Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T16:39:22.588Z Has data issue: false hasContentIssue false

Assessment and management of feeding difficulties for infants with complex CHD

Published online by Cambridge University Press:  23 December 2022

Hema Desai*
Affiliation:
Department of Rehabilitation Services, Children’s Hospital of Orange County, Orange, CA, USA
Courtney E. Jones
Affiliation:
Acute Care Therapy Services, Primary Children’s Hospital, Salt Lake City, UT, USA
Jennifer L. Fogel
Affiliation:
Department of Pediatric Rehabilitation, Advocate Children’s Hospital, Oak Lawn, IL, USA
Karli A. Negrin
Affiliation:
Department of Therapy and Rehabilitative Services, Nemours Children’s Health, Wilmington, DE, USA
Nancy L. Slater
Affiliation:
Physical Medicine and Rehabilitation Services, Children’s Minnesota, Minneapolis, MN, USA
Kimberly Morris
Affiliation:
Department of Speech-Language Pathology, Rady Children’s Hospital San Diego, San Diego, CA, USA
Lisa R. Doody
Affiliation:
Pediatric Rehabilitation and Development, Advocate Children’s Hospital, Oak Lawn, IL, USA
Katherine Engstler
Affiliation:
Department of Otolaryngology and Communication Enhancement, Boston Children’s Hospital, Boston, MA, USA
Andrea Torzone
Affiliation:
Heart Center, Cardiac Intensive Care Unit, Children’s Medical Center Dallas, Dallas, TX, USA
Jodi Smith
Affiliation:
Mended Hearts Inc., Albany, GE, USA
Samantha C. Butler
Affiliation:
Harvard Medical School, Boston Children’s Hospital, Boston, MA, USA
*
Author for correspondence: Hema Desai, MS CCC-SLP 1201 LA Veta, Orange, CA 92868, USA. Tel: +1 714 482 6990. E-mail: [email protected]

Abstract

Early surgical intervention in infants with complex CHD results in significant disruptions to their respiratory, gastrointestinal, and nervous systems, which are all instrumental to the development of safe and efficient oral feeding skills. Standardised assessments or treatment protocols are not currently available for this unique population, requiring the clinician to rely on knowledge based on neonatal literature. Clinicians need to be skilled at evaluating and analysing these systems to develop an appropriate treatment plan to improve oral feeding skill and safety, while considering post-operative recovery in the infant with complex CHD. Supporting the family to re-establish their parental role during the hospitalisation and upon discharge is critical to reducing parental stress and oral feeding success.

Type
Review
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maurer, I, Latal, B, Geissmann, H, Knirsch, W, Bauersfeld, U, Balmer, C. Prevalence and predictors of later feeding disorders in children who underwent neonatal cardiac surgery for congenital heart disease. Cardiol Young 2011; 21: 303309.CrossRefGoogle ScholarPubMed
Skinner, ML, Halstead, LA, Rubinstein, CS, Atz, AM, Andrews, D, Bradley, SM. Laryngopharyngeal dysfunction after the Norwood procedure. J Thorac Cardiovasc Surg 2005; 130: 12931301.CrossRefGoogle ScholarPubMed
Yi, SH, Kim, SJ, Huh, J, Jun, TG, Cheon, HJ, Kwon, JY. Dysphagia in infants after open heart procedures. Am J Phys Med Rehab 2013; 92: 496503.CrossRefGoogle ScholarPubMed
Jones, CE, Desai, H, Fogel, JL, et al. Disruptions in the development of feeding for infants with congenital heart disease. Cardiol Young 2021; 31: 589596.CrossRefGoogle ScholarPubMed
Canning, A, Fairhurst, R, Chauhan, M, Weir, KA. Oral feeding for infants and children receiving nasal continuous positive airway pressure and high-flow nasal cannula respiratory supports: a survey of practice. Dysphagia 2020; 35: 443454.CrossRefGoogle ScholarPubMed
Leder, SB, Siner, JM, Bizzarro, MJ, McGinley, BM, Lefton-Greif, MA. Oral alimentation in neonatal and adult populations requiring high-flow oxygen via nasal cannula. Dysphagia 2016; 31: 154159.CrossRefGoogle ScholarPubMed
Dalgleish, SR, Kostecky, LL, Blachly, N. Eating in “SINC. Neonatal Network 2016; 35: 217227.CrossRefGoogle ScholarPubMed
Ferrara, L, Bidiwala, A, Sher, I, et al. Effect of nasal continuous positive airway pressure on the pharyngeal swallow in neonates. J Perinatol 2017; 37: 398403.CrossRefGoogle ScholarPubMed
Dysart, K, Miller, TL, Wolfson, MR, Shaffer, TH. Research in high flow therapy: mechanisms of action. Resp Med 2009; 103: 14001405.CrossRefGoogle ScholarPubMed
Sreenan, C, Lemke, RP, Hudson-Mason, A, Osiovich, H. High-flow nasal cannulae in the management of apnea of prematurity: a comparison with conventional nasal continuous positive airway pressure. Pediatrics 2001; 107: 10811083.CrossRefGoogle ScholarPubMed
Raminick, J, Desai, H. High flow oxygen therapy and the pressure to feed infants with acute respiratory illness. perspectives of the ASHA special interest groups, 2020; 5: 10061010.CrossRefGoogle Scholar
Coker-Bolt, P, Jarrard, C, Woodard, F, Merrill, P. The effects of oral motor stimulation on feeding behaviors of infants born with univentricle anatomy. J Pediatr Nurs 2013; 28: 6471.CrossRefGoogle ScholarPubMed
Jakaitis, BM, Denning, PW. Human breast milk and the gastrointestinal innate immune system. Clin Perinatol 2014; 41: 423435.CrossRefGoogle ScholarPubMed
Davis, JA, Baumgartel, K, Morowitz, MJ, Giangrasso, V, Demirci, JR. The role of human milk in decreasing necrotizing enterocolitis through modulation of the infant gut microbiome: a scoping review. J Hum Lact 2020; 36: 647656.CrossRefGoogle ScholarPubMed
Medoff-Cooper, B, Naim, M, Torowicz, D, Mott, A. Feeding, growth, and nutrition in children with congenitally malformed hearts. Cardiol Young 2010; 20: 149153.CrossRefGoogle ScholarPubMed
Lee, J, Kim, HS, Jung, YH, et al. Oropharyngeal colostrum administration in extremely premature infants: an RCT. Pediatrics 2015; 135: e357e366.CrossRefGoogle ScholarPubMed
Patel, AL, Kim, JH. Human milk and necrotizing enterocolitis. In: Saunders, WB (eds). Seminars in Pediatric Surgery. vol. 27, 2018: 3438.Google Scholar
Pados, BF, Davitt, ES. Pathophysiology of gastroesophageal reflux disease in infants and nonpharmacologic strategies for symptom management. Nurs Women’s Health 2020; 24: 101114.10.1016/j.nwh.2020.01.005CrossRefGoogle ScholarPubMed
Indramohan, G, Pedigo, TP, Rostoker, N, Cambare, M, Grogan, T, Federman, MD. Identification of risk factors for poor feeding in infants with congenital heart disease and a novel approach to improve oral feeding. J Pediatr Nurs 2017; 1: 149154.CrossRefGoogle Scholar
Steltzer, M, Rudd, N, Pick, B. Nutrition care for newborns with congenital heart disease. Clin Perinatol 2005; 32: 10171030.CrossRefGoogle ScholarPubMed
Weesner, KM, Rosenthal, A. Gastroesophageal reflux in association with congenital heart disease. Clin Pediatr 1983; 22: 424426.10.1177/000992288302200606CrossRefGoogle ScholarPubMed
Esposito, C, Roberti, A, Turrà, F, et al. Management of gastroesophageal reflux disease in pediatric patients: a literature review. Pediatric Health Med Ther 2015; 6: 18.Google ScholarPubMed
Hasenstab, KA, Jadcherla, SR. Gastroesophageal reflux disease in the neonatal intensive care unit neonate: controversies, current understanding, and future directions. Clin Perinatol 2020; 47: 243263.CrossRefGoogle ScholarPubMed
Malkar, MB, Jadcherla, S. Neuromotor mechanisms of pharyngoesophageal motility in dysphagic infants with congenital heart disease. Pediatr Res 2014; 76: 190196.CrossRefGoogle ScholarPubMed
Sdravou, K, Emmanouilidou-Fotoulaki, E, Mitakidou, MR, Printza, A, Evangeliou, A, Fotoulaki, M. Children with diseases of the upper gastrointestinal tract are more likely to develop feeding problems. Ann Gastroenterol 2019; 32: 217233.Google ScholarPubMed
Rosen, R, Vandenplas, Y, Singendonk, M, et al. Pediatric Gastroesophageal Reflux Clinical Practice Guidelines: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2018 Mar; 66: 516554.CrossRefGoogle Scholar
Corvaglia, L, Martini, S, Aceti, A, Arcuri, S, Rossini, R, Faldella, G. Nonpharmacological management of gastroesophageal reflux in preterm infants. Biomed Res Int 2013; 2013: 141967.CrossRefGoogle ScholarPubMed
Loots, C, Kritas, S, van Wijk, M, et al. Body positioning and medical therapy for infantile gastroesophageal reflux symptoms. J Pediatr Gastroenterol Nutr 2014; 59: 237243.CrossRefGoogle ScholarPubMed
Martinez, EE, Douglas, K, Nurko, S, Mehta, NM. Gastric dysmotility in critically ill children: pathophysiology, diagnosis, and management. Pediatr Crit Care Med 2015; 16: 828836.CrossRefGoogle ScholarPubMed
Diego, MA, Field, T, Hernandez-Reif, M, Deeds, O, Ascencio, A, Begert, G. Preterm infant massage elicits consistent increases in vagal activity and gastric motility that are associated with greater weight gain. Acta Paediatr 2007; 96: 15881591.CrossRefGoogle ScholarPubMed
Green Corkins, K. Nutrition-focused physical examination in pediatric patients. Nutr Clin Pract 2015; 30: 203209.CrossRefGoogle ScholarPubMed
Mitchell, IM, Logan, RW, Pollock, JC, Jamieson, MP. Nutritional status of children with congenital heart disease. Br Heart J 1995; 73: 277283.CrossRefGoogle ScholarPubMed
de Onis, M, Habicht, JP. Anthropometric reference data for international use: recommendations from a World Health Organization Expert Committee. Am J Clin Nutr 1996; 64: 650658.CrossRefGoogle ScholarPubMed
Kalra, R, Vohra, R, Negi, M, et al. Feasibility of initiating early enteral nutrition after congenital heart surgery in neonates and infants. Clin Nutr ESPEN 2018; 25: 100102.10.1016/j.clnesp.2018.03.127CrossRefGoogle ScholarPubMed
Furlong-Dillard, J, Neary, A, Marietta, J, et al. Evaluating the impact of a feeding protocol in neonates before and after biventricular cardiac surgery. Pediatr Qual Saf 2018; 3: e080.CrossRefGoogle ScholarPubMed
Toms, R, Jackson, KW, Dabal, RJ, Reebals, CH, Alten, JA. Preoperative trophic feeds in neonates with hypoplastic left heart syndrome. Congenit Heart Dis 2015; 10: 3642.CrossRefGoogle ScholarPubMed
Martini, S, Beghetti, I, Annunziata, M, et al. Enteral nutrition in term infants with congenital heart disease: knowledge gaps and future directions to improve clinical practice. Nutrients 2021; 13: 932.CrossRefGoogle ScholarPubMed
Lisanti, AJ, Savoca, M, Gaynor, JW, et al. Standardized feeding approach mitigates weight loss in infants with congenital heart disease. J Pediatr 2021; 231: 124130.e1.CrossRefGoogle ScholarPubMed
Chinawa, AT, Chinawa, JM, Duru, CO, Chukwu, BF, Obumneme-Anyim, I. Assessment of nutritional status of children with congenital heart disease: a comparative study. Front Nutr 2021; 8: 644030.CrossRefGoogle ScholarPubMed
Kelleher, DK, Laussen, P, Teixeira-Pinto, A, Duggan, C. Growth and correlates of nutritional status among infants with hypoplastic left heart syndrome (HLHS) after stage 1 Norwood procedure. Nutrition. 2006; 22: 237244.CrossRefGoogle ScholarPubMed
McHoney, M, Eaton, S, Pierro, A. Metabolic response to surgery in infants and children. Eur J Pediatr Surg 2009; 19: 275285. DOI 10.1055/s-0029-1241192.CrossRefGoogle ScholarPubMed
Neumann, L, Springer, T, Nieschke, K, Kostelka, M, Dähnert, I. ChyloBEST: chylothorax in infants and nutrition with low-fat breast milk. Pediatr Cardiol 2020; 41: 108113.CrossRefGoogle ScholarPubMed
Tsintoni, A, Dimitriou, G, Karatza, AA. Nutrition of neonates with congenital heart disease: existing evidence, conflicts and concerns. J Matern Fetal Neonatal Med 2020; 33: 24872492.CrossRefGoogle ScholarPubMed
Thoyre, SM, Shaker, CS, Pridham, KF. The early feeding skills assessment for preterm infants. Neonatal Netw 2005; 24: 716.CrossRefGoogle ScholarPubMed
Palmer, MM, Crawley, K, Blanco, IA. Neonatal oral-motor assessment scale: a reliability study. J Perinatol 1993; 13: 2835.Google ScholarPubMed
Pados, BF, Thoyre, SM, Estrem, HH, Park, J, McComish, C. Factor structure and psychometric properties of the neonatal eating assessment tool—bottle-feeding (NeoEAT—Bottle-Feeding). Adv Neonat Care 2018; 18: 232242.CrossRefGoogle ScholarPubMed
Pineda, B. The Neonatal Eating Outcome (NEO) assessment: a new developmental feeding assessment for preterm infants in the NICU. Am J Occup Ther 2019; 4: 17311500065p1.Google Scholar
Pados, BF, Park, J, Estrem, H, Awotwi, A. Assessment tools for evaluation of oral feeding in infants younger than 6 months. Adv Neonatal Care 2016; 16: 143150.CrossRefGoogle ScholarPubMed
Pados, BF, Estrem, HH, Thoyre, SM, Park, J, McComish, C. The neonatal eating assessment tool: development and content validation. Neonatal Network 2017; 36: 359367.10.1891/0730-0832.36.6.359CrossRefGoogle ScholarPubMed
Howe, TH, Lin, KC, Fu, CP, Su, CT, Hsieh, CL. A review of psychometric properties of feeding assessment tools used in neonates. J Obstet Gynecol Neonatal Nurs 2008; 37: 338349.CrossRefGoogle ScholarPubMed
Bickell, M, Barton, C, Dow, K, Fucile, S. A systematic review of clinical and psychometric properties of infant oral motor feeding assessments. Dev Neurorehabil 2018; 21: 351361.Google ScholarPubMed
Lau, C, Smith, EO. A novel approach to assess oral feeding skills of preterm infants. Neonatology. 2011; 100: 6470.CrossRefGoogle ScholarPubMed
Ehrmann, DE, Mulvahill, M, Harendt, S, et al. Toward standardization of care: the feeding readiness assessment after congenital cardiac surgery. Congenit Heart Dis 2018; 13: 3137.CrossRefGoogle ScholarPubMed
Park, J, Pados, BF, Thoyre, SM. Systematic review: what is the evidence for the side-lying position for feeding preterm infants? Adv Neonatal Care 2018; 18: 285294.CrossRefGoogle ScholarPubMed
Thoyre, S, Park, J, Pados, B, Hubbard, C. Developing a co-regulated, cue-based feeding practice: the critical role of assessment and reflection. J Neonatal Nurs 2013; 19: 139148.CrossRefGoogle ScholarPubMed
Daley, HK, Kennedy, CM. Meta analysis: effects of interventions on premature infants feeding. J Perinat Neonatal Nurs 2000; 14: 6277.CrossRefGoogle ScholarPubMed
Pados, BF, Park, J, Thoyre, SM, Estrem, H, Nix, WB. Milk flow rates from bottle nipples used after hospital discharge. MCN Am J Matern Child Nurs 2016; 41: 237243.CrossRefGoogle ScholarPubMed
al-Sayed, LE, Schrank, WI, Thach, BT. Ventilatory sparing strategies and swallowing pattern during bottle feeding in human infants. J Appl Physiol 1994; 77: 7883.CrossRefGoogle ScholarPubMed
Pados, BF, Park, J, Dodrill, P. Know the flow: milk flow rates from bottle nipples used in the hospital and after discharge. Adv Neonatal Care 2019; 19: 3241.CrossRefGoogle ScholarPubMed
Elgersma, KM, McKechnie, AC, Gallagher, T, Trebilcock, AL, Pridham, KF, Spatz, DL. Feeding infants with complex congenital heart disease: a modified Delphi survey to examine potential research and practice gaps. Cardiol Young 2021; 31: 577588.CrossRefGoogle ScholarPubMed
Ingram, J, Johnson, D, Copeland, M, Churchill, C, Taylor, H. The development of a new breast feeding assessment tool and the relationship with breast feeding self-efficacy. Midwifery 2015; 31: 132137.CrossRefGoogle ScholarPubMed
Jensen, D, Wallace, S, Kelsay, P. LATCH: a breastfeeding charting system and documentation tool. J Obstet Gynecol Neonatal Nurs 1994; 23: 2732.CrossRefGoogle Scholar
Sowjanya, SVNS, Venugopalan, L. LATCH score as a predictor of exclusive breastfeeding at 6 weeks postpartum: a prospective cohort study. Breastfeed Med 2018; 13: 444449.CrossRefGoogle ScholarPubMed
Pados, BF, Thoyre, SM, Galer, K. Neonatal eating assessment tool-mixed breastfeeding and bottle-feeding (NeoEAT-mixed feeding): factor analysis and psychometric properties. Matern Health Neonatol Perinatol 2019; 5: 115.CrossRefGoogle Scholar
Davis, JA, Spatz, DL. Human milk and infants with congenital heart disease: a summary of current literature supporting the provision of human milk and breastfeeding. Adv Neonatal Care 2019; 19: 212218.CrossRefGoogle ScholarPubMed
Combs, VL, Marino, BL. A comparison of growth patterns in breast and bottle-fed infants with congenital heart disease. Pediatr Nurs 1993; 19: 175179.Google ScholarPubMed
Goldfield, EC, Richardson, MJ, Lee, KG, Margetts, S. Coordination of sucking, swallowing, and breathing and oxygen saturation during early infant breast-feeding and bottle-feeding. Pediatr Res 2006; 60: 450455.CrossRefGoogle ScholarPubMed
Medoff-Cooper, B, Shults, J, Kaplan, J. Sucking behavior of preterm neonates as a predictor of developmental outcomes. J Dev Behav Pediatr 2009; 30: 1622.CrossRefGoogle ScholarPubMed
Sharma, A. Efficacy of early skin-to-skin contact on the rate of exclusive breastfeeding in term neonates: a randomized controlled trial. Afr Health Sci 2016; 16: 790797.CrossRefGoogle ScholarPubMed
Harrison, TM, Ludington-Hoe, S. A case study of infant physiologic response to skin-to-skin contact after surgery for complex congenital heart disease. J Cardiovasc Nurs 2015; 30: 506516.CrossRefGoogle ScholarPubMed
Lisanti, AJ, Demianczyk, AC, Costarino, A, et al. Skin-to-skin care is associated with reduced stress, anxiety, and salivary cortisol and improved attachment for mothers of infants with critical congenital heart disease. J Obstet Gynecol Neonatal Nurs 2021; 50: 4054.CrossRefGoogle ScholarPubMed
Kaya, V, Aytekin, A. Effects of pacifier use on transition to full breastfeeding and sucking skills in preterm infants: a randomised controlled trial. J Clin Nurs 2017; 26: 20552063.CrossRefGoogle ScholarPubMed
Say, B, Simsek, GK, Canpolat, FE, Oguz, SS. Effects of pacifier use on transition time from gavage to breastfeeding in preterm infants: a randomized controlled trial. Breastfeed Med 2018; 13: 433437.CrossRefGoogle ScholarPubMed
Jadcherla, SR, Khot, T, Moore, R, Malkar, M, Gulati, IK, Slaughter, JL. Feeding methods at discharge predict long-term feeding and neurodevelopmental outcomes in preterm infants referred for gastrostomy evaluation. J Pediatr 2017; 181: 125130.e1.CrossRefGoogle ScholarPubMed
Pham, V, Connelly, D, Wei, JL, Sykes, KJ, O’Brien, J. Vocal cord paralysis and dysphagia after aortic arch reconstruction and Norwood procedure. Otolaryngol Head Neck Surg 2014; 150: 827833.CrossRefGoogle ScholarPubMed
Rogers, B, Arvedson, J. Assessment of infant oral sensorimotor and swallowing function. Ment Retard Dev Disabil Res Rev. 2005; 11: 7482.CrossRefGoogle ScholarPubMed
Pourmoghadam, KK, DeCampli, WM, Ruzmetov, M, et al. Recurrent laryngeal nerve injury and swallowing dysfunction in neonatal aortic arch repair. Ann Thorac Surg 2017; 104: 16111618.CrossRefGoogle ScholarPubMed
Ryan, MA, Upchurch, PA, Senekki-Florent, P. Neonatal vocal fold paralysis. Neoreviews 2020; 21: e308e322.CrossRefGoogle ScholarPubMed
Benjamin, JR, Smith, PB, Cotten, CM, Jaggers, J, Goldstein, RF, Malcolm, WF. Long-term morbidities associated with vocal cord paralysis after surgical closure of a patent ductus arteriosus in extremely low birth weight infants. J Perinatol 2010; 30: 408413.CrossRefGoogle ScholarPubMed
Pham, V, Connelly, D, Wei, JL, Sykes, KJ, O’Brien, J. Vocal cord paralysis and Dysphagia after aortic arch reconstruction and Norwood procedure. Otolaryngol Head Neck Surg 2014; 150: 827833.CrossRefGoogle ScholarPubMed
McGrattan, KE, McGhee, H, DeToma, A, et al. Dysphagia in infants with single ventricle anatomy following stage 1 palliation: physiologic correlates and response to treatment. Congenit Heart Dis 2017; 12: 382388.CrossRefGoogle ScholarPubMed
Raulston, JEB, Smood, B, Moellinger, A, et al. Aspiration after congenital heart surgery. Pediatr Cardiol 2019; 40: 12961303.CrossRefGoogle ScholarPubMed
Karsch, E, Irving, SY, Aylward, BS, Mahle, WT. The prevalence and effects of aspiration among neonates at the time of discharge. Cardiol Young 2017; 27: 12411247.CrossRefGoogle ScholarPubMed
Arvedson, JC. Assessment of pediatric dysphagia and feeding disorders: clinical and instrumental approaches. Dev Disabil Res Rev. 2008; 14: 118127.CrossRefGoogle ScholarPubMed
Schroeder, JW, Willette, S, Molinaro, LH. Fiberoptic endoscopic evaluation of swallowing: Assessing dysphagia in the breastfeeding patient. In Pediatric Dysphagia 2018. Springer, Cham, 9399.Google Scholar
Duncan, DR, Larson, K, Rosen, RL. Clinical aspects of thickeners for pediatric gastroesophageal reflux and oropharyngeal dysphagia. Curr Gastroenterol Rep 2019; 21: 30.CrossRefGoogle ScholarPubMed
Dion, S, Duivestein, JA, St Pierre, A, Harris, SR. Use of thickened liquids to manage feeding difficulties in infants: a pilot survey of practice patterns in canadian pediatric centers. Dysphagia 2015; 30: 457472.CrossRefGoogle ScholarPubMed
Steele, CM, Alsanei, WA, Ayanikalath, S, et al. The influence of food texture and liquid consistency modification on swallowing physiology and function: a systematic review. Dysphagia 2015; 30: 226.CrossRefGoogle ScholarPubMed
Goldfield, EC, Smith, V, Buonomo, C, Perez, J, Larson, K. Preterm infant swallowing of thin and nectar-thick liquids: changes in lingual-palatal coordination and relation to bolus transit. Dysphagia 2013; 28: 234244.CrossRefGoogle ScholarPubMed
Newman, R, Vilardell, N, Clavé, P, Speyer, R. Effect of bolus viscosity on the safety and efficacy of swallowing and the kinematics of the swallow response in patients with oropharyngeal dysphagia: white paper by the european society for swallowing disorders (ESSD). Dysphagia 2016; 31: 232249.CrossRefGoogle ScholarPubMed
Almeida, MB, Almeida, JA, Moreira, ME, Novak, FR. Adequacy of human milk viscosity to respond to infants with dysphagia: experimental study. J Appl Oral Sci 2011; 19: 554559.CrossRefGoogle ScholarPubMed
Beal, J, Silverman, B, Bellant, J, Young, TE, Klontz, K. Late onset necrotizing enterocolitis in infants following use of a xanthan gum-containing thickening agent. J Pediatr 2012; 161: 354356.CrossRefGoogle ScholarPubMed
McCallum, S. Addressing nutrient density in the context of the use of thickened liquids in dysphagia treatment. ICAN Infant Child Adolesc Nutr 2011; 3: 351360.CrossRefGoogle Scholar
Wolter, NE, Hernandez, K, Irace, AL, et al. A systematic process for weaning children with aspiration from thickened fluids. JAMA Otolaryngol 2018; 144: 5156.Google ScholarPubMed
Madhoun, LL, Siler-Wurst, KK, Sitaram, S, Jadcherla, SR. Feed-thickening practices in NICUs in the current era: variability in prescription and implementation patterns. J Neonatal Nurs. 2015; 21: 255262.CrossRefGoogle ScholarPubMed
Limperopoulos, C, Majnemer, A, Shevell, MI, Rosenblatt, B, Rohlicek, C, Tchervenkov, C. Neurologic status of newborns with congenital heart defects before open heart surgery. Pediatrics 1999; 103: 402408.CrossRefGoogle ScholarPubMed
Limperopoulos, C, Majnemer, A, Shevell, MI, Rosenblatt, B, Rohlicek, C, Tchervenkov, C. Neurodevelopmental status of newborns and infants with congenital heart defects before and after open heart surgery. J Pediatr 2000; 137: 638645.CrossRefGoogle ScholarPubMed
Donofrio, MT, Massaro, AN. Impact of congenital heart disease on brain development and neurodevelopmental outcome. Int J Pediatr 2010; 2010: 359390.CrossRefGoogle ScholarPubMed
Butler, SC, Sadhwani, A, Stopp, C, et al. Neurodevelopmental assessment of infants with congenital heart disease in the early postoperative period. Congenit Heart Dis. 2019; 14: 236245.CrossRefGoogle ScholarPubMed
Butler, SC, Sadhwani, A, Rofeberg, V, et al. Neurological features in infants with congenital heart disease. Dev Med Child Neurol 2021 Google ScholarPubMed
Gakenheimer-Smith, L, Glotzbach, K, Ou, Z, et al. The impact of neurobehavior on feeding outcomes in neonates with congenital heart disease. J Pediatr 2019; 214: 7178.CrossRefGoogle ScholarPubMed
Desai, H, Lim, A. Neurodevelopmental intervention strategies to improve oral feeding skills in infants with congenital heart defects. ASHAwire Perspect 2019; 4: 14921497.Google Scholar
Brazelton, TB, Nugent, JK, Lester, BM. Neonatal behavioral assessment scale. In: Osofsky, JD (eds). Handbook of Infant Development, 2nd. John Wiley & Sons, New York, 1987: 780817.Google Scholar
Nugent, JK, Keefer, CH, Minear, S, Johnson, LC, Blanchard, Y. The newborn behavioral observations (NBO) system handbook. Paul H Brookes Publishing, Baltimore, MD, USA, 2007.Google Scholar
Als, H, Lester, BM, Tronick, EZ, Brazelton, TB. Toward a research instrument for the assessment of preterm infants’ behavior (APIB). In Theory and research in behavioral pediatrics. Springer, Boston, MA, 1982: 35132.CrossRefGoogle Scholar
Lester, BM, Tronick, EZ, Brazelton, TB. The neonatal intensive care unit network neurobehavioral scale procedures. Pediatrics 2004; 113: 641667.CrossRefGoogle ScholarPubMed
Ross, ES, Philbin, MK. Supporting oral feeding in fragile infants: an evidence-based method for quality bottle-feedings of preterm, ill, and fragile infants. J Perinat Neonatal Nurs 2011; 25: 349357.CrossRefGoogle ScholarPubMed
Medoff-Cooper, B, Rankin, K, Li, Z, Liu, L, White-Traut, R. Multisensory intervention for preterm infants improves sucking organization. Adv Neonatal Care 2015; 15: 142149.CrossRefGoogle ScholarPubMed
White-Traut, RC, Nelson, MN, Silvestri, JM, et al. Effect of auditory, tactile, visual, and vestibular intervention on length of stay, alertness, and feeding progression in preterm infants. Dev Med Child Neurol 2002; 44: 9197.CrossRefGoogle ScholarPubMed
Lisanti, AJ, Vittner, D, Medoff-Cooper, B, Fogel, J, Wernovsky, G, Butler, S. Individualized family centered developmental care: an essential model to address the unique needs of infants with congenital heart disease. J Cardiovasc Nurs 2019; 34: 8593.CrossRefGoogle ScholarPubMed
Als, H. Program Guide - Newborn Individualized Developmental Care and Assessment Program (NIDCAP): An Education and Training Program for Health Care Professionals. Copyright, NIDCAP Federation International, Boston, 1986. Unpublished Manuscript. Rev 2009,Google Scholar
Als, H, Duffy, FH, McAnulty, GB, et al. Early experience alters brain function and structure. Pediatrics 2004; 113: 846857.CrossRefGoogle ScholarPubMed
Butler, SC, Huyler, K, Kaza, A, Rachwal, C. Filling a significant gap in the cardiac ICU: implementation of individualised developmental care. Cardiol Young 2017; 27: 17971806.CrossRefGoogle ScholarPubMed
Lisanti, AJ, Allen, LR, Kelly, L, Medoff-Cooper, B. Maternal stress and anxiety in the Pediatric Cardiac Intensive Care Unit. Am J Crit Care 2017; 26: 118125. DOI 10.4037/ajcc2017266.CrossRefGoogle ScholarPubMed
Gramszlo, C, Karpyn, A, Demianczyk, AC, et al. Parent perspectives on family-based psychosocial interventions for congenital heart disease. J Pediatr 2020; 216: 5157.CrossRefGoogle ScholarPubMed
Marino, BS, Lipkin, PH, Newburger, JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation 2012; 126: 11431172.CrossRefGoogle ScholarPubMed
Sharp, WG, Volkert, VM, Scahill, L, McCracken, CE, McElhanon, B. A systematic review and meta-analysis of intensive multidisciplinary intervention for pediatric feeding disorders: how standard is the standard of care? J Pediatr 2017; 181: 116124.CrossRefGoogle ScholarPubMed
Slater, N, Spader, M, Fridgen, J, Horsley, M, Davis, M, Griffin, KH. Weaning from a feeding tube in children with congenital heart disease: a review of the literature. Prog Pediatr Cardiol 2021; 62: 101406.CrossRefGoogle Scholar
Taylor, S, Purdy, SC, Jackson, B, Phillips, K, Virues-Ortega, J. Evaluation of a home-based behavioral treatment model for children with tube dependency. J Pediatr Psychol 2019; 44: 656668.CrossRefGoogle ScholarPubMed