Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T21:32:36.041Z Has data issue: false hasContentIssue false

ELECTROPHORETIC STUDY OF ENZYMES FROM A GLOSSINA FUSCIPES FUSCIPES NEWSTEAD POPULATION FROM WESTERN KENYA

Published online by Cambridge University Press:  31 May 2012

G.F. Rajendram
Affiliation:
International Centre of Insect Physiology and Ecology, PO Box 30772, Nairobi, Kenya

Abstract

Enzymes were investigated, by electrophoresis, in a population of Glossina fuscipes fuscipes Newstead collected from Rusinga Island in Lake Victoria, Western Kenya.

The following enzymes were tested: glucose phosphate isomerase, glucose-6-phosphate dehydrogenase (G6PDH), hexokinase. isocitrate dehydrogenase (IDH), malate-dehydrogenase (MDH), phosphoglucomutase, and xanthine dehydrogenase (XDH).

Single monomorphic bands were stained by the following enzymes apparently under the control of single loci: G6PDH, MDH, and XDH. The enzyme IDH showed two bands with very close mobilities and no variation among individuals in the population. Hence IDH was considered as representing a single locus. Glucose phosphate isomerase manifested three alleles and apparently six genotypes. Phosphoglucomutase manifested a double-banded pattern representing an autosomal locus.

Résumé

Les enzymes d’une population de Glossina fuscipes fuscipes Newstead, provenant de l’Île Rusinga du Lac Victoria, de l’ouest du Kenya, ont été étudiés en utilisant l’électrophorèse.

Les enzymes suivantes ont été mise à l’épreuve : l’isomérase du glucose phosphate, le glucose-6-phosphate déshydrogénase (G6PDH), l’hexokinase, le déshydrogénase d’isocitrate (DHI), le malate-déshydrogénase (MDH), la phosphoglucomutase et le déshydrogénase de xanthine (DHX).

Les bandes uniques monomorphiques, qui sont apparemment sous le contrôle d’un seul locus, ont été teintes par les enzymes suivantes : G6PDH, MDH et DHX. L’enzyme DHI a démontré deux bandes avec les mobilités très rapprochées et n’ayant aucune variation parmi les individus de la population. Ainsi, DHI a été considéré pour représenter un seul locus. L’isomérase du glucose phosphate a signalé trois allèles et probablement six génotypes. La phosphoglucomutase a démontré un patron de bandes doubles qui représente un locus autosomique.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agatsuma, T., and Otieno, L.H.. 1988. Isoenzyme studies on two field populations of Glossina pallidipes Austen (Diptera, Glossinidae) in Kenya. Insect Sci. Applic. 9(4): 527530.Google Scholar
Ayala, F.J. 1983. Enzymes as taxonomic characters. pp. 326in Oxford, G.S., and Rollinson, D. (Eds.), Protein Polymorphism; Adaptive and Taxonomic Significance. Academic Press, London.Google Scholar
Berlocher, S.J. 1979. Biochemical approaches to strain, race and species discrimination. pp. 137144in Hoy, M.A., and McKelvy, J.J. Jr, (Eds.), Genetics in Relation to Insect Management. Rockfeller Foundation, New York, NY.Google Scholar
Divall, G.B. 1984. Starch gel electrophoresis of proteins. In Walker, J.M. (Ed.), Methods in Molecular Biology. 1. Proteins. Humana, Clifton, NJ.Google Scholar
Ferguson, A. 1980. Biochemical Systematics and Evolution. Blackie, London.Google Scholar
Gooding, R.H. 1981. Genetic polymorphism in three species of tsetse flies (Diptera: Glossinidae) in Upper Volta. Acta Tropica 38: 149161.Google ScholarPubMed
Gooding, R.H. 1982. Classification of nine species and subspecies of tsetse flies (Diptera: Glossinidae: Glossina Wiedemann) based on molecular genetics and breeding data. Can. J. Zool. 60: 27372744.CrossRefGoogle Scholar
Gooding, R.H. 1989. Genetics of two populations of Glossina morsitans centralis (Diptera: Glossinidae) from Zambia. Acta Tropica 46: 1722.CrossRefGoogle ScholarPubMed
Gooding, R.H., and Jordan, A.M.. 1986. Genetics of Glossina morsitans morsitans (Diptera: Glossinidae). XII. Comparison of field-collected and laboratory-reared flies. Can. J. Genet. Cytol. 28: 10161021.CrossRefGoogle Scholar
Gooding, R.H., and Rolseth, B.M.. 1978. Genetics of Glossina morsitans morsitans (Diptera: Glossinidae). II. Electrophoretic banding patterns of midgut alkaline phosphatase. Can. Ent. 110: 12411246.CrossRefGoogle Scholar
Harris, H., and Hopkinson, D.A.. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. North-Holland, Amsterdam.Google Scholar
Nesbitt, S.A.T. 1991. Enzyme polymorphism in Glossina longipennis. Can. J. Zool. In press.Google Scholar
Rolseth, B.M., and Gooding, R.H.. 1978. Genetics of Glossina morsitans morsitans (Diptera: Glossinidae). I. Electrophoretic banding patterns of xanthine and aldehyde oxidase. Can. Ent. 110: 12331239.CrossRefGoogle Scholar
Shaw, C.R., and Prasad, R.. 1970. Starch gel electrophoresis of enzymes — A compilation of recipes. Biochem. Genet. 4: 297320.CrossRefGoogle ScholarPubMed
Van der Geest, L.P.S., Cornelissen, L., A-Joe, H.P. Tjon, and Helle, W.. 1978. A study on isoenzyme polymorphism in the tsetse fly Glossina morsitans. Entomologia exp. appl. 23: 269278.CrossRefGoogle Scholar
Van der Geest, L.P.S., and Kawooya, J.. 1975. Genetic variation in some enzyme systems in the tsetse fly Glossina morsitans. Entomologia exp. appl. 18: 508514.CrossRefGoogle Scholar
Van Etten, J. 1982. Enzyme polymorphism in populations of the tsetse fly Glossina pallidipes in Kenya. Entomologia exp. appl. 31: 197201.CrossRefGoogle Scholar