D. J., Osmond, C., Winter, P. D., Margetts, B., & Simmonds, S. J. (1989). Weight in infancy and death from ischaemic heart disease. Lancet, 334, 577580.Google Scholar
Barker, D. J., & Thornburg, K. L. (2013). The obstetric origins of health for a lifetime. Clinical Obstetrics and Gynecology, 56, 511519.Google Scholar
Barker, D. J. P., Godfrey, K. M., Gluckman, P. D., Harding, J. E., Owens, J. A., & Robinson, J. S. (1993). Fetal nutrition and cardiovascular disease in adult life. Lancet, 341, 938941. doi:10.1016/0140-6736(93)91224-AGoogle Scholar
Bauer, C. R., Langer, J. C., Shankaran, S., Bada, H. S., Lester, B., Wright, L. L., … Verter, J. (2005). Acute neonatal effects of cocaine exposure during pregnancy. Archives of Pediatric and Adolescent Medicine, 159, 824834. doi:10.1001/archpedi.159.9.824Google Scholar
Beekman, C., Neiderhiser, J. M., Buss, K. A., Loken, E., Moore, G. A., Leve, L. D., … Reiss, D. (2015). The development of early profiles of temperament: Characterization, continuity, and etiology. Child Development, 86, 17941811. doi:10.1111/cdev.12417Google Scholar
Behnke, M., Eyler, F. D., Garvan, C. W., & Wobie, K. (2001). The search for congenital malformations in newborns with fetal cocaine exposure. Pediatrics, 107, 16.Google Scholar
Behnke, M., Smith, V. C., Committee on Substance Abuse, & Committee on Fetus and Newborn (2013). Prenatal substance abuse: Short- and long-term effects on the exposed fetus. Pediatrics, 131, e1009e1024. doi:10.1542/peds.2012-3931Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.Google Scholar
Bennett, D., Bendersky, M., & Lewis, M. (2007). Preadolescent health risk behavior as a function of prenatal cocaine exposure and gender. Journal of Developmental and Behavioral Pediatrics, 28, 467472. doi:10.1097/DBP.0b013e31811320d8Google Scholar
Bergman, K., Sarkar, P., O'Connor, T. G., Modi, N., & Glover, V. (2007). Maternal stress during pregnancy predicts cognitive ability and fearfulness in infancy. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 14541463. doi:10.1097/chi.0b013e31814a62f6Google Scholar
Billings, L., Eriksson, M., Jonsson, B., Steneroth, G., & Zetterström, R. (1994). The influence of environmental factors on behavioural problems in 8-year-old children exposed to amphetamine during fetal life. Child Abuse & Neglect, 18, 39.Google Scholar
Braungart-Rieker, J. M., Hill-Soderlund, A. L., & Karrass, J. (2010). Fear and anger reactivity trajectories from 4 to 16 months: The roles of temperament, regulation, and maternal sensitivity. Developmental Psychology, 46, 791804. doi:10.1037/a0019673Google Scholar
Caspi, A., & Silva, P. A. (1995). Temperamental qualities at age three predict personality traits in young adulthood: Longitudinal evidence from a birth cohort. Child Development, 66, 486498. doi:10.1111/j.1467-8624.1995.tb00885.xGoogle Scholar
Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13, 195212. doi:10.1007/bf01246098Google Scholar
Chatterji, P., Lahiri, K., & Kim, D. (2014). Fetal growth and neurobehavioral outcomes in childhood. Economics & Human Biology, 15, 187200. doi:10.1016/j.ehb.2014.09.002Google Scholar
Cicchetti, D. (2008). A multiple-levels-of-analysis perspective on research in development and psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (pp. 2757). Hoboken, NJ: Wiley.Google Scholar
Cicchetti, D., & Rogosch, F. A. (2002). A developmental psychopathology perspective on adolescence. Journal of Consulting and Clinical Psychology, 70, 6.Google Scholar
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.Google Scholar
Conradt, E., Beauchaine, T. P., Abar, B., Lagasse, L., Shankaran, S., Bada, H. S., … Lester, B. M. (2016). Early caregiving stress exposure moderates the relation between respiratory sinus arrhythmia reactivity at 1 month and biobehavioral outcomes at age 3. Psychophysiology, 53, 8396. doi:10.1111/psyp.12569Google Scholar
Crocker, N. A., Fryer, S. L., & Mattson, S. N. (2013). Exposure to teratogens as a risk factor for psychopathology. In Beauchaine, T. B. & Hinshaw, S. H. (Eds.), Child and adolescent psychopathology (pp. 285316). Hoboken, NJ: Wiley.Google Scholar
Davis, E. P., & Sandman, C. A. (2012). Prenatal psychobiological predictors of anxiety risk in preadolescent children. Psychoneuroendocrinology, 37, 12241233. doi:10.1016/j.psyneuen.2011.12.016Google Scholar
Davis, E. P., Snidman, N., Wadhwa, P. D., Glynn, L. M., Schetter, C. D., & Sandman, C. A. (2004). Prenatal maternal anxiety and depression predict negative behavioral reactivity in infancy. Infancy, 6, 319331.Google Scholar
Del Giudice, M., & Ellis, B. J. (2016). Evolutionary foundations of developmental psychopathology. In Cicchetti, D. (Ed.), Developmental psychopathology: Developmental neuroscience (3rd ed., Vol. 2, pp. 158). Hoboken, NJ: Wiley.Google Scholar
Eisenberg, N., Valiente, C., Spinrad, T. L., Cumberland, A., Liew, J., Reiser, M., … Losoya, S. H. (2009). Longitudinal relations of children's effortful control, impulsivity, and negative emotionality to their externalizing, internalizing, and co-occurring behavior problems. Developmental Psychology, 45, 9881008. doi:10.1037/a0016213Google Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728. doi:10.1017/S0954579410000611Google Scholar
El Marroun, H., Tiemeier, H., Steegers, E. A. P., Jaddoe, V. W. V., Hofman, A., Verhulst, F. C., … Huizink, A. C. (2009). Intrauterine cannabis exposure affects fetal growth trajectories: The Generation R Study. Journal of the American Academy of Child & Adolescent Psychiatry, 48, 11731181. doi:10.1097/CHI.0b013e3181bfa8eeGoogle Scholar
Eze, N., Smith, L. M., LaGasse, L. L., Derauf, C., Newman, E., Arria, A., … Lester, B. M. (2016). School-aged outcomes following prenatal methamphetamine exposure: 7.5-year follow-up from the Infant Development, Environment, and Lifestyle study. Journal of Pediatrics, 170, 3438. doi:10.1016/jpeds.2015.11.070Google Scholar
Fisher, P. A., Lester, B. M., Degarmo, D. S., LaGasse, L. L., Lin, H., Bauer, C. R., … Higgins, R. (2011). The combined effects of prenatal drug exposure and early adversity on neurobehavioral disinhibition in childhood and adolescence. Development and Psychopathology, 23, 777788. doi:10.1017/S0954579411000290.Google Scholar
Garcia-Coll, C., Kagan, J., & Reznick, J. S. (1984). Behavioral inhibition in young children. Child Development, 55, 10051019.Google Scholar
Gartstein, M. A., Prokasky, A., Bell, M. A., Calkins, S., Bridgett, D. J., Braungart-Rieker, J., … Seamon, E. (2017). Latent profile and cluster analysis of infant temperament: Comparisons across person-centered approaches. Developmental Psychology, 53, 18111825. doi:10.1037/dev0000382Google Scholar
Gartstein, M. A., Putnam, S. P., & Rothbart, M. K. (2012). Etiology of preschool behavior problems: Contributions of temperament attributes in early childhood. Infant Mental Health Journal, 33, 197211. doi:10.1002/imhj.21312Google Scholar
Gluckman, P. D., Hanson, M. A., Cooper, C., & Thornburg, K. L. (2008). Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine, 359, 6173. doi:10.1056/NEJMra0708473Google Scholar
Goldschmidt, L., Day, N. L., & Richardson, G. A. (2000). Effects of prenatal marijuana exposure on child behavior problems at age 10. Neurotoxicology and Teratology, 22, 325336. doi:10.1016/S0892-0362(00)00066-0Google Scholar
Goldsmith, H. H. (1996). Studying temperament via construction of the Toddler Behavior Assessment Questionnaire. Child Development, 67, 218235. doi:10.2307/ 1131697Google Scholar
Gottlieb, G. (2007). Probabilistic epigenesis. Developmental Science, 10, 111. doi:10.1111/j.1467-7687.2007.00556.xGoogle Scholar
Groen-Blokhuis, M. M., Middeldorp, C. M., van Bijsterveldt, C. E. M., & Boomsma, D. I. (2011). Evidence for a causal association of low birth weight and attention problems. Journal of the American Academy of Child & Adolescent Psychiatry, 50, 12471254. doi:10.1016/j.jaac.2011.09.007Google Scholar
Gupta, N. D., Deding, M., & Lausten, M. (2013). The effect of low birth weight on height, weight and behavioral outcomes in the medium-run. Economics & Human Biology, 7, 16. doi:10.1016/j.ehb.2011.06.002Google Scholar
Hales, C. N., Barker, D. J., Clark, P. M., Cox, L. J., Fall, C., Osmond, C., & Winter, P. D. (1991). Fetal and infant growth and impaired glucose tolerance at age 64. British Medical Journal, 303, 10191022.Google Scholar
Hayatbakhsh, M. R., Flenady, V. J., Gibbons, K. S., Kingsbury, A. M., Hurrion, E., Mamun, A. A., & Najman, J. M. (2012). Birth outcomes associated with cannabis use before and during pregnancy. Pediatric Research, 71, 215219. doi:10.1038/pr.2011.25Google Scholar
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 155. doi:10.1080/10705519909540118Google Scholar
Huizink, A. C., Robles De Medina, P. G., Mulder, E. J. H., Visser, G. H. A., & Buitelaar, J. K. (2002). Psychological measures of prenatal stress as predictors of infant temperament. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 10781085. doi:10.1097/00004583-200209000-00008Google Scholar
Hultman, C. M., Torrång, A., Tuvblad, C., Cnattingius, S., Larsson, J. O., & Lichtenstein, P. (2007). Birth weight and attention-deficit/hyperactivity symptoms in childhood and early adolescence: A prospective Swedish twin study. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 370377. doi:10.1097/01.chi.0000246059.62706.22Google Scholar
Kagan, J. (2012). The biography of behavioral inhibition. In Zentner, M. & Shiner, R. L. (Eds.), Handbook of temperament (pp. 6982). New York: Guilford Press.Google Scholar
Kagan, J., Reznick, J. S., Clarke, C., Snidman, N., & Garcia-Coll, C. (1984). Behavioral inhibition to the unfamiliar. Child Development, 55, 22122225. doi:10.2307/1129793Google Scholar
Kochanska, G., & Kim, S. (2013). Difficult temperament moderates links between maternal responsiveness and children's compliance and behavioral problems in low-income families. Journal of Child Psychology and Psychiatry, 54, 323332. doi:10.1111/jcpp.12002Google Scholar
LaGasse, L. L., Derauf, C., Smith, L. M., Newman, E., Shah, R., Neal, C., … Lester, B. M. (2012). Prenatal methamphetamine exposure and childhood behavior problems at 3 and 5 years of age. Pediatrics, 129, 681688. doi:10.1542/peds.2011-2209Google Scholar
Law, K. L., Stroud, L. R., Lagasse, L. L., Niaura, R., Liu, J., & Lester, B. M. (2003). Smoking during pregnancy and newborn neurobehavior. Pediatrics, 111, 13181323.Google Scholar
Lester, B. M., Bagner, D. M., Liu, J., Lagasse, L. L., Seifer, R., Bauer, C. R., … Das, A. (2009). Infant neurobehavioral dysregulation: Behavior problems in children with prenatal substance exposure. Pediatrics, 124, 13551362. doi:10.1542/peds.2008-2898Google Scholar
Lester, B. M., ElSohly, M., Wright, L. L., Smeriglio, V. L., Verter, J., Bauer, C. R., … Maza, P. L. (2001). The Maternal Lifestyle Study: Drug use by meconium toxicology and maternal self-report. Pediatrics, 107, 309317. doi:10.1542/peds.107.2.309Google Scholar
Lester, B. M., & Padbury, J. F. (2009). Third pathophysiology of prenatal cocaine exposure. Developmental Neuroscience, 31, 2335. doi:10.1159/000207491Google Scholar
Lester, B. M., Tronick, E. Z., LaGasse, L., Seifer, R., Bauer, C. R., Shankaran, S., … Maza, P. L. (2002). The Maternal Lifestyle Study: Effects of substance exposure during pregnancy on neurodevelopmental outcome in 1-month-old infants. Pediatrics, 110, 11821192. doi:10.1542/peds.110.6.1182Google Scholar
Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767778.Google Scholar
Locke, R. L., LaGasse, L. L., Seifer, R., Lester, B. M., Shankaran, S., Bada, H. S., & Bauer, C. R. (2016). Effects of prenatal substance exposure on infant temperament vary by context. Development and Psychopathology, 28, 309326. doi:10.1017/S0954579415000504Google Scholar
Lumey, L., Stein, A. D., Kahn, H. S., & Romijn, J. (2009). Lipid profiles in middle-aged men and women after famine exposure during gestation: The Dutch Hunger Winter Families Study. American Journal of Clinical Nutrition, 89, 17371743. doi:10.3945/ajcn.2008.27038Google Scholar
Minnes, S., Lang, A., & Singer, L. (2011). Prenatal tobacco, marijuana, stimulant, and opiate exposure: Outcomes and practice implications. Addiction Science & Clinical Practice, 6, 5770.Google Scholar
Monroe, S. M., & Simons, A. D. (1991). Diathesis stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406425. doi:10.1037//0033-2909.110.3.406Google Scholar
Muthén, B. O., & Muthén, L. K. (1998–2012). Mplus user's guide (7th ed.). Los Angeles: Author.Google Scholar
National Research Council and Institute of Medicine. (2009). Preventing mental, emotional, and behavioral disorders among young people: Progress and possibilities. Washington, DC: National Academic Press.Google Scholar
Oberlander, T. F., Jacobson, S. W., Weinberg, J., Grunau, R. E., Molteno, C. D., & Jacobson, J. L. (2010). Prenatal alcohol exposure alters biobehavioral reactivity to pain in newborns. Alcoholism: Clinical and Experimental Research, 34, 681692. doi:10.1111/j.1530-0277.2009.01137.xGoogle Scholar
O'Connor, M. J. (2001). Prenatal alcohol exposure and infant negative affect as precursors of depressive features in children. Infant Mental Health Journal, 22, 291299.Google Scholar
O'Connor, M. J., & Paley, B. (2009). Psychiatric conditions associated with prenatal alcohol exposure. Developmental Disabilities Research Review, 15, 225234. doi:10.1002/ddrr.74Google Scholar
Oei, J., Abdel-Latif, M. E., Clark, R., Craig, F., & Lui, K. (2010). Short-term outcomes of mothers and infants exposed to antenatal amphetamines. Archives of Disease in Childhood—Fetal and Neonatal Edition, 95, F36F41. doi:10.1136/adc.2008.157305Google Scholar
Oldehinkel, A. J., Hartman, C. A., de Winter, A. F., Veenstra, R., & Ormel, J. (2004). Temperament profiles associated with internalizing and externalizing problems in preadolescence. Development and Psychopathology, 16, 421440.Google Scholar
Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science 349. doi:10.1126/science.aac4716Google Scholar
Padmanabhan, V., Cardoso, R. C., & Puttabyatappa, M. (2016). Developmental programming, a pathway to disease. Endocrinology, 157, 13281340. doi:10.1210/en.2016-1003Google Scholar
Patra, J., Bakker, R., Irving, H., Jaddoe, V. W. V., Malini, S., & Rehm, J. (2011). Dose–response relationship between alcohol consumption before and during pregnancy and the risks of low birthweight, preterm birth and small for gestational age (SGA)—A systematic review and meta-analyses. BJOG, 118, 14111421. doi:10.1111/j.1471-0528.2011.03050.xGoogle Scholar
Richardson, G. A., Goldschmidt, L., Leech, S., & Willford, J. (2011). Prenatal cocaine exposure: Effects on mother- and teacher-rated behavior problems and growth in school-age children. Neurotoxicology and Teratology, 33, 6977. doi:10.1016/j.ntt.2010.06.003Google Scholar
Richardson, G. A., Goldschmidt, L., & Willford, J. (2008). The effects of prenatal cocaine use on infant development. Neurotoxicology and Teratology, 30, 96106. doi:10.1016/j.ntt.2007.12.006Google Scholar
Robinson, M., Oddy, W. H., Li, J., Kendall, G. E., de Klerk, N. H., Silburn, S. R., … Mattes, E. (2008). Pre- and postnatal influences on preschool mental health: A large-scale cohort study. Journal of Child Psychology and Psychiatry, 49, 11181128. doi:10.1111/j.1469-7610.2008.01955.xGoogle Scholar
Roseboom, T. J., van der Meulen, J. H. P., Osmond, C., Barker, D. J. P., Ravelli, A. C. J., Schroeder-Tanka, J. M., … Bleker, O. P. (2000). Coronary heart disease after prenatal exposure to the Dutch famine, 1944–45. Heart, 84, 595598.Google Scholar
Ross, E. J., Graham, D. L., Money, K. M., & Stanwood, G. D. (2015). Developmental consequences of fetal exposure to drugs: What we know and what we still must learn. Neuropsychopharmacology, 40, 6187. doi:10.1038/npp.2014.147Google Scholar
Rothbart, M. K. (1981). Measurement of temperament in infancy. Child Development, 52, 569578. doi:10.2307/1129176Google Scholar
Rothbart, M. K., & Bates, J. E. (2006). Temperament. In Damon, W., Lerner, R., & Eisenberg, N. (Eds.), Handbook of child psychology: Social, emotional, and personality development (6th ed., Vol. 3, pp. 99106). Hoboken, NJ: Wiley.Google Scholar
Salmasi, G., Grady, R., Jones, J., & Mcdonald, S. D. (2010). Environmental tobacco smoke exposure and perinatal outcomes: A systematic review and meta-analyses. Acta Obstetricia et Gynecologica Scandinavica, 89, 423441. doi:10.3109/00016340903505748Google Scholar
Sandman, C. A., Davis, E. P., Buss, C., & Glynn, L. M. (2012). Exposure to prenatal psychobiological stress exerts programming influences on the mother and her fetus. Neuroendocrinology, 95, 821.Google Scholar
Schuetze, P., & Eiden, R. D. (2007). The association between prenatal exposure to cigarettes and infant and maternal negative affect. Infant Behavior Development, 30, 387398. doi:10.1016/j.infbeh.2006.10.005Google Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464.Google Scholar
Scott, B. G., Lemery-Chalfant, K., Clifford, S., Tein, J.-Y., Stoll, R., & Goldsmith, H. H. (2016). A twin factor mixture modeling approach to childhood temperament: Differential heritability. Child Development, 87, 19401955. doi:10.1111/cdev.12561Google Scholar
Shankaran, S., Das, A., Bauer, C. R., Bada, H. S., Lester, B., Wright, L. L., & Smeriglio, V. (2004). Association between patterns of maternal substance use and infant birth weight, length, and head circumference. Pediatrics, 114, e226e234. doi:10.1542/peds.101.2.229Google Scholar
Shiner, R., Buss, K., McClowry, S., Putnam, S., Saudino, K., & Zentner, M. (2012). What is temperament now? Assessing progress in temperament research on the twenty-fifth anniversary of Goldsmith et al. (1987). Child Development Perspectives, 6, 436444. doi:10.1111/j.1750–8606.2012.00254.xGoogle Scholar
Slagt, M., Dubas, J. S., Dekovic, M., & van Aken, M. A. (2016). Differences in sensitivity to parenting depending on child temperament: A meta-analysis. Psychological Bulletin, 142, 10681110. doi:10.1037/bul0000061Google Scholar
Smith, L. M., Diaz, S., LaGasse, L. L., Wouldes, T., Derauf, C., Newman, E., … Lester, B. M. (2015). Developmental and behavioral consequences of prenatal methamphetamine exposure: A review of the Infant Development, Environment, and Lifestyle (IDEAL) study. Neurotoxicology and Teratology, 51, 3544. doi:10.1016/j.ntt.2015.07.006Google Scholar
Smith, L. M., LaGasse, L. L., Derauf, C., Grant, P., Shah, R., Arria, A., … Lester, B. M. (2006). The Infant Development, Environment, and Lifestyle study: Effects of prenatal methamphetamine exposure, polydrug exposure, and poverty on intrauterine growth. Pediatrics, 118, 11491156. doi:10.1542/peds.2005-2564Google Scholar
Smith, L. M., LaGasse, L. L., Derauf, C., Grant, P., Shah, R., Arria, A., … Lester, B. M. (2008). Prenatal methamphetamine use and neonatal neurobehavioral outcome. Neurotoxicology and Teratology, 30, 2028. doi:10.1016/j.ntt.2007.09.005Google Scholar
Stifter, C., & Dollar, J. (2016). Temperament and developmental psychopathology. In Damon, W., Lerner, R., & Eisenberg, N. (Eds.), Developmental psychopathology: Risk, resilience, and intervention (Vol. 4, pp. 162). Hoboken, NJ: Wiley.Google Scholar
Stifter, C., Putnam, S., & Jahromi, L. (2008). Exuberant and inhibited toddlers: Stability of temperament and risk for problem behavior. Development and Psychopathology, 20, 401421. doi:10.1017/S0954579408000199Google Scholar
Stroud, L. R., Paster, R. L., Papandonatos, G. D., Niaura, R., Salisbury, A. L., Battle, C., … Lester, B. M. (2009). Maternal smoking during pregnancy and newborn neurobehavior: Effects at 10 to 27 days. Journal of Pediatrics, 154, 1016. doi:10.1016/j.jpeds.2008.07.048Google Scholar
Thomas, A., & Chess, S. (1977). Temperament and development. New York: Brunner/Mazel.Google Scholar
Thomas, A., Chess, S., & Birch, H. G. (1970). The origins of personality. Scientific American, 233, 102109.Google Scholar
Thompson, C., Syddall, H., Rodin, I. A. N., Osmond, C., & Barker, D. J. (2001). Birth weight and the risk of depressive disorder in late life. British Journal of Psychiatry, 179, 450455.Google Scholar
Tsang, T. W., Lucas, B. R., Olson, H. C., Pinto, R. Z., & Elliott, E. J. (2016). Prenatal alcohol exposure, FASD, and child behavior: A meta-analysis. Pediatrics, 137, 120. doi:10.1542/peds.2015-2542Google Scholar
Wadhwa, P. D., Buss, C., Entringer, S., & Swanson, J. M. (2009). Developmental origins of health and disease: Brief history of the approach and current focus on epigenetic mechanisms. Seminars in Reproductive Medicine, 27, 358368. doi:10.1055/s-0029-1237424Google Scholar
Zarén, B., Lindmark, G., & Gebre-Medhin, M. (1996). Maternal smoking and body composition of the newborn. Acta Paediatrica, 85, 213219.Google Scholar
Supplementary material: File

Lin et al. supplementary material

Lin et al. supplementary material 1

Download Lin et al. supplementary material(File)
File 118.3 KB
Supplementary material: File

Lin et al. supplementary material

Lin et al. supplementary material 2

Download Lin et al. supplementary material(File)
File 118.3 KB