Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T13:15:27.041Z Has data issue: false hasContentIssue false

The effect of formaldehyde treatment before ensiling on the digestion of wilted grass silage by sheep

Published online by Cambridge University Press:  09 March 2007

R. C. Siddons
Affiliation:
The Grassland Research Institute, Hurley, Maidenhead, Berkshire, SL6 5LR
R. T. Evans
Affiliation:
The Grassland Research Institute, Hurley, Maidenhead, Berkshire, SL6 5LR
D. E. Beever
Affiliation:
The Grassland Research Institute, Hurley, Maidenhead, Berkshire, SL6 5LR
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Wilted perennial ryegrass (Lolium perenne L. cv. Endura) was ensiled without additive or after addition of a mixture of equal volumes of formic acid (850 g/kg) and formalin (380 g formaldehyde/kg) applied at a rate of 35 g formaldehyde/kg herbage crude protein (nitrogen × 6.25). The digestion of the two silages and the effect of supplemental N as urea or urea plus soya-bean meal on the digestion of the treated silage was studied using sheep fitted with a rumen cannula and re-entrant cannulas in the proximal duodenum and distal ileum.

2. The additive markedly reduced carbohydrate fermentation and protein degradation in the silo.

3. There were no significant differences between diets in rumen pH, dilution rate, volatile fatty acid production and the molar proportions of acetate, propionate and butyrate. However, rumen ammonia levels and the apparent digestibility of organic matter (OM), gross energy (GE) and cellulose in the stomach were significantly depressed (P < 0.05) by the additive. It also reduced (P < 0.05) the extent to which the N of the silage was degraded in the rumen and, with the treated silage, more microbial N was synthesized in the rumen than food N degraded, resulting in a net gain of N between mouth and duodenum, as compared to a net loss with the untreated silage.

4. Supplementation of the treated silage with urea or urea plus soya-bean meal significantly increased (P < 0.05) the amount of food N degraded in the rumen and rumen ammonia levels but had no effect on the apparent digestibility of OM, GE and cellulose in the stomach or on the amount of microbial N reaching the duodenum.

5. The quantity of microbial amino acids entering the small intestine and the apparent digestibility of amino acids in the small intestine were similar for all four diets. However, the quantity of food amino acids reaching the small intestine was significantly higher with the three diets containing the treated silage and consequently the apparent absorption of amino acids from the small intestine was substantially higher with these diets than with the untreated silage.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Barry, T. N. (1976). Proc. Nutr. Soc. 35, 221.CrossRefGoogle Scholar
Barry, T. N., Fenessy, P. F. & Duncan, S. J. (1973). N.Z. Jl agric. Res. 16, 64.Google Scholar
Beever, D. E., Harrison, D. G., Thomson, D. J., Cammell, S. B. & Osbourn, D. F. (1974). Br. J. Nutr. 32, 99.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J. & Cammell, S. B. (1976). J. agric. Sci., Camb. 86, 443.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J., Cammell, S. B. & Harrison, D. G. (1977). J. agric. Sci., Camb. 88, 61.Google Scholar
Brown, D. C. & Radcliffe, J. C. (1972). Aust. J. agric. Res. 23, 25.CrossRefGoogle Scholar
Bryant, M. P. & Robinson, I. M. (1962). J. Bact. 84, 605.CrossRefGoogle Scholar
Cammell, S. B. (1977). Tech. Rep. Grassld Res. Inst. Hurley, no. 24.Google Scholar
Canaway, R. J. & Thomson, D. J. (1977). Tech. Rep. Grassld Res. Inst. Hurley, no. 23.Google Scholar
Christian, K. R. & Coup, M. R. (1954). N.Z. Jl Sci. Tech. 36A, 328.Google Scholar
Clarke, E. H. W., Ellinger, B. M. & Phillipson, A. T. (1966). Proc. R. Soc. B 166, 63.Google Scholar
Demarquilly, C. (1973). Annls Zootech. 22, 1.CrossRefGoogle Scholar
Donaldson, E. & Edwards, A. (1976). J. Sci. Fd Agric. 27, 536.CrossRefGoogle Scholar
Engelhardt, W. V., Hinderer, S. & Wipper, E. (1978). In Ruminant Digestion and Feed Evaluation, p. 41 [Osbourn, D. F., Beever, D. E. and Thomson, D. J., editors]. Hurley: The Grassland Research Institute.Google Scholar
Ferguson, K. A., Hemsley, J. A. & Reis, P. J. (1967). Aust. J. Sci. 30, 215.Google Scholar
Harrison, D. G. (1974). Newsl. Applic. nucl. Meth. Biol. Agric. no. 3, 8.Google Scholar
Harrop, C. J. F. (1974). J. agric. Sci., Camb. 83, 249.Google Scholar
Hemsley, J. A., Reis, P. J. & Downes, A. M. (1973). Aust. J. biol. Sci. 26, 961.Google Scholar
Henderson, A. R., McDonald, P. & Woolford, M. K. (1972). J. Sci. Fd. Agric. 23, 1079.CrossRefGoogle Scholar
Hume, I. D. (1970). Aust. J. agric. Res. 21, 305.CrossRefGoogle Scholar
Hume, I. D., Moir, R. J. & Somers, M. (1970). Aust. J. agric. Res. 21, 283.CrossRefGoogle Scholar
Lewis, D. & Buttery, P. J. (1973). In Production Diseases in Farm Animals, p. 201 [Payne, J. M.,Hibbitt, K. G. and Sansom, B. F., editors]. London: Baillière, Tyndall.Google Scholar
Lonsdale, C. R., Thomas, C. & Haines, M. J. (1977). J. Br. Grassld Soc. 32, 171.Google Scholar
McDougall, E. I. (1948). Biochem. J. 43, 99.Google Scholar
Maeng, W. J. & Baldwin, R. L. (1976). J. Dairy Sci. 59, 648.Google Scholar
Maeng, W. J., Van Nevel, C. J., Baldwin, R. L. & Morris, J. G. (1976). J. Dairy Sci. 59, 68.CrossRefGoogle Scholar
Miller, E. L. (1972). Proc. Nutr. Soc. 31, 27A.Google Scholar
Miller, E. L. (1973). Proc. Nutr. Soc. 32, 79.Google Scholar
Miller, R. G. (1966). Simultaneous Statistical Inference. New York: McGraw-Hill Book Company.Google Scholar
Nolan, J. V. & Leng, R. A. (1972). Br. J. Nutr. 27, 177.CrossRefGoogle Scholar
Okurie, A. U., Buttery, P. J. & Lewis, D. (1977). Proc. Nutr. Soc. 36, 38A.Google Scholar
Roy, J. H. B., Balch, C. C., Miller, E. L., Ørskov, E. R. & Smith, R. H. (1977). In Proc. 2nd int. Symp. Protein Metabolism and Nutrition, p. 126. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
Satter, L. D. & Slyter, L. L. (1974). J. Nutr. 32, 199.Google Scholar
Tayler, J. C. & Wilkins, R. J. (1976). In Principles of Cattle Production, p. 343 [Swan, H. and Broster, W. H., editors]. London: Butterworths.Google Scholar
Weller, R. A., Gray, F. V., Pilgrim, A. F. & Jones, G. B. (1967). Aust. J. agric. Res. 18, 107.Google Scholar
Weston, R. H. & Hogan, J. P. (1967). Aust. J. biol. Sci. 20, 967.CrossRefGoogle Scholar
Wilkins, R. J., Hutchinson, K. J., Wilson, R. F. & Harris, C. E. (1971). J. agric. Sci., Camb. 77, 531.Google Scholar
Wilkins, R. J., Wilson, R. F. & Cook, J. E. (1974). Proc. 12th int. Grassld Congr. Moscow, sect. 3, p. 674.Google Scholar
Wilkins, R. J., Wilson, R. F. & Woolford, M. K. (1974). Vaxtodling 29, Proc. 5th gen. Mtg Eur. Grassld Fedn, Uppsala, p. 197.Google Scholar
Wilkinson, J. M., Wilson, R. F. & Barry, T. N. (1976). Outl. Agric. 9, 3.Google Scholar