Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T06:04:56.288Z Has data issue: false hasContentIssue false

LIFE HISTORY AND BIOLOGY OF EINFELDIA SYNCHRONA (DIPTERA: CHIRONOMIDAE)

Published online by Cambridge University Press:  31 May 2012

H. V. Danks
Affiliation:
Entomology Research Institute, Canada Department of Agriculture, Ottawa

Abstract

Einfeldia synchrona Oliver is univoltine in a small, shallow, highly eutrophic pond near Ottawa (45°N.). Adult emergence is synchronized with slight protandry in May, and from this small pond exceeded 145,000 individuals in 1970. Emergence is inhibited experimentally at short photoperiods. More than one egg mass is produced, during a period of several days following emergence. First instar larvae, which lack ventral tubules, are at first pelagic but build cases before moulting. The remaining three larval instars possess 1 pair of ventral tubules. Larvae show a preference for central areas of the pond over 40 cm deep, and show some mobility in response to seasonal depth changes. There are arrests in the development of larvae both in winter and during summer, with cessation of feeding, penetration into the mud, and construction in winter of special sealed cocoons. Marked year to year differences in the stage reached by winter, and in the larval population level, were detected. Many of these biological features are probably widespread in Chironomini and hence of some importance in the interpretation of studies of the bottom fauna.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armitage, P. D. 1970. The Tanytarsini (Diptera; Chironomidae) of a shallow woodland lake in South Finland, with special reference to the effect of winter conditions on the larvae. Ann. zool. Fenn. 7: 313322.Google Scholar
Barthelmes, D. 1961. Über die horizontale Wanderung der Teichbodenfauna. Z. Fisch. 11: 183187.Google Scholar
Borodichova, N. D. 1958. [Wintering of aquatic organisms in the mud of drained ponds.] (In Czech, Russian, and German summaries.) Zivocisna vyroba 3: 243252.Google Scholar
Corbet, P. S. 1964. Temporal patterns of emergence in aquatic insects. Can. Ent. 96: 264279.CrossRefGoogle Scholar
Corbet, P. S. 1966. Diel periodicities of emergence and oviposition in riverine Trichoptera. Can. Ent. 98: 10341035.CrossRefGoogle Scholar
Danks, H. V. 1971. Overwintering of some north temperate and arctic Chironomidae. I. The winter environment. Can Ent. 103: 589604.CrossRefGoogle Scholar
Danks, H. V. Overwintering of some north temperate and arctic Chironomidae. II. Chironomid biology. Can. Ent. (In press.)Google Scholar
Dejoux, C. 1971. Recherches sur le cycle de développement de Chironomus pulcher (Diptera: Chironomidae). Can. Ent. 103: 465470.CrossRefGoogle Scholar
Englemann, W. and Shappirio, D. G.. 1965. Photoperiodic control of the maintenance and termination of larval diapause in Chironomus tentans. Nature, Lond. 207: 548549.CrossRefGoogle ScholarPubMed
Fischer, J. 1969. Zur Fortpflanzungsbiologie von Chironomus nuditarsis Str. Revue suisse Zool. 76: 2355.Google Scholar
Hilsenhoff, W. L. 1966. The biology of Chironomus plumosus (Diptera, Chironomidae) in Lake Winnebago, Wisconsin. Ann. ent. Soc. Am. 59: 465473.CrossRefGoogle Scholar
Hudson, A. and McLintock, J.. 1967. A chemical factor that stimulates oviposition by Culex tarsalis Coquillet (Diptera: Culicidae). Anim. Behav. 15: 336341.CrossRefGoogle ScholarPubMed
Jonasson, P. M. 1965. Factors determining population size of Chironomus anthracinus in Lake Esrom. Mitt. Int. Verein. theoret. angew. Limnol. 13: 139162.Google Scholar
Jonasson, P. M. and Kristiansen, J.. 1967. Primary and secondary production in Lake Esrom. Growth of Chironomus anthracinus in relation to seasonal cycles of phytoplankton and dissolved oxygen. Int. Revue ges. Hydrobiol. 52: 163217.CrossRefGoogle Scholar
Kajak, Z. 1958. [An attempt at interpreting the quantitative dynamics of benthic fauna in a chosen environment in the “Konfederatha” pool adjoining the vistula.] (In Polish.) Ekol. pol. 6: 205291.Google Scholar
Kajak, Z., Dusoge, K., and Prejs, A.. 1968. Application of the flotation technique to assessment of absolute numbers of benthos. Ekol. pol. (A) 16: 607620.Google Scholar
Macan, T. T. 1949. Study of a moorland fishpond. J. anim. Ecol. 18: 160186.CrossRefGoogle Scholar
Oliver, D. R. 1968. Adaptations of Arctic Chironomidae. Ann. zool. Fenn. 5: 111118.Google Scholar
Oliver, D. R. 1971 a. Life history of the Chironomidae. A. Rev. Ent. 16: 211230.CrossRefGoogle Scholar
Oliver, D. R. 1971 b. Description of Einfeldia synchrona n. sp. (Diptera: Chironomidae). Can. Ent. 103: 15911595.CrossRefGoogle Scholar
Palmen, E. 1962. Studies on the ecology and phenology of Chironomids (Diptera: Chironomidae) of the Northern Baltic. 1: Allochironomus crassiforceps K. Suom. hyönt. Aikak. 28: 137168.Google Scholar
Paris, O. H. and Jenner, C. E.. 1959. Photoperiodic control of diapause in the pitcher-plant midge Metriocnemus knabi. In Withrow, R. B. (Ed.), Photoperiodism and related Phenomena in plants and animals, pp. 601624. A.A.A.S., Washington.Google Scholar
Thienemann, A. 1954. Chironomus. Leben, Verbrieitung und Wirtschaftliche Bedeutung der Chironomiden. Binnengewässer 20: 1834.Google Scholar
Townes, H. K. 1945. The nearctic species of Tendipedini (Diptera, Tendipedidae (= Chironomidae)). Am. Midl. Nat. 34: 1266.CrossRefGoogle Scholar
Walshe, B. M. 1951. The feeding habits of certain chironimid larvae (subfamily Tendipedinae). Proc. zool. Soc. Lond. 121: 6379.CrossRefGoogle Scholar