Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T12:07:01.509Z Has data issue: false hasContentIssue false

Effect of iron deficiency on the digestive utilization of iron, phosphorus, calcium and magnesium in rats

Published online by Cambridge University Press:  09 March 2007

I. Pallarés
Affiliation:
Departamento de Fisiologia, Facultad de Farmacia, Universidad de Granada, E-18071 Granada, Spain
F. Lisbona
Affiliation:
Departamento de Fisiologia, Facultad de Farmacia, Universidad de Granada, E-18071 Granada, Spain
I. Lopez Aliaga
Affiliation:
Departamento de Fisiologia, Facultad de Farmacia, Universidad de Granada, E-18071 Granada, Spain
M. Barrionuevo
Affiliation:
Departamento de Fisiologia, Facultad de Farmacia, Universidad de Granada, E-18071 Granada, Spain
M. J. M. Alférez
Affiliation:
Departamento de Fisiologia, Facultad de Farmacia, Universidad de Granada, E-18071 Granada, Spain
M. S. Campos
Affiliation:
Departamento de Fisiologia, Facultad de Farmacia, Universidad de Granada, E-18071 Granada, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The influence of the source of dietary Fe (ferric citrate alone or mixed with bovine blood at a proportion of 1:1) (v/v) on the digestive utilization of Fe, P, Ca and Mg, and on haemoglobin regeneration efficiency (HRE) was investigated in control and Fe-deficient rats. Diet A contained (by analysis) 43·5 mg Fe/kg diet (as ferric citrate), and diet B contained 44·3 mg Fe/kg diet (ferric citrate—bovine blood). In Fedeficient rats fed on diet A or B the apparent digestibility coefficient (ADC) of Fe increased by 42·3 and 45·7% respectively. The ADC of Ca and Mg decreased significantly in Fe-deficient rats regardless of the source of dietary Fe. The HRE increased by 72·9% in Fe-deficient rats fed on diet A, and by 91·1% in Fe-deficient animals fed on diet B. In Fe-deficient rats fed on Fe for 10 d the values of haematological variables approached normality. However, serum Fe remained low, indicating that Fe reserves were still depleted. A deficient dietary supply of Fe for 30 d did not significantly modify the numbers of circulating leucocytes.

Type
Interactions between Micronutrient Status
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

American Institute of Nutrition (1977). Report of the AIN Ad Hoc Committee on standards for nutritional studies. Journal of Nutrition 107, 13401348.CrossRefGoogle Scholar
Apte, S. V. & Venkatachalam, P. S. (1964). The influence of dietary calcium on absorption of iron. Indian Journal of Medical Research 52, 213218.Google Scholar
Barrionuevo, M., Campos, M. S., Lopez-Aliaga, I., Coves, F. & Lisbona, F. (1989). Nutritive utilization of phosphorus in the rat: influence of intestinal resection and dietary medium chain triglycerides and vitamin D3. International Journal for Vitamin and Nutrition Research 59, 255261.Google ScholarPubMed
Beutler, E. (1988). Minerales Principales: Hierro. In La Nutricidn en la Salud y en la Enfermedad (Modern Nutrition in Health and Disease, 6th ed.) pp. 298326 [Ruckenbush, Y. and Thivend, P., editors]. Barcelona: Salvat.Google Scholar
Brise, H. & Hallberg, L. (1962). Iron absorption studies. 11. A method for comparative studies on iron absorption in man using two radioiron isotopes. Acta Medica Scandinavica 171, Suppl., 722.CrossRefGoogle Scholar
Campos, M. S., Lopez-Aliaga, I., Barrionuevo, M., Lisbona, F. & Coves, F. (1989). Nutritive utilization of calcium in rats: influence of intestinal resection and type of diet. Journal of Nutritional Science and Vitaminology 35, 511521.CrossRefGoogle Scholar
Charles River Laboratories (1982). Technical Bulletin, Vol. 1, no. 2. Wilmington, Massachusetts: The Charles River Laboratories.Google Scholar
Coltman, C. A. (1969). Pagophagia and iron lack. Journal of the American Medical Association 207, 513516.CrossRefGoogle ScholarPubMed
Conrad, M. E. & Barton, J. C. (1978). Factors affecting the absorption and excretion of lead in the rat. Gastroenterology 14, 731740.Google Scholar
Dawson-Hughes, B., Seligson, F. H. & Hughes, V. A. (1986). Effects of calcium carbonate and hydroxyapatite on zinc and iron retention in postmenopausal women. American Journal of Clinical Nutrition 44, 8388.CrossRefGoogle ScholarPubMed
Deehr, M. S., Dallal, G. E., Smith, K. T., Taulbee, J. D. & Dawson-Hughes, B. (1990). Effects ofdifferent calcium sources on iron absorption in postmenopausal women. American Journal of Clinical Nutrition 51, 9599.CrossRefGoogle Scholar
Drewes, P. A. (1972). Direct colorimetric determination of phosphorus in serum and urine. Clinica Chimica Acta 39, 8188.Google Scholar
Fiske, C. H. & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry 66, 375400.CrossRefGoogle Scholar
Flanagan, P. R., Haist, J. & Valberg, L. S. (1980). Comparative effects gf iron deficiency induced by bleeding and a low iron diet on the intestinal absorptive interactions of iron, cobalt, manganese, zinc, lead and cadmium. Journal of Nutrition 110, 17541763.Google Scholar
Flanagan, P. R., McLellan, J. S., Haist, J., Cherian, M. G., Chamberlain, M. J. & Valberg, L. S. (1978). Increased dietary absorption in mice and human subjects with iron deficiency. Gastroenterology 74, 841846.CrossRefGoogle ScholarPubMed
Gordon, D. T. & Godber, J. S. (1989). The enhancement of nonheme iron bioavailability by beef protein in the rat. Journal of Nutrition 119, 4452.CrossRefGoogle ScholarPubMed
Hallberg, L., Bjorn-Rasmussen, E., Howard, L. & Rossander, L. (1979). A discussion of possible mechanisms for the absorption-promotion effect of meat and for the regulation of iron absorption. Scandinavian Journal of Gastroenterology 14, 769779.CrossRefGoogle Scholar
Hamilton, D. L., Bellamy, J. E. C., Valberg, J. D. & Valberg, L. S. (1978). Zinc, cadmium and iron interactions during intestinal absorption in iron-deficient mice. Canadian Journal of Physiology and Pharmacology 56, 384389.CrossRefGoogle ScholarPubMed
Jansuittivechakul, O., Mahoney, A. W., Cornforth, D. P. & Hendricks, D. G. (1985). Effect of heat treatment on bioavailability of meat and hemoglobin iron fed to anemic rats. Journal of Food Science 50, 407409.CrossRefGoogle Scholar
Jansuittivechakul, O., Mahoney, A. W., Cornforth, D. P., Hendricks, D. G. & Sisson, D. V. (1986). Effect of heat treatment on meat enhancement of dietary iron bioavailability of meat, ferrous sulfate and meat/hemoglobin mixtures fed to anemic rats. Journal of Food Science 51, 263267.CrossRefGoogle Scholar
Layrisse, M., Cook, J. D., Martinez-Torres, C., Roche, M., Kuhn, I. N., Walker, R. B. & Finch, C. A. (1969). Food iron absorption: a comparison of vegetable and animal foods. Blood 33, 430443.Google Scholar
Layrisse, M., Martinez-Torres, C. & Roche, M. (1968). Effect on interaction of various foods on iron absorption. American Journal of Clinical Nutrition 21, 11751183.CrossRefGoogle ScholarPubMed
Lönnerdal, B. (1989). Trace element absorption in infants as a foundation to setting upper limits for trace elements in infant formulas. Journal of Nutrition 119, 18391845.CrossRefGoogle ScholarPubMed
Lönnerdal, B., Keen, C. L. & Hurley, L. S. (1981). Iron, copper and manganese in milk. Annual Review of Nutrition 1, 149174.Google Scholar
López Aliaga, I., Barrionuevo, M., Campos, M. S., Coves, F. & Lisbona, F. (1990). Influence of intestinal resection and type of diet on digestive and metabolic utilization of magnesium. International Journal for Viiamin and Nutrition Research 61, 6166.Google Scholar
López de Novales, E. (1974). Metabolismo mineral del magnesio (Mineral metabolism of magnesium). Revista Clinica Españolo 135, 307312.Google ScholarPubMed
Mahoney, A. W. & Hendricks, D. G. (1984). Potential of the rat as a model for predicting iron bioavailability for humans. Nutrition Research 4, 913922.Google Scholar
Mahoney, A. W., Whittaker, P., Farmer, B. R. & Hendricks, D. G. (1985). Iron bioavailability in an anemic rat model: effect of food restriction. Nutrition Reports International 31, 451462.Google Scholar
Martinez-Torres, C. & Layrisse, M. (1971). Iron absorption from veal muscle. American Journal of Clinical Nutrition 24, 531540.CrossRefGoogle ScholarPubMed
Martinez-Torres, C., Leets, I., Taylor, P., Ramirez, J., Camacho, M. V. & Layrisse, M. (1986). Heme, ferritin and vegetable iron absorption in humans from meals denatured of heme iron during the cooking of beef. Journal of Nutrition 116, 17201725.CrossRefGoogle ScholarPubMed
Miller, J. & Nnanna, I. (1983). Bioavailability of iron in cooked egg yolk for maintenance of hemoglobin levels in growing rats. Journal of Nutrition 113, 11691175.CrossRefGoogle ScholarPubMed
Monsen, E. R. & Cook, J. D. (1976). Food-iron absorption in human subjects. IV. The effects of calcium and phosphate salts on the absorption of nonheme iron. American Journal of Clinical Nutrition 29, 11421148.CrossRefGoogle ScholarPubMed
O'Dell, B. L. (1989). Mineral interactions relevant to nutrient requirements. Journal of Nutrition 119, 18321838.CrossRefGoogle ScholarPubMed
Park, Y.W., Mahoney, A. W. & Hendricks, D. G. (1983). Bioavailability of different sources of ferrous sulfate iron fed to anemic rats. Journal of Nutrition 113, 22232228.CrossRefGoogle ScholarPubMed
Sarkar, B. C. R. & Chauhan, U. P. S. (1967). A new method for determining micro quantities of calcium in biological materials. Analytical Biochemistry 20, 155166.Google Scholar
Schümann, K., Elsenhans, B., Hunder, G., Strugala, G. & Forth, W. (1989). Increase of the intestinal iron absorption in growing rats and mice after 8 days of iron-deficient feedings Zeitschrift für Versuchungsiierkunde 32, 261267.Google Scholar
Shah, B. G., Giroux, A. & Belonje, B. (1983). Bioavailability of iron in ground beef and plant protein concentrates. Nutrition Research 3, 547555.CrossRefGoogle Scholar
Snedeker, S. M., Smith, S. A. & Greger, J. L. (1982). Effect of dietary calcium and phosphorus levels on the utilization of iron, copper and zinc by adult males. Journal of Nutrition 112, 136143.CrossRefGoogle ScholarPubMed
Solomons, N. W., Pineda, O., Viteri, F. & Sanstead, H. H. (1983). Studies on the bioavailability of zinc in humans: mechanism of the intestinal interaction of nonheme iron and zinc. Journal of Nutrition 113, 337349.CrossRefGoogle ScholarPubMed
Thannoun, A. M., Mahoney, A. W. & Hendricks, D. G. (1987 a). Hemoglobin regeneration and iron absorption from meat loaf diets fed to anemic and healthy rats. Nutrition Reports International 36, 12731284.Google Scholar
Thannoun, A. M., Mahoney, A. W., Hendricks, D. G. & Zhang, D. (1987 b). Effect of meat-bread mixtures on bioavailability of total dietary iron for anemic rats. Cereal Chemistry 64, 399403.Google Scholar
Thomas, K. & Mitchell, H. H. (1923). A method of determining the biological value of protein. Journal of Biological Chemistry 58, 873903.Google Scholar
Thompson, A. B. R., Olatunbosun, P. & Valberg, L. S. (1971 a). Interrelation of intestinal transport system for manganese and iron. Journal of Laboratory and Clinical Medicine 78, 642655.Google Scholar
Thompson, A. B. R., Shaver, C., Lee, D. J., Jones, B. L. & Valberg, L. S. (1971 b). Effects of varying iron stores on sites of intestinal absorption of cobalt and iron. American Journal of Physiology 220, 676678.Google Scholar
Trinder, P. (1956). The improved determination of iron in serum. Journal of Clinical Pathology 9, 170172.CrossRefGoogle ScholarPubMed
Weibull, M. Z. & Berntrop, J. C. Z. (1988). Determination of fat matter. Weibull-Berntrop's gravimetric method. Brussels: Norme FIL Internationale.Google Scholar
Zhang, D., Hendricks, D. G. & Mahoney, A. W. (1989). Bioavailability of total iron from meat, spinach (Spinacea olevacea L.) and meat-spinach mixtures by anaemic and non-anaemic rats. British Journal of Nutrition 61, 331343.Google Scholar
Zhang, D., Hendricks, D. G., Mahoney, A. W., Yu, Y., Thannoun, A. M. & Sisson, D. V. (1991). Bioavailability of total dietary iron from beef and soy protein isolate, alone or combined in anaemic and healthy rats. Cereal Chemistry 68, 194200.Google Scholar