Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T06:57:29.196Z Has data issue: false hasContentIssue false

EFFECTS OF PHOTOPERIOD AND TEMPERATURE ON DIAPAUSE OF TWO APHEL1NUS SPP. (HYMENOPTERA: APHELINIDAE) PARASITIZING THE RUSSIAN WHEAT APHID1

Published online by Cambridge University Press:  31 May 2012

D.S. Yu
Affiliation:
Agriculture Canada Research Station, PO Box 3000, Main, Lethbridge, Alberta, Canada T1J 4B1

Abstract

The effects of photoperiod and temperature on the diapause of Aphelinus varipes (Focrster) from Kazakhstan and Apheiinus near varipes from Alberta, which both attack Russian wheat aphid, were studied in the laboratory. At 20 °C, 50% of A. varipes entered diapause when the photoperiod was between 12.5L:11.5D and 13L:11D whereas 50% of A. nr. varipes entered diapause when the photoperiod was around 14L:10D. Diapause induction was close to 100% at 11.5L:12.5D for both species. Maximum sensitivity to photoperiod occurred 2 days alter parasitization for A. varipes and 3 days after parasitization for A. nr. varipes. At 30 °C, the proportion of wasps entering diapause was reduced to 40 and 72% for A. varipes and A. nr. varipes, respectively. Exposing diapausing mummies to temperatures from 10 to −10 °C for 4–20 weeks shortened the postdiapause developmental time. Survival was lowered by exposing mummies to −10 °C for over 8 weeks. Postdiapause developmental rate was directly temperature dependent. The lower threshold and thermal constant for postdiapause development were estimated to be 10.3 °C and 189 degree-days (DD) for A. varipes and 7.41 °C and 204 DD for A. nr. varipes.

Résumé

Les effets de la température et de la photopériode sur la diapause d’Aphelinus varipes (Foerster) du Kazakhstan et d’Aphelinus près de varipes d’Alberta, qui attaquent tous deux le Puceron russe du blé. ont été étudiés en laboratoire. A 20°C, 50% des A. varipes entraient en diapause quand la photopériode se situait entre 12,5L : 11,5O et 13L : 11O, alors que 50% des A. près de varipes de l’Alberta entraient en diapause alors que la photopériode était d’environ 14L : 10O. Le déclenchement de la diapause atteignait près de 100% à une photopériode de 11,5L : 12,5O chez les deux espèces. La sensibilité maximale à la photopériode s’est manifestée 2 jours après le début du parasitisme chez A. varipes et 3 jours après le début du parasitisme chez A. près de varipes. À 30°C, la proportion de guêpes entrant en diapause a baissé a 40% dans le cas d’A. varipes et à 72% dans le cas d’A. près de varipes. L’exposition des parasites en diapause à des températures de 10 à −10°C durant 4–20 semaines a provoqué un raccourcissement de la durée du développement après la diapause. La survie avait diminué chez les parasites exposés à −10°C pendant plus de 8 semaines. La vitesse du développement après la diapause s’est avérée directement fonction de la température. Le seuil inférieur de température et la constante thermique reliés au développement suivant la diapause ont été évalués à 10,3°C et 189 degrés-jours dans le cas d’A. varipes et à 7,41°C et 204 degrés-jours dans le cas d’A. près de varipes.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.F., and Kaya, H.K.. 1975. Influence of temperature on diapause termination in Ooencyrtus ennomus, an elm spanworm egg parasitoid. Annals of the Entomological Society of America 68: 671672.CrossRefGoogle Scholar
Beck, S.D. 1968. Insect Photoperiodism. Academic Press, New York, NY. 288 pp.Google Scholar
Beddington, J.R., Free, C.A., and Lawton, J.H.. 1978. Characteristics of successful natural enemies in models of biological control of insect pests. Nature 273: 513519.CrossRefGoogle ScholarPubMed
Brodeur, J., and McNeil, J.N.. 1989. Biotic and abiotic factors involved in diapause induction of the parasitoid, Aphidius nigripes (Hymenoptera: Aphidiidae). Journal of Insect Physiology 12: 969974.CrossRefGoogle Scholar
Butts, R.A. 1992. Cold hardiness and its relationship to overwintering of two Russian wheat aphids, Diuraphis noxia (Homophera: Aphididae) in southern Alberta. Journal of Economic Entomology 85: 11401145.CrossRefGoogle Scholar
Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. Journal of Applied Ecology 11: 431438.CrossRefGoogle Scholar
Doutt, R.L. 1959. The biology of parasitic Hymenoptera. Annual Review of Entomology 4: 161182.CrossRefGoogle Scholar
Grossheim, N.A. 1914. Barley aphid (Brachycolus noxius, Mordvilko). Memoirs of the Natural History Museum of the Zemstvo Province of the Government of Taurida 3: 3578. [Abstracted in Review of Applied Entomology Series A 1915: 307–308.]Google Scholar
Jones, J.W., Byers, J.R., Butts, R.A., and Harris, J.L.. 1989. A new pest in Canada: Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae). The Canadian Entomologist 121: 623624.CrossRefGoogle Scholar
Laing, J.E., and Heraty, J.M.. 1987. Overwintering of Phyllonorycter blancardella (Lepidoptera: Gracillariidae) and its parasites, Pholetesor ornigis and Pholetesor pedias (Hymenoptera: Braconidae) in southwestern Ontario. Environmental Entomology 16: 11571162.CrossRefGoogle Scholar
Lajeunesse, S.E., and Johnson, G.D.. 1991. New North American host records for Aphelinus sp.nr. varipes (Foerster) (Hymenoptera: Aphelinidae): The western wheat aphid, Diuraphis tritici (Gillette), and the Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae). The Canadian Entomologist 123: 413415.CrossRefGoogle Scholar
Nealis, V. 1985. Diapause and the seasonal ecology of the introduced parasite, Cotesia (Apanteles) rubecula (Hymenoptera: Braconidae). The Canadian Entomologist 117: 333342.CrossRefGoogle Scholar
SAS Institute. 1989. SAS/STAT® User's Guide, Version 6, Fourth Edition. SAS Institute Inc., Cary, NC. 846 pp.Google Scholar
Saunders, D.S. 1966. Larval diapause of maternal origin — II. The effect of photoperiod and temperature on Nasonia vitripennis. Journal of Insect Physiology 12: 569581.CrossRefGoogle Scholar
Schoonhoven, L.M. 1962. Synchronization of a parasite/host system, with special reference to diapause. Annals of Applied Biology 50: 617621.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry, Second Edition. W.H. Freeman and Company, New York, NY. 859 pp.Google Scholar
Tauber, M.J., and Tauber, C.A.. 1976. Insect seasonality: Diapause maintenance, termination, and postdiapause development. Annual Review of Entomology 21: 81107.CrossRefGoogle Scholar
Tauber, M.J., Tauber, C.A., and Masaki, S.. 1986. Seasonal Adaptations of Insects. Oxford University Press, New York, NY. 411 pp.Google Scholar
Trimble, R.M., Blommers, L.H.M., and Helsen, H.H.M.. 1990. Diapause termination and thermal requirements for postdiapause development in Aphelinus mali at constant and fluctuating temperatures. Entomologia Experimentalis et Applicata 56: 6169.CrossRefGoogle Scholar
Wang, T., and Laing, J.E.. 1989. Diapause termination and morphogenesis of Holcothorax testaceipes Ratzeburg (Hymenoptera: Encyrtidae), an introduced parasitoid of the spotted tentiform leafminer, Phyllonorycter blancardella (F.) (Lepidoptera: Gracillariidae). The Canadian Entomologist 121: 6574.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ. 718 pp.Google Scholar