Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T05:52:29.377Z Has data issue: false hasContentIssue false

PHEROMONES OF IPS PINI (COLEOPTERA: SCOLYTIDAE): VARIATION IN RESPONSE AMONG THREE POPULATIONS1

Published online by Cambridge University Press:  31 May 2012

Abstract

Reciprocal field tests of attraction between populations of Ips pini (Say) from California, Idaho, and New York disclosed geographic variation in pheromone systems. These differences reside both in pheromone production and reception. However, it is unknown whether variation in the pheromone bouquets is qualitative, quantitative, or both.

In New York, both sexes responded in higher numbers to their own pheromone than that produced by California or Idaho males. In California, beetles of both sexes discriminated against New York, but in Idaho only females made this distinction. In both California and Idaho, the local population showed a slight preference for the pheromone produced by Idaho males over that produced by California males.

The predator Enoclerus lecontei (Wolc.) demonstrated a four-fold preference for attractants produced by males from New York over those produced by beetles from California and Idaho. The parasitoid Tomicobia tibialis Ashmead showed the opposite trend.

There is no evidence that geographic variation in the pheromones produced by I. pini is sufficient to enforce breeding isolation between adjacent populations. However, these results dramatize the necessity of considering pheromonal variability in programs applying pheromones for the survey and control of widely distributed pests.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bedard, W. D. 1965. The biology of Tomicobia tibialis (Hymenoptera: Pteromalidae) parasitizing Ips confusus (Coleoptera: Scolytidae) in California. Contrib. Boyce Thompson Inst. Pl. Res. 23: 7781.Google Scholar
Bedard, W. D. 1966. Variation in capacity of Ips confusus to reach attractive hosts, pp. 137142. In Breeding pest resistant trees. N.A.T.O. and NSF Symp. Proc., Pergamon Press, Oxford.CrossRefGoogle Scholar
Bedard, W. D. and Browne, L. E.. 1969. A delivery-trapping system for evaluating insect chemical attractants in nature. J. econ. Ent. 62: 12021203.CrossRefGoogle Scholar
Bedard, W. D. et al. 1969. Western pine beetle: field response to its sex pheromone and a synergistic host terpene, myrcene. Science 164: 12841285.CrossRefGoogle Scholar
Berger, R. S. and Canerday, T. D.. 1968. Specificity of the cabbage looper sex attractant. J. econ. Ent. 61: 452454.CrossRefGoogle Scholar
Brady, U. E. et al. 1971. Sex stimulant and attractant in the Indian meal moth and in the Almond moth. Science 171: 802804.CrossRefGoogle ScholarPubMed
Cameron, E. A. and Borden, J. H.. 1967. Emergence patterns of Ips confusus (Coleoptera: Scolytidae) from ponderosa pine. Can. Ent. 99: 236244.CrossRefGoogle Scholar
Chapman, J. A. and Dyer, E. D. A.. 1969. Cross attraction between the Douglas-fir beetle (Dendroctonus pseudotsugae Hopk.) and the spruce beetle (D. obesus (Mann.)). Bi-mon. Res. Notes Can. Dep. Fish. For. 25: 31.Google Scholar
Hopping, G. R. 1964. The North American species in groups IV and V of Ips De Geer (Coleoptera: Scolytidae). Can. Ent. 96: 970978.CrossRefGoogle Scholar
Kuwahara, Y. et al. 1971. Sex pheromone of the almond moth and the Indian meal moth: Cis-9, trans-12-tetradecadienyl acetate. Science 171: 801802.CrossRefGoogle ScholarPubMed
Lanier, G. N. 1970 a. Sex pheromones: abolition of specificity in hybrid bark beetles. Science 169: 7172.CrossRefGoogle ScholarPubMed
Lanier, G. N. 1970 b. Biosystematics of the genus Ips (Coleoptera: Scolytidae) in North America. Hopping's group III. Can. Ent. 102: 14041423.CrossRefGoogle Scholar
Lanier, G. N. 1972. Biosystematics of the genus Ips (Coleoptera: Scolytidae) in North America. Hopping's groups IV and X. Can. Ent. 104: 361388.CrossRefGoogle Scholar
Pitman, G. B. et al. 1969. Specificity of population-aggregating pheromones in Dendroctonus. J. Insect Physiol. 15: 363366.CrossRefGoogle Scholar
Renwick, J. A. A. and Vité, J. P.. 1969. Bark beetle attractants: mechanism of colonization by Dendroctonus frontalis. Nature 224: 12221223.CrossRefGoogle Scholar
Renwick, J. A. A. and Vité, J. P.. 1970. Systems of chemical communication in Dendroctonus. Contrib. Boyce Thompson Inst. Pl. Res. 24: 283292.Google Scholar
Rice, R. E. 1968. Observations on host selection by Tomicobia tibialis Ashmead (Hymenoptera: Pteromalidae). Contrib. Boyce Thompson Inst. Pl. Res. 24: 5356.Google Scholar
Roelofs, W. L. and Comeau, A.. 1970. Lepidopterous sex attractants discovered by field screening tests. J. econ. Ent. 63: 969974.CrossRefGoogle ScholarPubMed
Shorey, H. H., Gaston, L. K., and Jefferson, R. N.. 1968. Insect sex pheromones. Advances in Pest Control Research 8: 57126.Google ScholarPubMed
Silverstein, R. M., Rodin, J. O., and Wood, D. L.. 1966. Sex attractants in frass produced by male Ips confusus in ponderosa pine. Science 154: 509510.CrossRefGoogle Scholar
Vité, J. P., Gara, R. I., and Scheller, H. D. von. 1964. Field observations on the response to attractants of bark beetles infesting southern pines. Contrib. Boyce Thompson Inst. Pl. Res. 22: 461470.Google Scholar
Vité, J. P. and Renwick, J. A. A.. 1971. Population aggregating pheromone in the bark beetle, Ips grandicollis. J. Insect Physiol. 17: 16991704.CrossRefGoogle Scholar
Wood, D. L. 1970. Pheromones of bark beetles, pp. 301316. In Wood, D. L., Silverstein, R. M. and Nakajima, M. (Eds.), Control of insect behavior by natural products. Academic Press, New York.CrossRefGoogle Scholar
Wood, D. L. et al. 1967. Unique synergistic effects produced by the principal sex attractant compounds of Ips confusus (LeConte) (Coleoptera: Scolytidae). Nature 215: 206.CrossRefGoogle ScholarPubMed