Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T11:10:46.316Z Has data issue: false hasContentIssue false

DIFFERENTIAL IMPACT OF THE PATHOGEN PANDORA NEOAPHIDIS (R.&H.) HUMBER (ZYGOMYCETES: ENTOMOPHTHORALES) ON THE SPECIES COMPOSITION OF ACYRTHOSIPHON APHIDS IN ALFALFA

Published online by Cambridge University Press:  31 May 2012

J. Pickering
Affiliation:
Department of Entomology, University of Georgia, Athens, Georgia, USA 30602
A.P. Gutierrez
Affiliation:
Division of Biological Control, University of California, Berkeley, California, USA 94706

Abstract

A fungal outbreak of Pandora neoaphidis (Remaudière and Hennebert) Humber (Zygomycetes, Entomophthorales, Entomophthoraceae) caused maximum daily mortality of 6 and 34%, respectively, in sympatric populations of Acyrthosiphon kondoi Shinji and Acyrthosiphon pisum Harris (Homoptera, Aphididae). This epidemic suppressed the A. pisum population but not the A. kondoi population. The results suggest that low level infections in A. kondoi may greatly increase the inoculum available for transmission to the highly susceptible A. pisum.

Résumé

Une manifestation fongique de Pandora neoaphidis (Remaudière et Hennebert) Humber (Zygomycètes, Entomophthorales, Entomophthoraceae) a occasionné une mortalité de 6 et de 34%, respectivement, aux populations sympatriques d’Acyrthosiphon kondoi Shinji et d’Acyrthosiphon pisum Harris (Homoptera, Aphididae). Cette épidémie a supprimé la population d’A. pisum, mais non celle d’A. kondoi. Les résultats permettent à supposer que les infections à bas niveau chez A. kondoi pourraient augmenter l’inoculum disponible à transmettre à A. pisum, fortement prédisposé à cette maladie.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.M. 1978. The regulation of host population growth by parasitic species. Parasitology 76: 119157.CrossRefGoogle ScholarPubMed
Anderson, R.M., and Channing, E.U. (Eds.). 1982. Theoretical basis for the use of pathogens as biological control agents of pest species. Parasitology 84: 333.Google Scholar
Anderson, R.M., and May, R.M.. 1978. Regulation and stability of host parasite population interactions. I. Regulatory processes. J. Anim. Ecol. 47: 219249.CrossRefGoogle Scholar
Anderson, R.M., and May, R.M.. 1979. Population biology of infectious diseases. Part I. Nature 280: 361367.Google Scholar
Anderson, R.M., and May, R.M.. 1980. Infectious diseases and population cycles of forest insects. Science 210: 658661.CrossRefGoogle ScholarPubMed
Anderson, R.M., and May, R.M.. 1981. The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. London Ser. B. 291: 451524.Google Scholar
Baltensweiler, W. 1964. Zeiraphera griseana Hübner (Lepidoptera: Tortricidae) in the European Alps. A contribution to the problem of cycles. Can. Ent. 96: 792800.CrossRefGoogle Scholar
Cameron, P.J., and Milner, R.J.. 1981. Incidence of Entomophthora spp. in sympatric populations of Acyrthosiphon rondi and A. pisum. New Zealand J. Zool. 8: 441446.CrossRefGoogle Scholar
Caswell, H. 1978. Predator-mediated coexistence: A non-equilibrium model. Am. Nat. 109: 127154.Google Scholar
Fischlin, A., and Baltensweiler, W.. 1979. Systems analysis of the larch bud moth system. Part I. The larch – larch bud moth relationship. Bull. Soc. ent. Suisse 52: 273289.Google Scholar
Freeland, W.J. 1983. Parasites and the coexistence of animal host species. Am. Nat. 121: 223236.Google Scholar
Getz, W.M., and Pickering, J.. 1983. Epidemic models: Thresholds and population regulation. Am. Nat. 121: 892898.Google Scholar
Gutierrez, A.P., Baumgaertner, J.U., and Summers, C.G.. 1984. Multitrophic level models of predator prey energetics: III. A case study in an alfalfa ecosystem. Can. Ent. 116: 950963.Google Scholar
Gutierrez, A.P., Hagen, K.S., and Ellis, C.K.. 1990. Evaluating the impact of natural enemies: A multitrophic perspective. pp. 81107in Mackauer, M., Ehler, L.E., and Roland, J. (Eds.), Critical Issues in Biological Control. Intercept, Andover, UK.Google Scholar
Hagen, K.S., and van den Bosch, R.. 1968. Impact of pathogens, parasites, and predators on aphids. A. Rev. Ent. 13: 325384.Google Scholar
Holt, R.D., and Pickering, J.. 1985. Infectious diseases and species coexistence: A model of Lotka-Volterra form. Am. Nat. 126: 196211.Google Scholar
Hughes, R.D., and Bryce, M.A.. 1984. Biological characterization of two biotypes of pea aphid, one susceptable and the other resistant to fungal pathogens, coexisting in lucerne in Australia. Entomologia exp. appl. 36: 225229.Google Scholar
May, R.M., and Anderson, R.M.. 1978. Regulation and stability of host parasite population interactions. II. Destabilizing processes. J. Anim. Ecol. 47: 249268.CrossRefGoogle Scholar
Milner, R.J. 1981. Patterns of primary spore discharge of Entomophthora spp. from the blue green aphid, Acyrthosiphon kondoi. J. Invertebr. Pathol. 38: 419425.CrossRefGoogle Scholar
Milner, R.J., Teakle, R.E., Lutton, G.G., and Dare, F.M.. 1980. Pathogens (Phycomyces: Entomophthoraceae) of the blue green aphid Acyrthosiphon kondoi Shinji and other aphids in Australia. Aust. J. Bot. 28: 601619.CrossRefGoogle Scholar
Milstein, J.A., Brown, G.C., and Nordin, G.L.. 1983. Microclimatic moisture and conidial production in Erynia sp. (Entomophthorales: Entomophthoraceae): In vivo production rate and duration under constant and fluctuating moisture regimes. Environ. Ent. 12: 13341349.Google Scholar
Neuenschwander, P., Hagen, K.S., and Smith, R.F.. 1975. Predation on aphids in California's alfalfa fields. Hilgardia 43: 5378.Google Scholar
Paine, R.T. 1966. Food web complexity and species diversity. Am. Nat. 100: 6575.Google Scholar
Park, T. 1948. Experimental studies of interspecies competition. I. Competition between populations of the flour beetles, Tribolium confusum Duval and Tribolium castaneum Herbst. Ecol. Monogr. 18: 265308.Google Scholar
Pickford, R., and Riegert, P.W.. 1964. The fungous disease caused by Entomophthora grylli Fres. and its effects on grasshopper populations in Saskatchewan in 1963. Can. Ent. 96: 11581166.CrossRefGoogle Scholar
Price, P.W. 1980. Evolutionary Biology of Parasites. Princeton Univ. Press, Princeton, NJ.Google ScholarPubMed
Smith, R.F., and Hagen, K.S.. 1966. Natural regulation of alfalfa aphids in California. pp. 297315in Hodek, I. (Ed.), Ecology of Aphidophagous Insects. Academia, Prague.Google Scholar
Soper, R.S., and MacLeod, D.M.. 1981. Descriptive epizootiology of an aphid mycosis. U.S.D.A. Tech. Bull. 1632: 117.Google Scholar
Summers, C.G., Coviello, R.L., and Gutierrez, A.P.. 1984. Influence of constant temperatures on the development and reproduction of Acyrthosiphon kondoi. Environ. Ent. 13: 236242.CrossRefGoogle Scholar
UC/IPM. 1981. Integrated Pest Management for Alfalfa Hay. Univ. of Calif. Statewide Integrated Pest Management Project, Agricultural Sciences Publications, Richmond, CA.Google Scholar
Wilding, N. 1969. Effect of humidity on the sporulation of Entomophthora aphidis and E. thaxteriana. Trans. Br. Mycol. Soc. 53: 126130.Google Scholar
Wilding, N. 1970. The effect of temperature on the infectivity and incubation periods of the fungi Entomophthora aphidis and E. thaxteriana for the pea aphid Acyrthosiphon pisum. Proc. IV International Coll. Insect Pathol., College Park, Maryland. pp. 8488.Google Scholar