Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T17:48:46.744Z Has data issue: false hasContentIssue false

Sur Les Espaces Localement Quasi-Compacts

Published online by Cambridge University Press:  20 November 2018

J. Dixmier*
Affiliation:
Tulane University, New Orleans, Louisiana
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Un espace topologique est dit quasi-compact s'il vérifie l'axiome de Borel-Lebesgue sans être nécessairement séparé. Un espace topologique est dit localement quasi-compact si chaque point admet un système fondamental de voisinages quasi-compacts.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1968

References

Bibliographie

1. Bourbaki, N., Algèbre commutative, Chapitres I-II (Hermann, Paris, 1961).Google Scholar
2. Dixmier, J., Points séparés dans le spectre d'une C*-algèbre, Acta Sci. Math. 22 (1961), 115128.Google Scholar
3. Dixmier, J., Les C*-algèbres et leurs représentations (Gauthier-Villars, Paris, 1964).Google Scholar
4. Effros, E. G., A decomposition theorem for representations of C*-algebras, Trans. Amer. Math. Soc. 107 (1963), 83106.Google Scholar
5. Fell, J. M. G., A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472476.Google Scholar
6. Mackey, G. W., Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 1957), 134165.Google Scholar