Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T06:14:31.294Z Has data issue: false hasContentIssue false

A SURVEY FOR THE AMBROSIA BEETLES TRYPODENDRON LINEATUM AND GNATHOTRICHUS RETUSUS (COLEOPTERA: SCOLYTIDAE) IN A SAWMILL USING PHEROMONE-BAITED TRAPS

Published online by Cambridge University Press:  31 May 2012

T. L. Shore
Affiliation:
Canadian Forestry Service, Pacific Forest Research Centre, Victoria, British Columbia V8Z 1M5
J. A. McLean
Affiliation:
Faculty of Forestry, University of British Columbia, Vancouver, British Columbia V6T 1W5

Abstract

The pheromones lineatum and (+)-sulcatol were used in traps in a sawmill to survey the ambrosia beetles Trypodendron lineatum (Olivier) and Gnathotrichus retusus (LeConte) respectively. Spatial and temporal distribution patterns for both species were identified. This information can be used for the establishment of a pheromone-based mass-trapping program for ambrosia beetles. The addition of ethanol and α-pinene to traps baited with (+)-sulcatol significantly increased the catches of G. retusus.

Résumé

Les phéromones lineatum et (+)-sulcatol ont été utilisées dans des pièges installés sur le site d'un moulin à scie afin de surveiller les scolytes Trypodendron lineatum (Olivier) et Gnathotrichus retusus (LeConte), respectivement. On a pu caractériser la distribution spatiale et temporelle de ces 2 espèces. Cette information pourra servir à établir un programme de piégeage en masse des scolytes à l'aide de phéromones. L'ajout d'éthanol et de l'α-pinène dans les pièges appâtés au (+)-sulcatol a augmenté significativement les captures de G. retusus.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borden, J. H., Chong, L., McLean, J. A., Slessor, K. N., and Mori, K.. 1976. Synergistic response to enantiomers of the aggregation pheromone sulcatol. Science 192: 894896.CrossRefGoogle ScholarPubMed
Borden, J. H., Handley, J. R., Johnston, B. D., MacConnell, J. G., Silverstein, R. M., Slessor, K. N., Swigar, A. A., and Wong, D. T. W.. 1979. Synthesis and field testing of lineatin, the aggregation pheromone of Trypodendron lineatum (Coleoptera:Scolytidae). J. Chem. Ecol. 5: 681689.CrossRefGoogle Scholar
Borden, J. H., Handley, J. R., McLean, J. A., Silverstein, R. M., Chong, L., Slessor, K. N., Johnston, B. D., and Schuler, H. R.. 1980 a. Enantiomer based specificity in pheromone communication by two sympatric Gnathotrichus spp. (Coleoptera:Scolytidae). J. Chem. Ecol. 6: 445456.CrossRefGoogle Scholar
Borden, J. H., Oehlschlager, A. C., Slessor, K. N., Chong, L., and Pierce, H. D. Jr., 1980 b. Field tests of isomers of lineatin, the aggregation pheromone of Trypodendron lineatum (Coleoptera: Scolytidae). Can. Ent. 112: 107109.CrossRefGoogle Scholar
Borden, J. H., Lindgren, B. S., and Chong, L.. 1980 c. Ethanol and α-pinene as synergists for the aggregation pheromone of two Gnathotrichus spp. Can. J. For. Res. 10: 290292.CrossRefGoogle Scholar
Borden, J. H., Chong, L., Slessor, K. N., Oehlschlager, A. C., Pierce, H. D. Jr., and Lindgren, B. S.. 1981. Allelochemic activity of aggregation pheromones between three sympatric species of ambrosia beetles. Can. Ent. 113: 557563.CrossRefGoogle Scholar
Byrne, K. J., Swigar, A. A., Silverstein, R. M., Borden, J. H., and Stokkink, E.. 1974. Sulcatol: population aggregation pheromone in the scolytid beetle Gnathotrichus sulcatus. J. Insect Physiol. 20: 18951900.CrossRefGoogle ScholarPubMed
Chapman, J. A. 1955. Interpretation of adult history in the ambrosia beetle Trypodendron. Can. Dep. Agric., For. Biol. Div., Bi-mon. Prog. Rep. 11(6): 34.Google Scholar
Chapman, J. A. 1958. Studies on the physiology of the ambrosia beetle Trypodendron in relation to its ecology. Pt. 4, pp. 375380in Becker, Edward C. (Ed.), Proc. 10th int. Congr. Ent. (Montreal, 17–25 August). Mortimer Ltd., Ottawa.Google Scholar
Chapman, J. A. and Kinghorn, J. M.. 1958. Studies of flight and attack activity of the ambrosia beetle Trypodendron lineatum (Oliv.) and other scolytids. Can. Ent. 90: 362372.CrossRefGoogle Scholar
Dobie, J. 1978. Ambrosia beetles have expensive tastes. Can. For. Serv. Pacif. For. Res. Cent. Inf. Rep. BC-P-24.Google Scholar
Graham, K. and Boyes, E. C.. 1950. Historical and economic aspects: pinworms in lumber. B.C. Lumberman 34: 42, 106.Google Scholar
Hadorn, C. 1933. Recherches sur la morphologie, les stades evolutifs et l'hivernage du Bostryche lisere (Xyloterus lineatus Oliv.). Suppl. org. Soc. Forest. Suisse, Bern. 11. 120 pp.Google Scholar
Klimetzek, V. D., Vité, J. P., and Mori, K.. 1980. Zur Wirkung und Formulierung des Populationslockstoffes des Nutzholzborkenkäfers Trypodendron (Xyloterus) lineatum. Z. angew. Ent. 89: 5763.CrossRefGoogle Scholar
Lindgren, B. S. and Borden, J. H.. 1983. Survey and mass trapping of ambrosia beetles (Coleoptera: Scolytidae) in timber processing areas on Vancouver Island. Can. J. For. Res. 13: 481493.CrossRefGoogle Scholar
MacConnell, J. G., Borden, J. H., Silverstein, R. M., and Stokkink, E.. 1977. Isolation and tentative identification of lineatin, a pheromone from the frass of Trypodendron lineatum (Coleoptera:Scolytidae). J. Chem. Ecol. 3: 549561.CrossRefGoogle Scholar
McBride, C. F. 1950. The effect of ambrosia beetle damage upon lumber value. B.C. Lumberman 34(9): 46–48, 122128.Google Scholar
McBride, C. F. and Kinghorn, J. M.. 1960. Lumber degrade caused by ambrosia beetles. B.C. Lumberman 44(7): 4052.Google Scholar
McLean, J. A. 1976. Primary and secondary attraction in Gnathotrichus spp. and their application in pest management. Ph.D. Thesis, Simon Fraser University. 108 pp.Google Scholar
McLean, J. A. and Borden, J. H.. 1975. Survey for Gnathotrichus sulcatus in a commercial sawmill with the pheromone sulcatol. Can. J. For. Res. 5: 586591.CrossRefGoogle Scholar
McLean, J. A. and Borden, J. H.. 1977. Suppression of Gnathotrichus spp. with sulcatol-baited traps in a commercial sawmill and notes on the occurrence of G. retusus and T. lineatum. Can. J. For. Res. 7: 348356.CrossRefGoogle Scholar
McLean, J. A. and Borden, J. H.. 1979. An operational pheromone-based suppression program for an ambrosia beetle Gnathotrichus spp. in a commercial sawmill. J. econ. Ent. 72: 165172.CrossRefGoogle Scholar
Prebble, M. L. and Graham, K.. 1957. Studies of attack by ambrosia beetles in softwood logs on Vancouver Island, British Columbia. For. Sci. 3: 90112.Google Scholar
Richmond, H. A. and Nijholt, W. W.. 1972. Water misting for log protection from ambrosia beetles in B.C. Can. For. Serv. Pacif. For. Res. Centre Inf. Rep. BC-P-4.Google Scholar
Shore, T. L. 1982. A pheromone-mediated mass-trapping program for three species of ambrosia beetle in a commercial sawmill. Ph.D. Thesis, University of British Columbia. 163 pp.Google Scholar
Shore, T. L. and McLean, J. A.. 1983. A further evaluation of the interactions between the pheromones and two host kairomones of the ambrosia beetles Trypodendron lineatum and Gnathotrichus sulcatus. Can. Ent. 115: 15.CrossRefGoogle Scholar
Vité, J. P. and Bakke, A.. 1979. Synergism between chemical and physical stimuli in host colonization by an ambrosia beetle. Naturwissenschaften 66: 528529.CrossRefGoogle Scholar