Published online by Cambridge University Press: 10 July 2019
Let ${\mathcal{P}}_{{\mathcal{H}}}^{0}(M)$ denote the class of normalised harmonic mappings $f=h+\overline{g}$ in the unit disk $\mathbb{D}$ satisfying $\text{Re}\,(zh^{\prime \prime }(z))>-M+|zg^{\prime \prime }(z)|$, where $h^{\prime }(0)-1=0=g^{\prime }(0)$ and $M>0$. Let ${\mathcal{B}}_{{\mathcal{H}}}^{0}(M)$ denote the class of sense-preserving harmonic mappings $f=h+\overline{g}$ in the unit disk $\mathbb{D}$ satisfying $|zh^{\prime \prime }(z)|\leq M-|zg^{\prime \prime }(z)|$, where $M>0$. We discuss the coefficient bound problem, the growth theorem for functions in the class ${\mathcal{P}}_{{\mathcal{H}}}^{0}(M)$ and a two-point distortion property for functions in the class ${\mathcal{B}}_{{\mathcal{H}}}^{0}(M)$.