Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T02:08:26.588Z Has data issue: false hasContentIssue false

TRANSITIVE AND HYPERCYCLIC OPERATORS ON LOCALLY CONVEX SPACES

Published online by Cambridge University Press:  10 March 2005

J. BONET
Affiliation:
E.T.S. Arquitectura, Departament de Matemàtica, Aplicada, Universitat Politècnica de València, E-46022 València, [email protected], [email protected]
L. FRERICK
Affiliation:
FB Mathematik, Bergische Universität Wuppertal, Gauß-Straße 20, D-42097 Wuppertal, [email protected]
A. PERIS
Affiliation:
E.T.S. Arquitectura, Departament de Matemàtica, Aplicada, Universitat Politècnica de València, E-46022 València, [email protected], [email protected]
J. WENGENROTH
Affiliation:
FB IV Mathematik, Universität Trier, D-54286 Trier, [email protected]
Get access

Abstract

Solutions are provided to several questions concerning topologically transitive and hypercyclic continuous linear operators on Hausdorff locally convex spaces that are not Fréchet spaces. Among others, the following results are presented. (1) There exist transitive operators on the space $\varphi $ of all finite sequences endowed with the finest locally convex topology (it was already known that there is no hypercyclic operator on $\varphi$). (2) The space of all test functions for distributions, which is also a complete direct sum of Fréchet spaces, admits hypercyclic operators. (3) Every separable infinite-dimensional Fréchet space contains a dense hyperplane that admits no transitive operator.

Type
Papers
Copyright
© The London Mathematical Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was completed during a visit by L. Frerick to the Universitat Politècnica de València in late 2002 and early 2003. The support of the Programa de Incentivo a la Investigación Científica de la Universitat Politècnica de València 2002 is gratefully acknowledged. The research of J. Bonet and A. Peris was partially supported by MCYT and FEDER Proyecto no. BFM2001-2670, and by AVCIT Grup 03/050.