Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T06:00:50.320Z Has data issue: false hasContentIssue false

Overwintering behaviour of the skipper fly (Diptera: Piophilidae) of forensic importance in Québec, Canada

Published online by Cambridge University Press:  11 January 2021

Julie-Éléonore Maisonhaute*
Affiliation:
Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada
Shari L. Forbes*
Affiliation:
Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada
*
*Corresponding authors. Emails: [email protected]; [email protected]
*Corresponding authors. Emails: [email protected]; [email protected]

Abstract

Laboratory experiments and field observations from August 2019 to April 2020 demonstrated that skipper flies (Diptera: Piophilidae) overwinter as larvae and likely present an obligatory winter diapause in Québec, Canada. Diapause was confirmed by the very few emergences of adults in the laboratory following collection from carrion at the end of summer and in fall, the migration of larvae deep in the soil, and the persistence of larvae inside carrion during the winter until the following spring when they became active again and initiated pupation (i.e., intra-puparial period). To our knowledge, our observations represent the first report of the overwintering of skipper fly larvae inside an animal carcass in North America. In addition, this winter diapause should be considered in forensic entomology when using the presence of skipper fly larvae on a body to estimate the time elapsed since death.

Résumé

Résumé

Des expériences effectuées en laboratoire et des observations faites sur le terrain ont démontré que les mouches de la famille des Piophilidae hivernent au stade larvaire, et suggèrent qu’elles présentent une diapause hivernale obligatoire au Québec, Canada. La preuve en est, le faible nombre d’émergence d’adultes en laboratoire à la fin de l’été et durant l’automne, l’observation de larves migrant profondément dans le sol, et la présence de larves à l’intérieur des carcasses de cochon tout au long de l’hiver, jusqu’au printemps suivant où elles redeviennent actives et initient leur pupaison (i.e., période intra-puparium). À notre connaissance, c’est la première fois qu’il est fait mention de l’hivernation de larves de Piophilidae à l’intérieur de carcasses animales en Amérique du Nord. De plus, l’existence de cette diapause hivernale doit être prise en compte en entomologie légale, lors de l’estimation de la date minimale de décès à partir de la présence de larves de Piophilidae sur un corps.

Type
Scientific Notes
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of the Entomological Society of Canada.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Julia Mlynarek

References

Anderson, G.S. and Vanlaerhoven, S.L. 1996. Initial studies on insect succession on carrion in southwestern British Columbia. Journal of Forensic Sciences, 41: 617625.Google Scholar
Bickel, D., Pape, T., and Meier, R.E. 2009. Appendix A: species of Diptera per family for all regions. In Diptera diversity: status, challenges and tools. Edited by Bickel, D., Pape, T., and Meier, R.E.. Brill, Boston, Massachusetts, United States of America. Pp. 439444.CrossRefGoogle Scholar
Bonduriansky, R. 2002. Leaping behaviour and responses to moisture and sound in larvae of piophilid carrion flies. The Canadian Entomologist, 134: 647656.CrossRefGoogle Scholar
Byrd, J.H. and Tomberlin, J.K. 2020. Insects of forensic importance. In Forensic entomology: the utility of arthropods in legal investigations. Third edition. Edited by Byrd, J.H. and Tomberlin, J.K.. CRC Press, Taylor & Francis, Boca Raton, Florida, United States of America. Pp. 1562.Google Scholar
Denlinger, D.L. 1972. Induction and termination of pupal diapause in Sarcophaga (Diptera: Sarcophagidae). The Biological Bulletin, 142: 1124.Google Scholar
Gill, G.J. 2005. Decomposition and arthropod succession on above ground pig carrion in rural Manitoba, Master Thesis, University of Manitoba, Winnipeg, Manitoba, Canada.Google Scholar
Hodek, I. 2002. Controversial aspects of diapause development. European Journal of Entomology, 99: 163173.Google Scholar
Huntington, T.E., Weidner, L.M., and Hall, R.D. 2020. Introduction: current perceptions and status of forensic entomology. In Forensic entomology: the utility of arthropods in legal investigations. Third edition. Edited by J.H. Byrd and J.K. Tomberlin. CRC Press, Taylor & Francis, Boca Raton, Florida, United States of America. Pp. xxiii–xxxiv.Google Scholar
Ichikawa, A., Ikeda, M., and Goto, S.G. 2020. Cold storage of diapausing larvae and post-storage performance of adults in the blowfly Lucilia sericata (Diptera: Calliphoridae). Applied Entomology and Zoology, 55: 321327.CrossRefGoogle Scholar
Mądra, A., Frątczak, K., Grzywacz, A., and Matuszewski, S. 2015. Long-term study of pig carrion entomofauna. Forensic Science International, 252: 110.CrossRefGoogle ScholarPubMed
Maisonhaute, J.E. and Forbes, S.L. 2020. Decomposition process and arthropod succession on pig carcasses in Quebec (Canada). Canadian Society of Forensic Science Journal. https://doi.org/10.1080/00085030.2020.1820799.Google Scholar
Martín-Vega, D. 2011. Skipping clues: forensic importance of the family Piophilidae (Diptera). Forensic Science International, 212: 15.CrossRefGoogle Scholar
Martín-Vega, D., Hall, M.J.R., and Simonsen, T.J. 2016. Resolving confusion in the use of concepts and terminology in intrapuparial development studies of cyclorrhaphous Diptera. Journal of Medical Entomology, 53: 12491251.Google ScholarPubMed
McAlpine, J.F. 1987. Piophilidae. In Manual of Nearctic Diptera. Volume 2. Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada. Pp. 845852.Google Scholar
Mégnin, J.P. 1894. La Faune des cadavres: application de l’entomologie à la médecine légale. Masson et Gauthier-Villars, Paris, France.Google Scholar
Michaud, J.P., Majka, C.G., Privé, J.P., and Moreau, G. 2010. Natural and anthropogenic changes in the insect fauna associated with carcasses in the North American Maritime lowlands. Forensic Science International, 202: 6470.CrossRefGoogle ScholarPubMed
Mote, D.C. 1914. The cheese skipper (Piophila casei Linne). The Ohio Naturalist, XIV: 309316.Google Scholar
Numata, H. and Shiga, S. 1995. Induction of adult diapause by photoperiod and temperature in Protophormia terraenovae (Diptera: Calliphoridae) in Japan. Environmental Entomology, 24: 16331636.CrossRefGoogle Scholar
Payne, J.A. 1965. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology, 46: 592602.CrossRefGoogle Scholar
Ratcliffe, B.C. 1972. The Natural History of Necrodes surinamensis (Fabr.) (Coleoptera: Silphidae). Transactions of the American Entomological Society, 98: 359410.Google Scholar
Rochefort, S., Giroux, M., Savage, J., and Wheeler, T.A. 2015. Key to forensically important Piophilidae (Diptera) in the nearctic region. Canadian Journal of Arthropod Identification, 27: 137.Google Scholar
Russo, A., Cocuzza, G.E., Vasta, M.C., Simola, M., and Virone, G. 2006. Life fertility tables of Piophila casei L. (Diptera: Piophilidae) reared at five different temperatures. Environmental Entomology, 35: 194200.CrossRefGoogle Scholar
Sharanowski, B.J., Walker, E.G., and Anderson, G.S. 2008. Insect succession and decomposition patterns on shaded and sunlit carrion in Saskatchewan in three different seasons. Forensic Science International, 179: 219240.Google ScholarPubMed
Solensky, M. 2004. Overview of monarch migration. In Monarch butterfly biology and conservation. Edited by K.S. Oberhauser and M.J. Solensky. Comstock Publishing, Cornell University Press, Ithaca, New York, United States of America. Pp. 7984.Google Scholar
Sömme, L. and Östbye, E. 1969. Cold-hardiness in some winter active insects. Norsk Entomologisk Tidsskrift, 16: 4448.Google Scholar
Soszynska-Maj, A. and Woznica, A. 2016. A case study of Heleomyzidae (Diptera) recorded on snow in Poland with a review of their winter activity in Europe. European Journal of Entomology, 113: 279294.CrossRefGoogle Scholar
Syed, A. 1994. Notes on the biology and rearing of the carrion fly Prochyliza brevicornis (Melander) (Diptera: Piophilidae). Journal of the Entomological Society of British Columbia, 91: 5557.Google Scholar
Tachibana, S.I. and Numata, H. 2004. Parental and direct effects of photoperiod and temperature on the induction of larval diapause in the blow fly Lucilia sericata . Physiological Entomology, 29: 3944.CrossRefGoogle Scholar
Tougeron, K. 2019. Diapause research in insects: historical review and recent work perspectives. Entomologia Experimentalis et Applicata, 167: 2736.CrossRefGoogle Scholar
Vinogradova, E.B. 1986. Geographical variation and ecological control of diapause in flies. In Proceedings of the Evolution of Insect Life Cycles, New York, NY, 1986. Edited by F. Taylor and R. Karban. Springer-Verlag New York Inc. New York, New York, United States of America. Pp. 3547.Google Scholar
Vinogradova, E.B. and Reznik, S.Y. 2013. Induction of larval diapause in the blowfly, Calliphora vicina R.-D. (Diptera, Calliphoridae) under field and laboratory conditions. Entomological Review, 93: 935941.CrossRefGoogle Scholar
Wyss, C. and Cherix, D. 2013. Traité d’entomologie forensique. Presses polytechniques et universitaires romandes, Italie.Google Scholar