Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T16:26:37.879Z Has data issue: false hasContentIssue false

Vitamin B12 absorption in the neonatal piglet

1. Studies in vivo on the influence of the vitamin B12-binding protein from sows' milk on the absorption of vitamin B12 and related compounds

Published online by Cambridge University Press:  09 March 2007

N. M. F. Trugo
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
J. E. Ford
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
B. F. Sansom
Affiliation:
Institute for Research on Animal Diseases, Compton, Newbury RG16 ONN
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The vitamin B12 in sows' milk is strongly attached to a specific ‘binder’ protein, which is present in excess. The influence of this ‘binder’ on the uptake and retention of cyanocobalamin and two natural analogues(cobinamide and Co-α-[2-methyladenyl]cobamide) was investigated with neonatal piglets.

2. Retention of a single oral dose of cyano[58Co]cobalamin given before 7 d of age was consistently higher with suckled than with early-weaned piglets, as determined by measurement of whole-body radioactivity.

3. Efficiency of retention declined with age, more rapidly in early-weaned than in suckled animals; when the dose was given at 14 d approximately 30% was retained by both groups.

4. Distribution of the retained cyano[58Co]cobalamin within the body of the piglets was the same in both groups; about half was present in the liver.

5. Foraging piglets may ingest adventitious vitamin B12 and its analogues, which are present in the sow's faeces and in contaminated litter. The influence of the vitamin B12-binder in sows' milk on the uptake and retention of two non-cobalamin analogues, and the effects of the analogues on the uptake and retention of vitamin B12 from 2 to 14 d after parturition, were investigated with early-weaned piglets.

6. The analogues were detected in the liver but not in the body organs. They were also present in blood plasma, urine and bile, in high concentration relative to that of vitamin B12. The content of analogues in the liver was very small in relation to the amounts ingested, and much less than that of vitamin B12. There was no indication that the vitamin B12-binder in sows' milk influenced uptake and retention of the analogues, or that ingestion of analogues affected the content of vitamin B12 in the body organs and fluids examined.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Albert, M. J., Mathan, V. I. & Baker, S. J. (1980). Nature 283, 781782.CrossRefGoogle Scholar
Allen, R. H. (1975). Progress in Hematology 9, 57–54.Google Scholar
Barrow, P. A., Fuller, R. & Newport, M. J. (1977). Infection and Immunity 18, 586595.CrossRefGoogle Scholar
Bhat, P., Shantakumari, S., Rajan, D., Mathan, V., Kapadia, C. R., Swarnabi, C. & Baker, S. J. (1972). Gastroenterology 62, 1121.CrossRefGoogle Scholar
Boass, A. & Wilson, T. H. (1963). American Journal of Physiology 204, 101104.CrossRefGoogle Scholar
Bowland, J. P. (1966). In Swine in Biomedical Research, pp. 99107 [Bustad, L. K. and McClellan, R. O., editors]. Washington: Batelle Memorial Institute.Google Scholar
Brandt, L. J., Bernstein, L. H., Efron, G. & Wagle, A. (1975). Gastroenterology 68, 863.Google Scholar
Brandt, L. J., Bernstein, L. H. & Wagle, A. (1977). Annals of Internal Medicine 87, 546555.CrossRefGoogle Scholar
Braude, R., Mitchell, K. G. & Suffolk, S. F. (1969). Journal of the Institute of Animal Technicians 20, 4354.Google Scholar
Burkholder, P. R. (1951). Science 114, 459460.CrossRefGoogle Scholar
Coates, M. E., Davies, M. K., Dawson, R., Harrison, G. F., Holdsworth, E. S., Kon, S. K. & Porter, J. W. G. (1956). Biochemical Journal 64, 682686.CrossRefGoogle Scholar
Coates, M. E., Davies, M. K. & Harrison, G. F. (1960). Archives of Biochemistry and Biophysics 87, 9399.CrossRefGoogle Scholar
Coates, M. E., Doran, B. M. & Harrison, G. F. (1964). Annals New York Academy of Science 112, 837843.CrossRefGoogle Scholar
Cochran, W. G. & Cox, G. M. (1950). Experimental Designs. New York: John Wiley.Google Scholar
Ford, J. E. (1953). British Journal of Nutrition 7, 299306.CrossRefGoogle Scholar
Ford, J. E. (1974). British Journal of Nutrition 31, 243257.CrossRefGoogle Scholar
Ford, J. E. & Holdsworth, E. S. (1953). Biochemical Journal 53, xxii.Google Scholar
Ford, J. E., Holdsworth, E. S. & Porter, J. W. G. (1953). Proceedings of the Nutrition Society 12, xi.Google Scholar
Ford, J. E., Holdsworth, E. S. & Porter, J. W. G. (1955). Report 1955 – National Institute for Research in Dairying, p. 99. Reading: Nird – University of Reading.Google Scholar
Ford, J. E. & Hutner, S. H. (1955). In Vitamins and Hormones, vol. 13, pp. 102136 [Harris, R. S., Marrian, G. F. and Thimann, K. V., editors]. New York: Academic Press.Google Scholar
Ford, J. E. & Porter, J. W. G. (1953). British Journal of Nutrition 7, 326336.CrossRefGoogle Scholar
Ford, J. E., Scott, K. J., Sansom, B. F. & Taylor, P. J. (1975). British Journal of Nutrition 34, 469492.CrossRefGoogle Scholar
Gallagher, N. D. & Foley, K. E. (1972). Gastroenterology 62, 247254.CrossRefGoogle Scholar
Gottlieb, C. L., Lau, K. S., Wasserman, L. R. & Herbert, V. (1965). Blood 25, 875884.CrossRefGoogle Scholar
Gregory, M. E. (1954). British Journal of Nutrition 8, 340347.CrossRefGoogle Scholar
Gregory, M. E. & Holdsworth, E. S. (1953). Biochemical Journal 55, 830834.CrossRefGoogle Scholar
Gullberg, R. (1973). Scandinavian Journal of Gastroenterology 8, 497503.CrossRefGoogle Scholar
Kanazawa, S. & Herbert, V. (1983). American Journal of Clinical Nutrition 37, 774777.CrossRefGoogle Scholar
Kolhouse, J. F. & Allen, R. H. (1977). Journal of Clinical Investigation 60, 13811392.CrossRefGoogle Scholar
Kolhouse, J. F., Kondo, H., Allen, N. C., Podell, E. & Allen, R. H. (1978). New England Journal of Medicine 299, 785792.CrossRefGoogle Scholar
Kon, S. K. & Pawelkiewicz, J. (1960). 4th International Congress of Biochemistry, vol 11, p. 115. London: Pergamon Press.Google Scholar
Kondo, H., Binder, M. J., Kolhouse, J. F., Smythe, W. R., Podell, E. R. & Allen, R. H. (1982). Journal of Clinical Investigation 70, 889898.CrossRefGoogle Scholar
Lecce, J. G. (1973). Journal of Nutrition 103, 751756.CrossRefGoogle Scholar
Lecce, J. G. & Morgan, D. O. (1962). Journal of Nutrition 78, 263268.CrossRefGoogle Scholar
Mathan, V. I., Babior, B. M. & Donaldson, R. M. (1974). Journal of Clinical Investigation 54, 598608.CrossRefGoogle Scholar
Newport, M. J. (1980). British Journal of Nutrition 44, 171178.CrossRefGoogle Scholar
Quadros, E. V., Matthews, D. M., Wise, I. J. & Linnell, J. C. (1976). Biochimica et Biophysica Acta 421, 141152.CrossRefGoogle Scholar
Rickard, T. R. & Elliot, J. M. (1982). Journal of Animal Science 55, 168173.CrossRefGoogle Scholar
Sansom, B. F. & Gleed, P. T. (1981). British Journal of Nutrition 46, 451456.CrossRefGoogle Scholar
Siddons, R. C., Spence, J. A. & Dayan, A. D. (1975). Advances in Neurology 10, 239252.Google Scholar
Skeggs, H. R., Nepple, H. M., Valentik, K. A., Huff, J. W. & Wright, L. D. (1950). Journal of Biological Chemistry 184, 211221.CrossRefGoogle Scholar
Stenman, U. H. (1976). In Clinics in Haematology, vol. 5, pp. 473496 [Hoffbrand, A. V., editor]. London: W. b. Saunders.Google Scholar
Trugo, N. M. F. (1984). Vitamin B12 absorption in the neonatal piglet. studies on the physiological role of the vitamin b12-binding protein in milk. phd thesis, University of Reading.Google Scholar
Trugo, N. M. F., Ford, J. E. & Salter, D. N. (1985). British Journal of Nutrition 54, 269283.CrossRefGoogle Scholar
Williams, D. L. & Spray, G. H. (1968). British Journal of Nutrition 22, 297301.CrossRefGoogle Scholar