Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T16:55:14.314Z Has data issue: false hasContentIssue false

Comparison of the chemical and biochemical composition of thirteen muscles of the rat after dietary protein restriction

Published online by Cambridge University Press:  26 April 2012

C. A. Spence
Affiliation:
Tropical Metabolism Research Unit, University of the West Indies, Mona, Kingston 7, Jamaica, West Indies
F. M. Hansen-Smith
Affiliation:
Tropical Metabolism Research Unit, University of the West Indies, Mona, Kingston 7, Jamaica, West Indies
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The objective of this study was to determine whether the chemical and biochemical changes induced by muscle wasting caused by dietary protein restriction are different in various skeletal muscles.

2. Rats were fasted for 3 d and then fed on a 10 g protein/kg diet for 21 d. Thirteen muscles from the trunk, forelimb, and hind-limb regions were analysed for muscle weight, and the content of water, fat, cellular and extracellular protein, DNA and RNA. Results were compared to values for an ‘initial’ control group killed at the start of the experiment.

3. Weight loss was greatest in trunk muscles and least in the distal forelimb muscles. Water content decreased in most muscles, but increased in three forelimb muscles. A significant loss of lipid was found in the gastrocnemius, while the biceps brachii gained lipid. Changes in lipid content of the muscles did not form a distinctive pattern.

4. All muscles except the distal forelimb muscles lost a significant amount of cellular protein, while all muscles except the diaphragm gained extracellular protein.

5. DNA content was unchanged in all muscles. The value for cellular protein:DNA was significantly reduced in the rectus abdominis and the diaphragm. A significant loss of RNA was found in all muscles; the percentage change was greatest in trunk muscles and least in the distal forelimb muscles. The values for RNA:protein and RNA:DNA were significantly lower in all muscles except two distal forelimb muscles.

6. With the exception of the water and lipid content of the muscles, the directions of the changes in the experimental animals were the same for all muscles. The results suggested, however, that the magnitude of changes in certain chemical and biochemical indices of composition may depend to some extent on the anatomical location of the muscle: trunk muscles tended to show the greatest percentage change, while the distal forelimbs changed the least.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

REFERENCES

Adams, R. D. (1975). Diseases of Muscle, 3rd ed. New York: Harper & Row.Google Scholar
Allbrook, D., Han, M. F. & Helmuth, A. E. (1971). Pathology 3, 233.CrossRefGoogle Scholar
Burleigh, I. G. (1977). J. Cell Sci. 23, 269.CrossRefGoogle Scholar
Cabak, V., Dickerson, J. W. T. & Widdowson, E. M. (1963). Br. J. Nutr. 17, 601.CrossRefGoogle Scholar
Ceriotti, G. (1952). J. biol. Chem. 198, 297.CrossRefGoogle Scholar
Cheek, D. B., Holt, A. B., Hill, D. B. & Talbert, J. L. (1971). Pediat. Res. 5, 312.CrossRefGoogle Scholar
Dickerson, J. W. T., Hughes, P. C. R. & McAnulty, P. A. (1972). Br. J. Nutr. 27, 527.CrossRefGoogle Scholar
Dickerson, J. W. T. & McAnulty, P. A. (1975). Br. J. Nutr. 33, 171.CrossRefGoogle Scholar
Dickerson, J. W. T. & McCance, R. A. (1960). Br. J. Nutr. 14, 331.CrossRefGoogle Scholar
Enesco, M. & Puddy, D. (1964). Am. J. Anat. 114, 235.CrossRefGoogle Scholar
Fraser, H. S. & Alleyne, G. A. O. (1974). Br. J. Nutr. 31, 113.CrossRefGoogle Scholar
Giovannetti, P. M. & Stothers, S. C. (1975). Growth 39, 1.Google Scholar
Goldberg, A. L. & Goldspink, D. F. (1975). Am. J. Physiol. 228, 310.CrossRefGoogle Scholar
Goldspink, G. (1965). Am. J. Physiol. 290, 100.CrossRefGoogle Scholar
Goldspink, G. & Waterson, S. E. (1971). Acta histochem. 40, 16.Google Scholar
Gordon, E. E., Kowalski, K. & Fritts, M. (1966). Am. J. Physiol. 210, 1033.CrossRefGoogle Scholar
Hansen-Smith, F. M., Picou, D. & Golden, M. H. N. (1978). Pediat. Res. (In the Press.)Google Scholar
Hansen-Smith, F. M., Van Horn, D. L. & Maksud, M. G. (1977). J. Nutr. 107, 525.CrossRefGoogle Scholar
Howarth, R. E. (1972). Can. J. Physiol. Pharmac. 50, 59.CrossRefGoogle Scholar
Howarth, R. E. & Baldwin, R. L. (1971). J. Nutr. 101, 477.CrossRefGoogle Scholar
Jablecki, C. K., Heuser, J. E. & Kaufman, S. (1973). J. Cell. Biol. 57, 743.CrossRefGoogle Scholar
Joubert, D. M. (1956). J. agric. Sci., Camb. 47, 59.CrossRefGoogle Scholar
Lee, M. (1976). Nutr. Rep. int. 13, 527.Google Scholar
Lowry, D. H., Rosebrough, N. H., Farr, A. L. & Randall, R. V. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Mendes, C. B. & Waterlow, J. C. (1958). Br. J. Nutr. 12, 74.CrossRefGoogle Scholar
Millward, D. J. (1970). Clin. Sci. 39, 591.CrossRefGoogle Scholar
Millward, D. J. & Garlick, P. J. (1972). Proc. Nutr. Soc. 31, 257.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J., James, W. P. T., Nnanyelugo, D. O. & Ryatt, J. S. (1973). Nature, Lond. 241, 204.CrossRefGoogle Scholar
Millward, D. J., Nnanyelugo, D. O., James, W. P. T. & Garlick, P. J. (1974). Br. J. Nutr. 32, 127.CrossRefGoogle Scholar
Montgomery, R. D. (1962). J. clin. Path. 15, 511.CrossRefGoogle Scholar
Montgomery, R D., Dickerson, J. W. T. & McCance, R. A. (1964). Br. J. Nutr. 18, 587.CrossRefGoogle Scholar
Moss, F. P. (1968). Am. J. Anat. 122, 565.CrossRefGoogle Scholar
Munro, H. N. & Fleck, A. (1962). Biochim. biophys. Acta 55, 571.Google Scholar
Nnanyelugo, D. O. (1976). Nutr. Rep. int. 14, 209.Google Scholar
Rowe, R. W. P. (1968). J. exp. Zool. 167, 353.CrossRefGoogle Scholar
Schmidt, G. & Thannhauser, S. J. (1945). J. biol. Chem. 161, 83.CrossRefGoogle Scholar
Stickland, N. C., Widdowson, E. M. & Goldspink, G. (1975). Br. J. Nutr. 34, 421.CrossRefGoogle Scholar
Taskar, K. & Tulpule, P. G. (1964). Biochem. J. 92, 391.CrossRefGoogle Scholar
Turner, L. V. & Fern, E. B. (1974). Br. J. Nutr. 32, 539.CrossRefGoogle Scholar
Wannemacher, R. W. & Cooper, W. K. (1970). In Protein Metabolism and Biological Function, p. 121 [Bianchi, P. C. and Hilf, R., editors]. New Brunswick, N.Y.: Rutgers University Press.Google Scholar
Wechsler, W. (1966). Meth. Achiev. exp. Path. 1, 411.Google Scholar
Young, V. R. & Alexis, S. D. (1968). J. Nutr. 96, 255.CrossRefGoogle Scholar
Young, V. R., Stothers, S. C. & Vilaire, G. (1971). J. Nutr. 101, 1379.CrossRefGoogle Scholar