Published online by Cambridge University Press: 10 July 2009
Collections of Anopheles gambiae Giles complex, A. funestus Giles group and other mosquitoes were made by spray-catch from twelve catching stations indoors and by hand-catch from pit shelters at two catching stations at Segera, Tanzania, between January 1970 and June 1971. Females of A. gambiae were identified cytotaxonomically as sibling species A or B of the complex. In houses during 1970, A. gambiae species B was more numerous at first than A, but A became predominant during the long rains of March-May. In the cool dry weather of June-November both A and B densities declined and the A:B ratio surpassed 50:1. The short rains in December produced a population explosion of species B and less multiplication of species A, the B:A ratio reaching >11:1. In 1971, hot dry weather during January-March caused declines of species A and B with a maximum B: A ratio of 13:1. Long rains, coming in late March, provoked a resurgence of A and a concurrent decline of B, so that the A:B ratio again reached 20:1 in June. Similar cycles of species A and B were observed outdoors, although the relative numbers outdoors/indoors averaged 2·3 times more for species B than for species A. In A. funestus, A. gambiae species A and A. gambiae species B Human Blood Indices were 97·5%, 91·2% and 60·9% indoors and 24%, 2% and 7% outdoors, respectively. Respective malaria sporozoite rates were 1·62%, 4·23% and 0·32% and minimum rates of stage-Ill filarial infection were 0·33%, 0·44% and 0·57%. Sporozoite-positive and sporozoite-negative mosquitoes exhibited similar HBF's in species A and discrepant HBI's in species B. The HBI's were higher in filariapositive A and B females than in filaria-negative females. Gregarines occurred in 1·36% of species A and 0·38% of species B. Trematode cysts were seen in two specimens of species A.
Of A and B females 28% and 4%, respectively, had four-banded palps. It is shown mathematically that the discrepant malaria sporozoite rates in species A and B may be explained by extrapolating from the man-biting rate and probable daily survival rate for each species. This implies that no unrecognised factors play a major role in causing the contrasting efficiency of these two sibling species as malaria vectors.