Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T10:38:53.117Z Has data issue: false hasContentIssue false

A TEMPERATURE-DEPENDENT MODEL OF EGG DEVELOPMENT OF THE WESTERN CORN ROOTWORM, DIABROTICA VIRGIFERA VIRGIFERA LECONTE (COLEOPTERA: CHRYSOMELIDAE)

Published online by Cambridge University Press:  31 May 2012

A.W. Schaafsma
Affiliation:
Horticulture and Biology Section, Ridgetown College of Agricultural Technology, Ridgetown, Ontario, Canada N0P 2C0
G.H. Whitfield
Affiliation:
Agriculture Canada Research Station, Harrow, Ontario, Canada N0R 1G0
C.R. Ellis
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Developmental rates of post-diapause eggs of Diabrotica virgifera virgifera LeConte were compared in the laboratory at six constant temperatures, 12, 16, 20, 24, 28, and 32°C. Linear and nonlinear models were fitted to temperature versus developmental data and were used to predict egg hatch in the field. A four-parameter model fitted to median developmental rates (r2 = 0.99) indicated that development was linear between 16 and 28°C, optimal at 28°C, and decreased at 32°C. The lower development threshold (± SE) (10.5 ± 0.1°C) was determined by linear regression and the x-intercept method. Completion of post-diapause egg development required 258 ± 3 degree-days (± SE) above the base temperature. This compared well with the mean degree-days accumulated to 50% hatch (± SE) of 265 ± 24 which we observed in the field at several locations over 3 years using a degree-day model incorporating an 11°C developmental threshold and soil temperatures at 5- and 10-cm depths. A stochastic simulation model, incorporating a nonlinear developmental function dependant on soil temperatures taken every 2 h also predicted 50% hatch within 2 days. This model was validated in the field with 19 independent records of soil temperatures for several locations at two depths in the soil over 3 years. The simulation model accurately predicted time of 5 and 95% hatch, which indicates that this model has broad application in predicting the pattern of egg hatch for pest management.

Résumé

Le taux de développement des oeufs après la diapause a été étudié en laboratoire à six températures constantes, 12, 16, 20, 24, 28 et 32°C chez Diabrotica virgifera virgifera LeConte. Des modèles linéaires et non linéaires ont été ajustés aux données de vitesses de développement en fonction de la température et ont servi à prédire l’éclosion des oeufs en nature. Un modèle à quatre paramètres ajusté à des taux de développement moyens (r2 = 0,99) indique que le développement est linéaire entre 16 et 28°C, optimal à 28°C, et diminue à 32°C. Le seuil inférieur de température (± erreur type) (10,5±0,1°C) a été obtenu par une régression linéaire en extrapolant jusqu’à l’intersection avec l’axe des x. Le développement complet de l’oeuf après la diapause requiert 258±3 degrés-jours au-dessus du seuil inférieur de température. Cette valeur est comparable aux nombres moyens de degrés-jours (265±24) accumulés jusqu’à l’obtention de l’éclosion de 50% des oeufs (± erreur type) tels qu’observés en nature à différents endroits au cours d’une étude de 3 ans où le modèle utilisé était basé sur le nombre de degrés-jours et tenait compte du seuil inférieur de développement de 11°C à des températures de sol mesurées à 5 et à 10 cm de profondeur. Un modèle stochastique basé sur une fonction non linéaire de développement en relation avec la température du sol, telle que mesurée toutes les 2 h, a permis de prédire le moment où 50% des oeufs sont éclos à 2 jours près. Le modèle a été validé en nature par 19 mesures individuelles de la température du sol à divers endroits et à deux profondeurs de sol durant 3 ans. Le modèle permet de prédire les moments où 5 et 95% des oeufs auront éclos; il s’avérera donc très utile pour prédire les patterns d’éclosion des oeufs dans les programmes de contrôle.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, C.Y. 1959. The determination and significance of the base temperature in a linear heat unit system. Proc. Am. hortic. Sci. 74: 430445.Google Scholar
Bergman, M.K., and Turpin, F.T.. 1986. Phenology of field populations of corn rootworms (Coleoptera: Chrysomelidae) relative to calendar date and heat units. Environ. Ent. 15: 109112.CrossRefGoogle Scholar
Branson, T.F. 1976. Viability and hatching patterns of eggs of the Western corn rootworm exposed to chill periods of different durations. Entomologia exp. appl. 19: 7781.CrossRefGoogle Scholar
Branson, T.F. 1987. The contribution of prehatch and post hatch development to protandry in the chrysomelid, Diabrotica virgifera virgifera. Entomologia exp. appl. 43: 205208.CrossRefGoogle Scholar
Branson, T.F., Guss, P.L., Krysan, J.L., and Sutter, G.R.. 1975. Corn rootworms: Laboratory rearing and manipulation. USDA ARS-NC-28 Publ. 652–468. 18 pp.Google Scholar
Branson, T.F., Jackson, J.J., and Sutter, G.R.. 1988. Improved method for rearing Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). J. econ. ent. 81: 410414.CrossRefGoogle Scholar
Campbell, A., Fraser, B.D., Gilbert, N., Gutierrez, A.P., and MacKauer, M.. 1974. Temperature requirements of some aphids and their parasites. J. appl. Ecol. 11: 431438.CrossRefGoogle Scholar
Chiang, H.C. 1965 a. Temperature relation of egg development of the northern corn rootworm. Proc. N. Cent. Br. ent. Soc. Am. 20: 61.Google Scholar
Chiang, H.C. 1965 b. Survival of northern corn rootworm eggs through one and two winters. J. econ. Ent. 65: 470472.CrossRefGoogle Scholar
Chiang, H.C., Mihm, J.A., and Windels, M.B.. 1974. Further observations on temperature effects on hatching of Northern and Western corn rootworm eggs. Proc. N. Cent. Br. ent. Soc. Am. 29: 138141.Google Scholar
Elliot, N.C., Lance, D.R., and Hanson, S.L.. 1990. Quantitative description of the influence of fluctuating temperatures on the reproductive biology and survival of the western corn rootworm, Diabrotica virgifera virgifera Leconte (Coleoptera: Chrysomelidae). Can. Ent. 122: 5968.CrossRefGoogle Scholar
Fisher, J.R. 1989. Hatch of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) eggs exposed to two different overwintering and hatch regimes. J. Kansas ent. Soc. 62: 607610.Google Scholar
Jackson, J.J. 1986. Rearing and handling of Diabrotica virgifera virgifera and Diabrotica undecimpunctata howardi. pp. 25–47 in Krysan, J.L., and Miller, T.A. (Eds.), Methods for the Study of Pest Diabrotica. Springer-Verlag, New York, NY. 260 pp.Google Scholar
Jackson, J.J., and Elliot, N.C.. 1988. Temperature-dependent development of immature stages of the Western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Environ. Ent. 17: 166171.CrossRefGoogle Scholar
Lankow, R.K., Grothaus, G.D., and Miller, S.A.. 1987. Immunoassays for crop management systems and agricultural chemistry. pp. 228–252 in LeBaron, et al. , (Eds.), Biotechnology in Agricultural Chemistry. ACS Symp. Ser. 334. 367 pp.Google Scholar
Madder, D.L., Stemeroff, M., Gerber, G.H., Philips, H.G., Doane, J.F., Ellis, C.R., and Becker, E.C.. 1988. The economics of insect control on wheat, corn, and canola in Canada, 1980–1985. The Entomological Society of Canada, Ottawa, Ontario. 22 pp.Google Scholar
Mooney, E., and Turpin, F.T.. 1976. ROWSIM a GASP iv based rootworm simulator. Res. Bull. 938. Purdue University. 24 pp.Google Scholar
Naranjo, S.E., and Sawyer, A.J.. 1988. A temperature- and age-dependent simulation model of reproduction for the northern corn rootworm, Diabrotica barberi Smith and Lawrence (Coleoptera: Chrysomelidae). Can. Ent. 120: 117.CrossRefGoogle Scholar
Pruess, K.P., Weekman, G.T., and Somerhalder, B.R.. 1968. Western corn rootworm egg distribution and adult emergence under two corn tillage systems. J. econ. Ent. 61: 14241427.CrossRefGoogle Scholar
Reed, J.P. 1989. Understanding and improving biological targeting of soil insecticides. Ph.D. thesis, Ohio State University. 211 pp.Google Scholar
Ruppel, R.H., Russel, H.L., and Jennongs, S.J.. 1978. Indices for projecting emergence of corn rootworm adults in Michigan. J. econ. Ent. 71: 947949.CrossRefGoogle Scholar
Schoolfield, R.M., Sharpe, P.J.H., and Magnuson, C.E.. 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. theor. Biol. 88: 719721.CrossRefGoogle ScholarPubMed
Sechriest, R.E. 1969. Observations on the biology and behaviour of corn rootworms. Proc. N. Cent. Br. ent. Soc. Am. 24: 129132.Google Scholar
Sharpe, P.J.H., and DeMichele, D.W.. 1977. Reaction kinetics of poikilotherm development. J. theor. Biol. 64: 649670.CrossRefGoogle ScholarPubMed
Sokal, R.R., and Rohlf, F.J.. 1969. BIOMETRY: The Principles and Practice of Statistics in Biological Research. W.H. Freeman and Co., San Francisco, CA. 776 pp.Google Scholar
Strnad, S.P., and Bergman, M.K.. 1987. Distribution and orientation of western corn rootworm (Coleoptera: Chrysomelidae) larvae in corn roots. Environ. Ent. 16: 11931198.CrossRefGoogle Scholar
Tollefson, J.J. 1990. Comparison of adult and egg sampling for predicting subsequent populations of Western and Northern corn rootworms (Coleoptera: Chrysomelidae). J. econ. Ent. 83: 574579.CrossRefGoogle Scholar
Wagner, T.L., Wu, H., Feldman, R.M., Sharpe, P.J.H., and Coulson, R.N.. 1985. Mutliple-cohort approach for simulating development of insect populations under variable temperatures. Ann. ent. Soc. Am. 78: 691704.CrossRefGoogle Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., and Coulson, R.N.. 1984. Modeling distributions of insect development time: A literature review and application of the Weibull function. Ann. ent. Soc. Am. 77: 475487.CrossRefGoogle Scholar
Weiss, M.J., and Mayo, Z.B.. 1983. Potential of corn rootworm (Coleoptera: Chrysomelidae) larval counts to estimate larval populations to make control decisions. J. econ. Ent. 76: 158161.CrossRefGoogle Scholar
Weiss, M.J., Mayo, Z.B., and Newton, J.P.. 1983. Influence of irrigation practices on the spatial distribution of corn rootworm (Coleoptera: Chrysomelidae) eggs in soil. Environ. Ent. 12: 12931295.CrossRefGoogle Scholar
Wilde, G.E. 1971. Temperature effect on development of western corn rootworm eggs. J. Kansas ent. Soc. 44: 185187.Google Scholar
Wilde, G.E., Chiang, H.C., Hibbs, E.T., and Lawson, D.E.. 1972. Variation in egg hatch among western and northern corn rootworms from six midwestern states. J. Kansas ent. Soc. 45: 259263.Google Scholar