Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-16T06:24:12.461Z Has data issue: false hasContentIssue false

Order-disorder in 1:1 type clay minerals by solid-state 27Al and 29Si magic-angle-spinning NMR spectroscopy

Published online by Cambridge University Press:  09 July 2018

S. Komarneni
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
C. A. Fyfe
Affiliation:
Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
G. J. Kennedy
Affiliation:
Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

The applicability of 27Al and 29Si magic-angle-spinning nuclear magnetic resonance (MASNMR) spectroscopy to the investigation of order-disorder in 1 : 1 dioctahedral layer-silicates was tested. 27Al and 29Si MASNMR showed the existence of short-range order in all these systems while XRD showed different degrees of long-range order-disorder. Spectra obtained on kaolinite and metakaolin clearly showed the transformation of some octahedral Al in kaolinite to tetrahedral coordination in metakaolin and also showed short-range Al and Si disorder in the latter. This suggests that structural re-arrangement on thermal treatment can be monitored by this technique. These results further suggest that MASNMR can detect short-range order, which is complimentary to the information that XRD provides regarding long-range order.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrew, E.R., Bradbury, A. & Eades, R.G. (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182, 1659.CrossRefGoogle Scholar
Barron, P.F., Raymond, L.F., Skjemstad, J.O. & Koppi, A.J. (1983) Detection of two silicon environments in kaolins by solid-state 29Si NMR. Nature 302, 4950.CrossRefGoogle Scholar
Brindley, G.W. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification, p. 495. Mineralogical Society, London.CrossRefGoogle Scholar
Engelhardt, G., Lohse, U., Samoson, A., Tarmak, M. & Lippmaa, E. (1982) High resolution Si-29 NMR of dealuminated and ultrastable Y-zeolites. Zeolites 2, 5962.Google Scholar
Fyfe, C.A., Gobbi, G., Hartman, J., Lenkinski, R., O'Brien, J., Beange, E.R. & Smith, M.A.R. (1982a) High resolution solid state MAS spectra of Si-29, Al-27, B-l 1 and other nuclei in inorganic systems using a narrow-bore 400 MHz high resolution NMR spectrometer. J. Mag. Reson. 47, 168173.Google Scholar
Fyfe, C.A., Gobbi, G., Thomas, J.M. & Ramdas, S. (1982b) Resolving crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid state NMR. Nature 296, 530533.Google Scholar
Fyfe, C.A., Thomas, J.M., Klinowski, J. & Gobbi, G.C. (1983) Magic-angle-spinning NMR (MAS-NMR) spectroscopy and the structure of zeolites. Angew Chem. (Eng. Edition) 22, 259336.Google Scholar
Hinckley, D.N. (1963) Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays Clay Miner. 11, 229235.Google Scholar
Klinowski, J., Ramdas, S., Thomas, J., Fyfe, C.A. & Hartman, J. (1982a) A reexamination of Si,Al ordering in zeolites NaX and NaY. J.C.S. Faraday Trans. 78, 5962.Google Scholar
Klinowski, J., Thomas, J., Fyfe, C.A. & Gobbi, G. (1982b) Monitoring of structural changes accompanying ultrastabilization of faujasitic zeolitic catalysts. Nature 296, 533536.Google Scholar
Komarneni, S., Roy, R., Fyfe, C.A. & Thomas, J.M. (1984) Solid state 27Al magic-angle-spinning NMR spectroscopy of clay minerals and gels. Abstracts, CMS Ann. Mtg. Baton Rouge, 71.Google Scholar
Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G. & Grimmer, A. (1980) Structural studies of silicates by solid state high resolution Si-29 NMR. J. Am. Chem. Soc. 102, 48894893.Google Scholar
Lipmaa, E., Magi, M., Samoson, A., Tarmak, M. & Engelhardt, G. (1981) Investigation of the structure of zeolites by solid state high resolution Si-29 NMR spectroscopy. J. Am. Chem. Soc. 103, 49924996.CrossRefGoogle Scholar
Magi, M., Samoson, A., Tarmak, M., Engelhardt, G. & Lipmaa, E. (1981) Investigations into the structure of silicate minerals using high-resolution solid-state 29Si NMR spectroscopy. Dokl. Akad. Nauk. SSSR 261, 11691174.Google Scholar
Mansfield, C.F. & Bailey, S.W. (1972) Twin and pseudotwin intergrowth in kaolinites. Am. Miner. 57, 411425.Google Scholar
Mitra, G.B. (1963) Structure defects in kaolinite. Z. Kristallogr. Kristallgeom. 119, 161175.CrossRefGoogle Scholar
Mitra, G.B. & Bhattacherjee, S. (1969) X-ray diffraction studies on the transformation of kaolinite into metakaolin: I. Variability of interlayer spacings. Am. Miner. 54, 14091418.Google Scholar
Muraay, H.H. & Lyons, S.C. (1956) Correlation of paper-coating quality with degree of crystal perfection of kaolinite. Clays Clay Miner. 4, 3140.Google Scholar
Plançon, A. & Tchoubar, C. (1975) Etudes des fautes d'empilement dans les kaolinites partiellement desordonnees. I Modele d'empilement ne comportant que des fautes de translation. J. Appl. Cryst. 8, 582588.Google Scholar
Plançon, A. & Tchouaar, C. (1977) Determination of structural defects in phyllosilicates by X-ray diffraction. Part I. Principle of calculation of the diffraction phenomena. Clays Clay Miner. 25, 430435.Google Scholar
Sanz, J. & Serratosa, J.M. (1984) Distinction of tetrahedrally and octahedrally coordinated Al in phyllosilicates by NMR spectroscopy. Clay Mineral 19, 113115.CrossRefGoogle Scholar
Thomas, J.M., Fyfe, C., Ramdas, S., Klinowski, J. & Gobbi, G. (1982) High resolution silicon-29 nuclear magnetic resonance spectrum of zeolite ZK-4: Its significance in assessing magic-angle-spinning NMR as a structural tool for aluminosilicates. J. Phys. Chem. 86, 30613064.CrossRefGoogle Scholar
Thomas, J.M., Klinowski, J., Wright, P.A. & Roy, R. (1983) Probing the environment of Al atoms in noncrystalline solids: A12O3 gels, soda glass, and mullite precursors. Angew. Chem. Int. Ed. Eng. 22, 614616.Google Scholar
Thompson, J.G. (1984a) Two possible interpretations of 29Si nuclear magnetic resonance spectra of kaolin-group minerals. Clays Clay Miner. 32, 233234.Google Scholar
Thompson, J.G. (1984b) 29Si and 27Al nuclear magnetic resonance spectroscopy of 2:1 clay minerals. Clay Miner. 19, 229236.Google Scholar
Wieker, W., Grimmer, A.R., Wrinkler, A., Magi, M., Tarmak, M. & Lippmaa, E. (1982) Solid-state highresolution 29Si NMR spectroscopy of synthetic 14 Å, 11 Å and 9 Å tobermorites. Cement Concrete Res. 12, 333339.Google Scholar