Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T18:31:23.608Z Has data issue: false hasContentIssue false

The Carathéodory Reflection Principle and Osgood–Carathéodory Theorem on Riemann Surfaces

Published online by Cambridge University Press:  20 November 2018

Paul M. Gauthier
Affiliation:
Département de mathématiques et de statistique, Université de Montréal, CP-6128 Centreville, Montréal, QC, H3C 3J7 e-mail: [email protected]
Fatemeh Sharifi
Affiliation:
Department of Mathematics, Middlesex College, University of Western Ontario, London, ON, N6A 5B7 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Osgood–Carathéodory theorem asserts that conformal mappings between Jordan domains extend to homeomorphisms between their closures. For multiply-connected domains on Riemann surfaces, similar results can be reduced to the simply-connected case, but we find it simpler to deduce such results using a direct analogue of the Carathéodory reflection principle.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[1] Ahlfors, L. V. and Sario, L., Riemann surfaces. Princeton Mathematical Series 26. Princeton University Press, Princeton, NJ, 1960.Google Scholar
[2] Bagby, T., Cornea, A., and Gauthier, P. M., Harmonic approximation on arcs. Constr. Approx. 9(1993), no. 4, 501507. http://dx.doi.Org/10.1007/BF01204653 Google Scholar
[3] Brown, M., Locally flat embeddings oftopological manifolds. Ann. of Math. (2) 75(1962), 331341. http://dx.doi.Org/10.2307/1970177 Google Scholar
[4] Carathéodory, C., Xum Schwarzschen Spiegelungsprinzip. Comment. Math. Helv. 19(1946), 263278. http://dx.doi.Org/10.1007/BF02565960 Google Scholar
[5] Conway, J. B., Functions of one complex variable. II. Graduate Texts in Mathematics 159. Springer-Verlag, New York, 1995. http://dx.doi.Org/10.1007/978-1-4612-0817-4 Google Scholar
[6] Erohin, V., On the theory of conformal and quasiconformal mapping of multiply connected regions. (Russian) Dokl. Akad. Nauk SSSR 1271959,1155-1157.Google Scholar
[7] Gabard, A., Ahlfors circle maps and total reality: from Riemann to Rohlin. arxiv:1211.3680.Google Scholar
[8] Goluzin, G. M., Geometric theory of functions of a complex variable. Translations of Mathematical Monographs, 26. American Mathematical Society, Providence, RI, 1969.Google Scholar
[9] Hocking, J. G. and Young, G. S., Topology. Addison-Wesley, Reading, MA, 1961.Google Scholar
[10] Khavinson, D., Factorization theorems for different classes of analytic functions in multiply connected domains. Pacific J. Math. 108(1983), no. 2, 295318. http://dx.doi.Org/10.2140/pjm.1983.108.295 Google Scholar
[11] Kim, K.-T. and Krantz, S. G., The automorphism groups of domains. Amer. Math. Monthly 112(2005), no. 7, 585601. http://dx.doi.Org/10.2307/30037544 Google Scholar
[12] Kraus, D., Roth, O., and Ruscheweyh, S., A boundary version ofAhlfors’ lemma, locally complete conformal metrics and conformally invariant reflection principles for analytic maps. J. Anal. Math. 10(2007), 219256. http://dx.doi.Org/10.1007/s11854-007-0009-x Google Scholar
[13] Kühnau, R., (ed.) Handbook of complex analysis: geometric function theory. Vol. 2. Elsevier Science B.V., Amsterdam, 2005.Google Scholar
[14] Osgood, W.E. and Taylor, E. H., Conformal transformations on the boundaries of their regions of definitions. Trans. Amer. Math. Soc. 14(1913), no. 2, 277298. doilO.2307/1988631Google Scholar
[15] Pommerenke, C., Boundary behaviour of conformal maps. Grundlehren der Mathematischen Wissenschaften 299. Springer-Verlag, Berlin, 1992.Google Scholar
[16] Pommerenke, C., Conformal maps at the boundary. In: Handbook of complex analysis: geometric function theory, Vol. 1. North-Holland, Amsterdam, 2002, pp. 3774.Google Scholar
[17] Rüedy, , Embeddings of open Riemann surfaces. Comment. Math. Helv. 46(1971), 214225. http://dx.doi.Org/10.1007/BF02566840 Google Scholar