Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T11:54:13.105Z Has data issue: false hasContentIssue false

Vermiculitization of smectite interfaces and illite layer growth as a possible dual model for illite-smectite illitization in diagenetic environments: a synthesis

Published online by Cambridge University Press:  09 July 2018

A. Meunier*
Affiliation:
University of Poitiers, CNRS UMR 6532, 40 avenue du Recteur Pineau, 86022 Cedex, France
B. Lanson
Affiliation:
Environmental Geochemistry Group, LGIT-IRIGM, University J. Fourier - CNRS, BP 53, 38041 Grenoble Cedex 9, France
D. Beaufort
Affiliation:
University of Poitiers, CNRS UMR 6532, 40 avenue du Recteur Pineau, 86022 Cedex, France
*

Abstract

A structural model is proposed for illite-smectite (I-S) from diagenetic environments which accounts for the presence of three different layer types which are defined as follows: montmorillonite (low-charge, octahedrally substituted, fully expandable), vermiculite (high-cha rge, octa- and tetrahed rally substitut ed, only partly expandabl e) and illite (K0.9Si3.3Al0.7R1.83+R0.22+O10(OH)2). All three layers may be found within the MacEwan crystallites, whereas external edges of the crystallites are only vermiculitic during the illitization process. In the proposed model, a layer is defined symmetrically on each side of the interlayer space, leading to the existence of polar 2:1 units. It is proposed that the I-S growth is a three step mechanism: (1) formation, from sediments of variable composition, of montmorillon ite crystallites; (2) vermiculitization of the montmorillonite crystallite interfaces and of inner montmorillonite layers; and (3) precipitation of illite of fixed chemical composition. The I-S crystal grows by addition of illite layers linked by K+ or NH4+ ions saturating the vermiculitic interfaces.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altaner, S.P. & Ylagan, R.F. (1997) Comparison of structural models of mixed-layer illite/ smectite and reaction mechanisms of smectite illitization. Clays Clay Miner. 45 517 – 533.Google Scholar
Altaner, S.P., Weiss, C.A. & Kirkpatrick, R.J. (1988) Evidence from 29Si NMR for the structure of mixedlayer illite-smectite clay minerals. Nature, 331, 699 – 702.Google Scholar
Awwiller, D.N. (1993) Illite/ smectite formation and potassium mass transfer during burial diagenesis of mudrocks: a study from the Texas Gulf Coast Paleocene-Eocene. J. Sed. Pet. 63, 501 – 512.Google Scholar
Baronnet, A. (1982) Ostwald ripening in solution. The case study of calcite and mica. Estudios Geologicos, 38, 185 – 198.Google Scholar
Baronnet, A. (1991) Mûrissement d’Ostwald des minéraux: Rappel des conditions limitantes. Bull. Liaison Soc. Fr. Minér. Cristal. 2, 28.Google Scholar
Beaufort, D., Papapanagiotou, P., Patrier, P., Fujimoto, K. & Kasai, K. (1995a) High temperature smectites in active geothermal systems. Pp. 493 – 496 in: Proc. 8th Int. Symp. Water-rock Interaction (Kharaka, Y.K. & Chudaev, O.V., editors), Florence.Google Scholar
Beaufort, D., Papapanagiotou, P., Patrier, P. & Traineau, H. (1995b) Les interstratifiés I-S et C-S dans les champs géothermiques actifs: sont-ils comparables a` ceux des séries diagénétiques? Bull. Centr. Rech. Elf Aquitaine Production, 19, 267 – 294.Google Scholar
Bethke, C.M. & Altaner, S.P. (1986) Layer-by-layer mechanism of smectite illitization and application to a new rate law. Clays Clay Miner. 34, 136 – 145.Google Scholar
Cetin, K. & Huff, W.D. (1995a) Layer charge of the expandable component of illite/ smectite in Kbentonite as determined by alkylammonium ion exchange. Clays Clay Miner. 43, 150 – 158.Google Scholar
Cetin, K. & Huff, W.D. (1995b) Characterization of untreated and alkylammonium ion exchanged illite/ smectite by high resolution transmission electron microscopy. Clays Clay Miner. 43, 337 – 345.Google Scholar
Čičel, B. & Machajdik, D. (1981) Potassium- and ammonium- treate d mon tmorillonites . I . Interstratified structures with ethylene glycol and water. Clays Clay Miner. 29, 40 – 46.Google Scholar
Cuadros, J. & Altaner, S.P. (1998) Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical, and X-ray methods: constraints on the smectite-to-illite transformation mechanism. Am. Miner. 83, 762 – 774.Google Scholar
Dong, H. & Peacor, D.R. (1996) TEM observation of coherent stacking relations in smectite, I-S and illite of shales: evidence for MacEwan crystallites and dominance of 2M1 polytype. Clays Clay Miner. 44, 257 – 275.Google Scholar
Drits, V.A. (1985) Mixed-layer minerals: Diffraction methods and structural features. Proc. Int. Clay Conf., Denver,, 33 – 45.Google Scholar
Drits, V.A. & Tchoubar, C. (1990) X-ray Diffraction by Disorder ed Lamellar Structur es. Theory and Applica tions to Microdi vided Silicates and Carbons. Springer-Verlag, Berlin.Google Scholar
Drits, V.A., Lindgreen, H., Sakharov, B.A. & Salyn, A.S. (1997a) Sequence structure transformation of illitesmectite- vermiculite during diagenesis of Upper Jurassic shales, North Sea. Clay Miner. 33, 351 – 371.Google Scholar
Drits, V.A., Lindgreen, H. & Salyn, A.S. (1997b) Determination of the content and distribution of fixed ammonium in illite-smectite by X-ray diffraction: Application to North Sea illite-smectite. Am. Miner. 82, 79– 87.Google Scholar
Drits, V.A., Środoń, J. & Eberl, D.D. (1997c) XRD measurement of mean crystallite thickness of illite and illite/ smectite: Reappraisal of the Kubler index and the Scherrer equation. Clays Clay Miner. 45, 461 – 475.Google Scholar
Drits, V.A., Eberl, D.D. & Środoń, J. (1998a) XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique. Clays Clay Miner. 46, 38 – 50.Google Scholar
Drits, V.A., Lindgreen, H., Sakharov, B.A. & Salyn, A.S. (1998b) Crystal chemical features and mechanism of diagenetic transformation of illite-containing mixedlayer minerals in North Sea and Baltic oil source rock shales. Pp. 101 in: Progr. abstr., 35th Clay Miner. Soc. Ann. Meet., Cleveland.Google Scholar
Eberl, D.D. & Blum, A. (1993) Illite crystallite thickness by X-ray diffraction. Pp. 124 – 153 in. Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals (Reynolds, R.C. & Walker, J.R., editors). CMS workshop lectures, 5, Clay Minerals Society, Boulder, CO, USA.Google Scholar
Eberl, D.D. & Środoń, J. (1988) Ostwald ripening and interparticle-diffraction effects for illite crystals. Am. Miner. 73, 1335 – 1345.Google Scholar
Eberl, D.D., Środoń, J., Kralik, M., Taylor, B.E & Peterman, Z.E. (1990) Ostwald ripening of clays and metamorphic minerals. Science, 248, 474 – 477.CrossRefGoogle Scholar
Foscolos, A.E. & Kodama, H. (1974) Diagenesis of clay minerals from lower Cretaceous shales of North Eastern British Columbia. Clays Clay Miner. 22, 319 – 335.Google Scholar
Greene-Kelly, R. (1953) The identification of montmorillonoids in clays. J. Soil Sc. 4, 233 – 237.Google Scholar
Güven, N. (1991) On a definition of illite/ smectite mixed-layer. Clays Clay Miner. 39, 661 – 662.CrossRefGoogle Scholar
Howard, J.J. (1981) Lithium and potassium saturation of illite/smectite clays from interlaminated shales and sandstones. Clays Clay Miner. 29, 136 – 142.Google Scholar
Howard, J.J. & Roy, D.M. (1985) Development of layer charge and kinetics of experimental smectite alteration. Clays Clay Miner. 33, 81– 88.Google Scholar
Hower, J. & Mowatt, T.C. (1966) The mineralogy of illites and mixed-layer illite/montmorillonites. Am. Miner. 51, 825 – 854.Google Scholar
Inoue, A. & Kitagawa, R. (1994) Morphological characteristics of illitic clay minerals from a hydrothermal system. Am. Miner. 79, 700 – 711.Google Scholar
Inoue, A., Kohyama, N., Kitagawa, R. & Watanabe, T. (1987) Chemical and morphological evidence for the conversion of smectite to illite. Clays Clay Miner. 35, 111 – 120.Google Scholar
Inoue, A., Velde, B., Meunier, A. & Touchard, G. (1988) Mechanism of illite formation during smectite-toillite conversion in a hydrothermal system. Am. Miner. 73, 1325 – 1334.Google Scholar
Inoue, A., Bouchet, A., Velde, B. & Meunier, A. (1989) A convenient technic for estimating smectite layer percentage in randomly interstratified illite/smectite minerals. Clays Clay Miner. 37, 227 – 234.CrossRefGoogle Scholar
Jagodzinski, H. (1949) Eindimensionale Fehlordnung in Kristallenundihr Ein flussau fdie Rönt geninter ferenzen : I . Berechnung des Fehlordnungsgrades aus der Röntgenintensitaten. Acta Crystallogr. 2, 201 – 207.Google Scholar
Jakobsen, H.J., Nielsen, N.C. & Lindgreen, H. (1995) Sequences of charged sheets in rectorite. Am. Miner. 80, 247 – 252.Google Scholar
Jennings, S. & Thompson, G.R. (1987) Diagenesis in the Plio-Pleistocene sediments of the Colorado River delta, southern California. J. Sed. Pet. 56, 89– 98.Google Scholar
Johns, W.D. & McKallip, T.E. (1989) Burial diagenesis and specific catalytic activity of illite-smectite clays from Vienna Basin, Austria. Am. Assoc. Petrol. Geol. Bull. 73, 472 – 482.Google Scholar
Kerns, R. & Mankin, C. (1968) Structural charge site influence on the interlayer hydration of expandable three-sheet clay minerals. Clays Clay Miner. 16, 73 – 81.Google Scholar
Lanson, B. & Champion, D. (1991) The I-S to illite reaction in the late stage diagenesis. Am. J. Sci. 291, 473 – 506.Google Scholar
Lanson, B. & Velde, B. (1992) Decomposition of X-ray diffraction patterns: A convenient way to describe complex diagenetic smectite-to-illit e evolution. Clays Clay Miner. 40, 629 – 643.Google Scholar
Lanson, B., Beaufort, D., Berger, G., Baradat, J. & Lacharpagne, J.C. (1996) Late-stage diagenesis of clay minerals in porous rocks: Lower Permian Rotliegendes reservoir off-shore of the Netherlands. J. Sed. Res. 66, 501 – 518.Google Scholar
Lanson, B., Velde, B. & Meunier, A. (1998) Late-stage diagenesis of illitic clay minerals as seen by decomposi tion of X-ray diffract ion patterns : Contrasted behaviours of sedimentary basins with different burial histories. Clays Clay Miner. 46, 69– 78.Google Scholar
Lindgreen, H. (1994) Ammonium fixation during illitesmectite diagenesis in Upper Jurassic shale, North Sea. Clay Miner. 29, 527 – 537.Google Scholar
MacEwan, D.M.C. (1958) Fourier transform methods for studying X-ray scattering from lamellar systems: II. The calculation of X-ray diffraction effects for various type so finters tratification. Kolloidzeitschrift, 156, 61 – 67.Google Scholar
Machajdik, D. & čiČel, B. (1981) Potassium- and ammonium- treatedmon tmor illonites. II . Calculation of characteristic layer charges. Clays Clay Miner. 29, 47 – 52.Google Scholar
Mamy, J. & Gaultier, J.P. (1975) Evolution de l’ordre cristallin dans la montmorillonite en relation avec la diminution d’échangeabilité du potassium. Proc. Int. Clay Conf. Mexico City, 149 – 155.Google Scholar
Meunier, A. & Velde, B. (1989) Solid solutions in illite/ smectite mixed layer minerals and illite. Am. Miner. 74, 1106 – 1112.Google Scholar
Meunier, A., Velde, B. & Griffault, L. (1998) The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage. Clay Miner. 33, 187 – 196.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. University Press, Oxford.Google Scholar
Nadeau, P.H. & Bain, D.C. (1986) Composition of some smectites and diagenetic illitic clays and implications for their origin. Clay Clay Miner. 34, 455 – 464.Google Scholar
Nadeau, P.H., Wilson, J., McHardy, W.J. & Tait, J.M. (1984a) Interstratified clays as fundamental particles. Science, 225, 923 – 925.CrossRefGoogle Scholar
Nadeau, P.H., Wilson, J., McHardy, W.J. & Tait, J.M. (1984b) Interparticle diffraction: A new concept for interstratified clays. Clays Miner. 19, 757 – 769.Google Scholar
Ramseyer, K. & Boles, J.R. (1986) Mixed-layer illite/ smectite minerals in Tertiary sandstones and shales, San Joaquin basin, California. Clays Clay Miner. 34, 115 – 124.Google Scholar
Reynolds, R.C. Jr (1980) Interstratified clay minerals. Pp. 249 – 303 in. Crystal Strucutures of Clay Minerals and their X-ray identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogic al Society, London, UK.Google Scholar
Reynolds, R.C. Jr. (1985) NEWMOD© a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. Reynolds, R.C., 8 Brook Rd., Hanover, NH, USA.Google Scholar
Reynolds, R.C. Jr. (1989) Diffraction by small and disordered crystals. Pp. 145 – 181 in. Modern Powder Diffraction (Bish, D.L. & Post, J.E., editors). Reviews in Mineralogy, 20, Mineralogical Society of America, Washington, D.C. Google Scholar
Reynolds, R.C. Jr. (1992) X-ray diffraction studies of illite/smectite from rocks, <0.1μm randomly oriented powders, and <1μm oriented powder aggregates: the absence of laboratory-induced artifacts. Clays Clay Miner. 40, 387 – 396.Google Scholar
Reynolds, R.C. Jr. & Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonites. Clays Clay Miner. 18, 25 – 36.Google Scholar
Sakharov, B.A., Lindgreen, H., Salyn, A.L. & Drits, V.A. (1999) Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting. Clays Clay Miner. 47, 555 – 566.Google Scholar
Sato, T., Murakami, T. & Watanabe, T. (1996) Change in layer charge of smectites and smectite layers in illite/ smectite during diagenetic alteration. Clays Clay Miner. 44, 460 – 469.Google Scholar
Schroeder, P.A. & McLain, A.A. (1998) Illite-smectites and the influence of burial diagenesis on the geochemical cycling of nitrogen. Clay Miner. 33, 539 – 546.CrossRefGoogle Scholar
Shutov, V.D., Drits, V.A. & Sakharov, B.A. (1969) On the mechanism of a postsedimentary transformation of montmorillonite to hydromica. Proc. Int. Clay Conf., Tokyo, 523 – 531.Google Scholar
Środoń, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays Clay Miner. 28, 401 – 411.Google Scholar
Środoń, J. (1984) X-ray powder diffraction of illitic materials. Clays Clay Miner. 32, 337 – 349.Google Scholar
Środoń, J. & Eberl, D.D. (1984) Illite. Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13, Mineralogical Society of America, Washington, D.C. Google Scholar
Środoń, J., Morgan, D.J., Eslinger, E., Eberl, D.D. & Karlinger, M.R. (1986) Chemistry of illite/smectite and end-member illite. Clays Clay Miner. 34, 368 – 378.Google Scholar
Środoń, J., Andreoli, C., Elsass, F. & Robert, M. (1990) Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite/ smectite in bentonite rock. Clays Clay Miner. 38, 373 – 379.Google Scholar
Środoń, J., Elsass, F., McHardy, W.J. & Morgan, D.J. (1992) Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Miner. 27, 137 – 158.Google Scholar
Šucha, V., Kraus, I., Gerthofferova, H., Petes, J. & Serekova, M. (1993) Smectite to illite conversion in bentonites and shales of the East Slovak basin. Clay Miner. 28, 243 – 253.Google Scholar
Vali, H. & Hesse, R. (1990) Alkylammonium ion treatment of clay minerals in ultrathin section: A new method for HRTEM examination of expandable layers. Am. Miner. 75, 1443 – 1446.Google Scholar
Vali, H., Hesse, R. & Kohler, E.E. (1991) Combined freeze-etch replicas and HRTEM images as tools to study fundamental particles and the multiphase nature of 2:1 layer silicates. Am. Miner. 76, 1973 – 1984.Google Scholar
Varajao, A. & Meunier, A. (1995) Particle morphological evolution during the conversion of I-S to illite in Lower Cretaceous shales from Sergipe-Alagoas basin, Brazil. Clays Clay Miner. 43, 14 – 28.CrossRefGoogle Scholar
Veblen, D.R., Guthrie, G., Livi, K.J.T. & Reynolds, R.C. Jr (1990) High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/ smectite: Experimental results. Clays Clay Miner. 38, 1 – 13.Google Scholar
Velde, B. & Brusewitz, A.M. (1986) Compositional variation in component layers in natural illite/ smectite. Clays Clay Miner. 34, 651 – 657.Google Scholar
Watanabe, T. (1988) The structural model of illite/ smectite interstratified minerals and the diagram for their identification. Appl. Clay Sci. 7, 97– 114.Google Scholar
Whitney, G. & Northrop, H.R. (1988) Experimental investigation of the smectite to illite reaction: dual reaction mechanism and oxygen isotope systematics. Am. Miner. 73, 77– 90.Google Scholar
Williams, L.A. & Ferrell, R.E. Jr. (1991) Ammonium substitution in illite during maturation of organic matter. Clay Clay Miner. 39, 400 – 408.Google Scholar
Yamada, H. & Nakasawa, H. (1993) Isothermal treatments of regularly interstratified montmorillonitebeidellite at hydrothermal conditions. Clays Clay Miner. 41, 726 – 730.Google Scholar
Yamada, H., Nakasawa, H., Yoshioka, K. & Fujita, T. (1991) Smectites in the montmorillonite series. Clay Miner. 26, 359 – 369.Google Scholar