Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T08:05:11.406Z Has data issue: false hasContentIssue false

Limitations of PET and lesion studies in defining the role of the human cerebellum in motor learning

Published online by Cambridge University Press:  19 May 2011

D. Timmann
Affiliation:
Department of Neurology, University of Essen, 45122 Essen, Germany. [email protected]
H. C. Diener
Affiliation:
Department of Neurology, University of Essen, 45122 Essen, Germany. [email protected]

Abstract

PET studies using classical conditioning paradigms are reported. It is emphasized that PET studies show “cerebellar involvement” and not “specific function” in learning paradigms. The importance of dissociating motor performance and learning deficits in human lesions studies is demonstrated in two exemplary studies. The different role of the cerebellum in adaptation of postural reflexes and learning of complex voluntary arm movements is discussed, [THACH]

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas, J.-E. & Brodai, P. (1988) Demonstration of topographically organized projections from the hypothalamus to the pontine nuclei: An experimental study in the cat. Journal of Comparative Neurology 268:313–38. [JDS]CrossRefGoogle Scholar
Abbie, A. A. (1934) The projection of the forebrain on the pons and cerebellum. Proceedings of the Royal Society of London, Series B 115:504–22. [JDS]Google Scholar
Abeles, M. (1991) Corticonics: Neural circuits of the cerebral cortex. Cambridge University Press. [FS]CrossRefGoogle Scholar
Abeliovich, A., Chen, C., Goda, Y., Stevens, C. & Tonegawa, S. (1993a) Modified hippocampal long-term potentiation in PKCγ mutant mice. Cell 75:1253–62. [aMFCan]CrossRefGoogle Scholar
Abeliovich, A., Paylor, R., Chen, C., Kim, J. J., Whener, J. M. & Tonegawa, S. (1993) PKCγ mutant mice exhibit mild deficits in spatial and contextual learning. Cell 75:1263–71. [aMKan]CrossRefGoogle Scholar
Abrams, R. A., Dobkin, R. & Helfrich, M. (1992) Adaptive modification of saccadic eye movements. Journal of Experimental Psychology, Human Perception and Performance 18:922–33. [IIB]CrossRefGoogle ScholarPubMed
Adams, J. A. (1971) A closed-loop theory of motor learning. Journal of Motor Behavior 3:111–49. [aJCH, HB]CrossRefGoogle ScholarPubMed
Adams, J. A. (1977) Feedback theory of how joint receptors regulate the timing and positioning of a limb. Psychological Review 84:504–23. [aJCH]CrossRefGoogle ScholarPubMed
Adrian, E. D. (1943) Afferent areas in the cerebellum connected with the limbs. Brain 66:289315.CrossRefGoogle Scholar
Aggelopoulos, N. C., Duke, C. & Edgley, S. A. (1994) Non-uniform conduction time in the olivocerebellar pathway in the anaesthetized cat. Journal of Physiology (London) 476.P:2627. [aJIS]Google Scholar
Aiba, A., Kano, M., Chen, C., Stanton, M. E., Fox, G. D., Herrup, K., Zwingman, T. A. & Tonegawa, S. (1994) Deficient cerebellar long-term depression and impaired motor learning in mGLuRl mutant mice. Cell 79:377–88. [aJCH, aMKan, MKan, TH, rMKan, rDJL, rSRV]Google Scholar
Akase, E., Alkon, D. L. & Disterhoft, J. F. (1989) Hippocampal lesions impair memory of short-delay conditioned eyeblink in rabbits. Behavioral Neuroscience 103:935–43. [CW]CrossRefGoogle Scholar
Akazawa, K., Milner, T. E., & Stein, R. B. (1983) Modulation of reflex electromyogram and stiffness in response to stretch of human finger muscle. Journal of Neurophysiohgy 49:1627. [aAMS]CrossRefGoogle ScholarPubMed
Akshoomoff, N. A. & Courchesne, E. (1992) A new role for the cerebellum in cognitive operations. Behavioral Neuroscience 106:731–38. [aWTT]CrossRefGoogle ScholarPubMed
Akshoomoff, N. A., Courchesne, E., Press, G. A. & Irague, V. (1992) Contribution of the cerebellum to neuropsychological functioning: Evidence from a case of cerebellar degenerative disorder. Neuropsychologia 30:315–28. [aWTT]CrossRefGoogle ScholarPubMed
Albus, J. S. (1971) A theory of cerebellar function. Mathematical Bioscience 10:2561. [aFC, arJCH, aJIS, CG, PFCG, EDS, FS, JDS. aWTT]CrossRefGoogle Scholar
Albus, J. S. (1975) A new approach to manipulator control: The cerebellar model articulation controller (CMAC). Transactions of the ASME: Journal of Dynamic Systems, Measurement, and Control 97:220–27. [aJCH]CrossRefGoogle Scholar
Albus, J. S. (1981) Brains, behavior and robotics. Byte Books. [aJCH]Google Scholar
Alexander, R. M. (1989) Optimization and gaits in the locomotion of vertebrates Physiological Reviews 69.11991227. [aAMS]CrossRefGoogle ScholarPubMed
Allen, G. I. & Tsukahara, N. (1974) Cerebrocerebellar communication systems. Physiological Reviews 54:9571006. [KW]CrossRefGoogle ScholarPubMed
Alley, K. A., Baker, R. & Simpson, J. I. (1975) Afferents to the vestibulocerebellum and the origin of the visual climbing fibers in the rabbit. Brain Research 98:582–89. [aJIS]Google Scholar
Andersson, G. & Armstrong, D. M. (1985) Climbing fibre input to b zone Purkinje cells during locomotor perturbation in the cat. Neuroscience Letters Supplement 22:S27. [aJIS]Google Scholar
Andersson, G. & Armstrong, D. M. (1987) Complex spikes in Purkinje cells in the lateral vermis of the cat cerebellum during locomotion. Journal of Physiology (London) 385:107–34. [aJIS]CrossRefGoogle ScholarPubMed
Andersson, G. & Oscarsson, O. (1978) Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Experimental Brain Research 32:565–79. [aAMS, aJIS]Google ScholarPubMed
Aniksztejn, L. & Ben-Ari, Y. (1991) Novel form of long-term potentiation produced by a K+ channel blocker in the hippocampus. Nature 349:6769. [LJB]CrossRefGoogle Scholar
Antziferova, L. I., Arshavsky, Yu. I. Orlovsky, G. N. & Pavlova, G. A. (1980) Activity of neurons of cerebellar nuclei during fictitious scratch reflex in the cat: 1. Fastigial nucleus. Brain Research 200:239–48. [aWTT]CrossRefGoogle Scholar
Appollonio, I. M., Grafman, J., Schwartz, M. S., Massaquoi, S. & Hallett, M. (1993) Memory in patients with cerebellar degeneration. Neurology 43:1536–44. [aWTT]CrossRefGoogle ScholarPubMed
Arai, A. & Lynch, G. (1992) Factors regulating the magnitude of long-term potentiation induced by theta pattern stimulation. Brain Research. 598:12. [MB]CrossRefGoogle ScholarPubMed
Arbib, M. A., Boylls, C. C. & Dev, P. (1974) Neural models of spatial perception and the control of movement. In: Kybernetik und bionik/cybernetics, ed. Oldenbourg, R.. [aJCH, MAA]Google Scholar
Arbib, M. A., Bischoff, A., Fagg, A. H. & Crafton, S. T. (1995) Synthetic PET: Analyzing large-scale properties of neural netowrks. Human Brain Mapping 2:225–33. [MAA]CrossRefGoogle Scholar
Arbib, M. A. & Caplan, D. (1979) Neurolinguistics must be computational. Behavioral and Brain Sciences 2:449–83. [MAA]CrossRefGoogle Scholar
Arbib, M. A., Schweighofer, N. & Thach, W. T. (1995) Modeling the cerebellum: From adaptation to coordination. In: Motor control and sensory-motor integration: Issues and directions, ed. Glencross, D. J. & Piek, J. P.. Elsevier. [MAA]Google Scholar
Archambault, L. (1914–15) Les connexiones corticales du noyau rouge. Nouvelle Iconographie de la Salpitriëre 27:187225. [JDS]Google Scholar
Ariano, M. A., Lewicld, J. A., Brandwein, H. J. & Murad, F. (1982) Immunohistochemical localization of guanylate cyclase within neurons of rat brain. Proceedings of the National Academy of Sciences of the USA 79:1316–20. [aDJL, aSRV]CrossRefGoogle ScholarPubMed
Armstrong, D. M. (1974) Functional significance of the inferior olive. Physiological Reviews 54:358417. [aJIS]CrossRefGoogle ScholarPubMed
Armstrong, D. M., Campbell, N. C., Edgley, S. A., Schild, R. F. & Trott, J. R. (1982) Investigations of the olivocerebellar and spino-olivary pathways. In: Cerebellum: New vistas, eds. Palay, S. L. & Chan-Palay, V.. Springer-Verlag. [aJIS]Google Scholar
Armstrong, D. M. & Edgley, S. A. (1984) Discharges of Purkinje cells in the paravermal part of the cerebellar anterior lobe during locomotion in the cat. Journal of Physiology (London) 352:403–24. [aAMS, aJIS]CrossRefGoogle ScholarPubMed
Armstrong, D. M., Edgley, S. A. & Lidierth, M. (1988) Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion. Journal of Physiology (London) 400:405–14. [aJIS]CrossRefGoogle ScholarPubMed
Armstrong, D. M. & Rawson, J. A. (1979) Activity patterns of cerebellar cortical neurons and climbing fibre afferents in the awake cat. Journal of Physiology (London) 289:425–48. [aJIS]CrossRefGoogle ScholarPubMed
Amt-Ramos, L. R., O'Brien, W. E. & Vincent, S. R. (1992) Immunohistochemical localization of argininosuccinate synthetase in the rat brain in relation to nitric oxide synthase-containing neurons. Neuroscience 51:773–89. [aSRV]CrossRefGoogle Scholar
Arshavsky, Y. I., Berkinblit, M. B., Fuxson, O. I., Gelfand, I. M. & Orlovsky, G. N. (1972a) Recordings of neurones of the dorsal spinocerebellar tract during evoked locomotion. Brain Research 43:272–75. [aWTT]CrossRefGoogle ScholarPubMed
Arshavsky, Y. I., Berkinblit, M. B., Fuxson, O. I., Gelfand, I. M. & Orlovsky, G. N. (1972b) Origin of modulation in neurones of the ventral spinocerebellar tract during locomotion. Brain Research 43:276–79. [aWTT]CrossRefGoogle ScholarPubMed
Arshavsky, Y. I., Gelfand, I. M. & Orlovsky, G. N. (1986) Cerebellum and rhythmical movements. In: Studies of Brain Function, vol 13., ed. Braitenberg, V.. Springer-Verlag. [aJCH]Google Scholar
Arshavsky, Y. I., Orlovsky, G. N., Pavlova, G. A. & Perret, C. (1980) Activity of neurons of cerebellar nuclei during fictitious scratch reflex in the cat: 2. The interpositus and lateral nuclei. Brain Research 200:249–58. [aWTT]CrossRefGoogle ScholarPubMed
Artola, A. & Singer, W. (1987) Long-term potentiation and NMDA-receptors in rat visual cortex. Nature 330:649–52. [aFC]CrossRefGoogle ScholarPubMed
Artola, A. & Singer, W. (1990) The involvement of N-methyl-D-aspartate receptors in induction and maintenance of long-term potentiation in rat visual cortex. The European Journal of Neuroscience 2:254–69. [aFC]CrossRefGoogle ScholarPubMed
Artola, A. & Singer, W. (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends in Neuroscience 16:480–87. [PC]CrossRefGoogle ScholarPubMed
Asanuma, H. (1989) The motor cortex. Raven. [SPS]Google Scholar
Asanuma, C., Thach, W. T. & Jones, E. G. (1983a) Anatomical evidence for segregated focal groupings of efference cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Research Review 5:267–99. [aWTT]CrossRefGoogle Scholar
Asanuma, C., Thach, W. T. & Jones, E. G. (1983b) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Research Review 5:237–65. [aWTT]CrossRefGoogle Scholar
Asanuma, C., Thach, W. T. & Jones, E. G. (1983c) Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. Brain Research Review 5:299322. [aWTT]CrossRefGoogle Scholar
Ashe, J., Taira, M., Smymis, N., Pellizzer, G., Georgakopoulos, T., Lurito, J. T. & Georgopoulos, A. P. (1993) Motor cortical activity preceding a memorized movement trajectory with an orthogonal bend. Experimental Brain Research 95:118–30. [CG]CrossRefGoogle ScholarPubMed
Audinat, E., Gahwiler, B. H. & Knopfel, T. (1992) Excitatory synaptic potentials in neurons of the deep nuclei in olivo-cerebellar slice cultures. Neuroscience 49:903–11. [aSRV]CrossRefGoogle ScholarPubMed
Babinski, J. (1899) De l'asynergie cérébelleuse. Revue Neurologique (Paris) 7:806–16. [aAMS, aWTT]Google Scholar
Babinski, J. (1902) Sur le rôle du cervelet dans les actes volitionnels nécessitant une succession rapide de mouvements (diadococinésie). Revue Neurologique 10:1013–15. [aAMS]Google Scholar
Babinski, J. (1906) Asynergie et inertie cérébelleuses. Revue Neurologique 14:685–86. [aWTT]Google Scholar
Babinski, J. & Toumay, A. (1913) Symptômes des maladies du cervelet. Revue Neurologique (Paris) 18:306–22. [aAMS]Google Scholar
Babour, B. (1993) Synaptic current evoked in Purkinje cells by stimulating individual granule cells. Neuron 11:759–69. [KH]CrossRefGoogle Scholar
Baizer, J. S. & Glickstein, M. (1974) Role of cerebellum in prism adaptation. Journal of Physiology 23:3435. [aWTT]Google Scholar
Baker, P. F. & DiPolo, R. (1984) Axonal calcium and magnesium homeostasis. Current Topics in Memlirane Tranviari 22:195248. [aDLJ]CrossRefGoogle Scholar
Balaban, C. D., Billingsley, M. L. & Kincaid, R. L. (1989) Evidence for transsynaptic regulation of calmodulin-dependent cyclic nucleotide phosphodiesterase in cerebellar Purkinje cells. Journal of Neuroscience 9:2374–81. [aSRV]CrossRefGoogle ScholarPubMed
Balaban, C. D. & Henry, R. T. (1988) Zonal organization of olivo-nodulus projections in albino rabbits. Neuroscience Research 5:409–23. [aJIS]CrossRefGoogle ScholarPubMed
Ball, K. & Sekular, R. (1987) Direction-specific improvement in motion discrimination. Vision Research 27:953–65. [PVD]CrossRefGoogle ScholarPubMed
Bandle, E. & Guidotti, A. (1978) Studies on the cell location of cyclic 3',5'- guanosine monophosphate-dependent protein kinase in cerebellum. Brain Research 156:412–16. [aSRV]CrossRefGoogle Scholar
Bansinath, M., Arbabha, B., Turndorf, II.. & Garg, U. C. (1993) Chronic administration of a nitric oxide synthase inhibitor, Nw-nitro-L-arginine, and drug-induced increase in cerebellar cyclic GMP in vivo. Neurochemical Research 18:1063–66. [aSRV]CrossRefGoogle Scholar
Barmack, N. H., Fagerson, M. & Errico, P. (1993b) Cholinergic projection to the dorsal cap of the inferior olive of the rat, rabbit, and monkey. Journal of Comparative Neurology 328:263–81. [aJIS]CrossRefGoogle Scholar
Barmack, N. II., Fagerson, M., Fredette, B. J., Mugnaini, E. & Shojaku, II., (1993a) Activity of neurons in the beta nucleus of the inferior olive of the rabbit evoked by natural vestibular stimulation. Experimental Brain Research 94:203–15. [arJIS]CrossRefGoogle ScholarPubMed
Barmack, N. H. & Hess, D. T. (1980) Multiple-unit activity evoked in the dorsal cap of inferior olive of the rabbit by visual stimulation. Journal of Neurophysiology 43:151–64. [aJIS]CrossRefGoogle ScholarPubMed
Barmack, N. H., Mugnaini, E. & Nelson, B. J. (1989) Vestibularly-evoked activity of single neurons in the beta nucleus of die inferior olive. In: The olivocerebellar system in motor control: Experimental brain research series 17, ed. Strata, P.. Springer-Verlag. [aJIS]Google Scholar
Barmack, N. H. & Shojaku, H. (1992) Representation of a postural coordinate system in the nodulus of the rabbit cerebellum by vestibular climbing fiber signals. In: Vestibular and brain stem control of eye, head and body movements, eds. Shimazu, H. & Shinoda, Y.. Japan Scientific Societies Press. [aJIS]Google Scholar
Barnes, C. A., McNaughton, B. L., Bredt, D. S., Ferris, C. D. & Snyder, S. H. (1994). Nitric oxide synthase inhibition in vivo: Lack of effect on hippocampal synaptic enhancement or spatial memory. In: Long-term potentiation, vol. 2, ed. Baudry, M. & Davis, J. L.. MIT Press. [MB]Google Scholar
Barto, A. G. (1994) Reinforcement learning control. Current Opinion in Neurobiology 4:888–93. [rJCH]CrossRefGoogle ScholarPubMed
Barto, A. G. (1995) Adaptive critics and the basal ganglia. In: Models of Information Processing in the Basal Ganglia, ed. Houk, J. C., Davis, J. L. & Beiser, D. G.. MIT Press. [arJCH]Google Scholar
Barto, A. G., Buckingham, J. T., & Houk, J. C. (1996) A predictive switching model of cerebellar movement control. In: Advances in Neural Information Processing Systems 8, eds. Touretzky, D. S., Mozer, M. C. & Hasselmo, M. E.. MIT Press. [aJCH]Google Scholar
Bastian, A. J., Martin, T. A., Keating, J. G. & Thach, V. V. T. (in press) Cerebellar ataxia: Abnormal control of interaction torques across multiple joints. Journal of Neurophysiology. [rWTT]Google Scholar
Bastian, A. J., Mueller, M. J., Martin, T. A., Keating, J. G. & Thach, W. T. (1994) Control of interaction torques during reaching in normal and cerebellar patients. Society for Neuroscience Abstracts 20:933. [aWTT]Google Scholar
Bastian, A. J. & Thach, W. T. (1995) Cerebellar patients made initial directional errors consistent with impaired control of limb dynamics. Society of Neuroscience Abstracts 21:19211995. [rAMS]Google Scholar
Batchelor, A. M., Madge, D. J. & Garthwaite, J. (1994) Synaptic avtivation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience 63:911–15. [rMKan]CrossRefGoogle Scholar
Baude, A., Nusser, Z., Roberts, J. D. B., Mulvihill, E., Mcllhinney, R. A. J. & Somogyi, P. (1993) The metabotropic glutamate receptor (mGlurla) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–87. [aDJL]CrossRefGoogle Scholar
Baudry, M. & Davis, J. L., eds. (1994) Long-term potentiation, vol. 2. MIT Press. [MB]Google Scholar
Baudry, M. & Lynch, G. (1993) Long-term potentiation: Biochemical mechanisms. In: Synaptic plasticity: Molectdar and functional aspects, ed. Baudry, M., Thompson, R. F. & Davis, J. L.. MIT Press. [MB]Google Scholar
Bear, M. F. & Malenka, R. C. (1994) Synaptic plasticity: LTP and LTD. Current Opinion Neurobiology 4:389–99. [MB]CrossRefGoogle ScholarPubMed
Becker, W. (1972) The control of eye movements in the saccadic system. Bibliography Opthalmology 82:233–43. [HB]Google ScholarPubMed
Becker, W. J., Kunesch, E. & Freund, H. J. (1990) Coordination of a multi-joint movement in normal humans and in patients with cerebellar dysfunction. Canadian Journal of Neurological Sciences 17:264–74. [aAMS, CG]CrossRefGoogle ScholarPubMed
Becker, W. J., Morrice, B. L., Clark, A. W. & Lee, R. G. (1991) Multi-joint reaching movements and eye-hand tracking in cerebellar incoordination: Investigation of a patient with complete loss of Purkinje cells. Canadian Journal of Neurological Sciences 18:476–87. [aAMS]CrossRefGoogle ScholarPubMed
Bekkering, H., Abrams, R. A. & Pratt, J. (1995) Transfer of saccadic adaptation to the manual motor system. Human Movement Science 14:155–64. [HB]CrossRefGoogle Scholar
Bekkers, J. M. & Stevens, C. F. (1989) NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341:230–33. [aFC]CrossRefGoogle ScholarPubMed
Bell, C. C. (1994) The generation of expectations in cerebellum-like structures. In: The neurobiology of computation: Proceedings of the annual computational neuroscience meeting. [aJCII]CrossRefGoogle Scholar
Bell, C. C. & Grimm, R. J. (1969) Discharge properties of Purkinje cells recorded on single and double microelectrodes. Journal of Neurophysiology 32:1044–55. [aJCII, aJIS]CrossRefGoogle ScholarPubMed
Bell, C. C. & Kawasaki, T. (1972) Relations among climbing fiber responses of nearby Purkinje cells. Journal of Neurophysiology 35:155–69. [aJIS]CrossRefGoogle ScholarPubMed
Bellugi, U., Bihrle, A., Jernigan, T., Trauner, D. & Doherty, S. (1990) Neuyropsychological, neurological, and neuroanatomical profile of Williams syndrome. American Journal of Medical Genetics 6(suppl):115–25. [aWTT]Google ScholarPubMed
Ben-Ari, Y. & Aniksztejn, L. (1995) Role of glutamate metabotropic receptors in long-term potentiation in the hippocampus. Seminar in Neuroscience 7:127–35. [MB]CrossRefGoogle Scholar
Benedetti, F., Montarolo, P. G. & Rabacchi, S. (1984) Inferior olive lesion induces long-lasting functional modifications in the Purkinje cells. Experimental Brain Research 55:368–71. [aJIS]CrossRefGoogle ScholarPubMed
Bennett, D. J. (1993a) Electromyographic responses to constant position errors imposed during voluntary elbow joint movement in human. Exjierimental Brain Research 95:499508. [aAMS]Google ScholarPubMed
Bennett, D. J. (1993b) Torques generated at the human elbow joint in response to constant position errors imposed during voluntary movements. Experimental Brain Research 95:488–98. [aAMS, HG]Google ScholarPubMed
Bennett, D. J., Hollerbach, J. M., Xu, Y. & Hunter, I. W. (1992) Time-varying stiffness of human elbow joint during cyclic voluntary movement. Experimental Brain Research 88:433–42. [arAMS, HG]CrossRefGoogle ScholarPubMed
Benuck, M., Reitfi, M. E. A. & Lajtha, A. (1989) Phosphoinositide hydrolysis induced by depolarization and sodium channel activation in mouse cerebrocortical slices. Neuropharmacology 28:847–54. [aDJL]CrossRefGoogle ScholarPubMed
Beppu, H., Nagaoka, M. & Tanaka, R. (1987) Analysis of cerebellar motor disorders by visually guided elbow tracking movement: 2. Contribution of the visual cues on slow ramp pursuit. Brain 110:118. [PH]CrossRefGoogle ScholarPubMed
Berger, T. W. & Bassett, J. L. (1992) System properties of the hippocampus. In: Learning and memory: The behavioral and biological substrates, ed. Gormezano, I. & Wasserman, E. A.. Erlbaum. [CW]Google Scholar
Berger, T. V. V. & Orr, W. B. (1983) Hippocampectomy selectively disrupts discrimination reversal conditioning of the rabbit nictitating membrane response. Behavioral Brain Research 8:4968. [CW]CrossRefGoogle ScholarPubMed
Berman, A. J., Berman, D. & Prescott, J. W. (1978) The effect of cerebellar lesions on emotional behavior in the rhesus monkey. In: The Cerebellum, epilqisy and behavior, ed. Cooper, I. S., Riklan, M. & Snider, R. S.. Plenum. [aWTT, JDS]Google Scholar
Bernstein, N. A. (1967) The coordination and regulation of movements. Pergamon. [aAMS, AGF, LPL]Google Scholar
Bemston, G. G. & Torello, M. W. (1982) The paliocerebellum and the integration of behavioral function. Physiological Psychology 10:212. [aWTT]Google Scholar
Berthier, N. E. & Moore, J. W. (1986) Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Experimental Brain Research 63:341–50. [aJCH]CrossRefGoogle Scholar
Berthier, N. E., Singh, S. P., Barto, A. G. & Houk, J. C. (1993) Distributed representation of limb motor programs in arrays of adjustable pattern generators. Journal of Cognitive Neuroscience 5:5678. [arJCH, PD, JCH]CrossRefGoogle ScholarPubMed
Berthoz, A. & Pozzo, T. (1988) Intermittent head stabilisation during postural and Iocomotory tasks in humans. In: Posture and gait: Development, adaptation and modulation, ed. Amblard, B., Berthoz, A. & Clarac, F.. lsevier. [SMO]Google Scholar
Biel, M., Altenhofen, W., Hullin, R., Ludwig, J., Freichel, M., Flockerzi, V., Dascal, N., Kaupp, U. B. & Hofmann, F. (1993) Primary structure and functional expression of a cyclic nucleotide-gated channel from rabbit aorta. Federation of European Biological Societies Letters 329:134–38. [aSRV]CrossRefGoogle ScholarPubMed
Biggio, G., Brodie, B. B., Costa, E. & Guidotti, A. (1977a) Mechanisms by which diazepam, muscimol and other drugs change the content of cGMP in cerebellar cortex. Proceedings of the National Academy of Sciences of the USA 74:3592–96. [aSRV]CrossRefGoogle ScholarPubMed
Biggio, G., Corda, M. G., Casu, M., Salis, M. & Gessa, G. L. (1978) Disappearance of cerebellar cyclic GMP induced by kainic acid. Brain Research 154:203–8. [arSRV]CrossRefGoogle ScholarPubMed
Biggio, G., Costa, E. & Guidotti, A. (1977b) Pharmacologically induced changes in the 3',5'-cyclic guanosine monophosphate content of rat cerebellar cortex: Differences between apomorphine, haloperidol and harmaline. Journal of Pharmacology and Experimental Therapeutics 200:207–15. [aSRV]Google Scholar
Biggio, G. & Guidotti, A. (1976) Climbing fiber activation and 3',5'-cyclic guanosine monophosphate (cGMP) content in cortex and deep nuclei of the cerebellum. Brain Research 107:365–73. [aSRV, DO]CrossRefGoogle Scholar
Bindman, L. J., Murphy, K. P. S. J & Pockett, S. (1988) Postsynaptic control of the induction of long-term changes in efficacy of transmission at neocortical synapses in slices of rat brain. Journal of Neurophysiology 60:1053–65. [aFC]CrossRefGoogle ScholarPubMed
Bizzi, E., Accomero, N., Chappie, W. & Hogan, N. (1982) Arm trajectory formation. Experimental Brain Research 46:139–43. [aAMS]CrossRefGoogle ScholarPubMed
Bizzi, E., Giszter, S. F., Loeb, E., Mussa-Ivaldi, F. A. & Saltiel, P. (1995) Modular organization of motor behavior in the frog's spinal cord. Trends Neuroscience 10:442–46. [DJ. rJCH, rAMS]CrossRefGoogle Scholar
Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A. & Greenough, W. T. (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences of the USA 87:5568–72. [aJCH]CrossRefGoogle ScholarPubMed
Blaxton, T. A., Zeffiro, T. A., Gabrieli, J. D. E., Bookheimer, S. Y., Carrillo, M. C., Tlieodore, W. H. & Disterhoft, J. F. (submitted) Functional mapping of human learning: A PET activation study of eyeblink conditioning. [CW]Google Scholar
Bles, W., Vianney de Jong, J. M. B. & de Wit, G. (1984) Somatosensory compensation for loss of labyrinthine function. Acta Otolaryngologica 97:312–21. [aWTT]CrossRefGoogle ScholarPubMed
Bliss, T. V. P. & Collingridge, G. L. (1993) A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361:3139. [aJCH]CrossRefGoogle ScholarPubMed
Bliss, T. V. P. & Lomo, T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology (London) 232:331–56. [aMKan]CrossRefGoogle ScholarPubMed
Bliss, T. V. P. & Lynch, M. A. (1988) Long-term potentiation of synaptic transmission in the hippocampus: Properties and mechanisms. In: Long term potentiation, from biophysics to behavior, ed. Landfield, P. W. & Deadwyler, S. A.. Liss, Alan R.. [aFC]Google Scholar
Bloedel, J. R. (1992) Functional heterogeneity with structural homogeneity: How does the cerebellum operate? Behavioral and Brain Sciences 15:666–78. [aJCH, aAMS, aJIS, aWTT, EDS]Google Scholar
Bloedel, R. F. & Bracha, V. (1995) On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behavioral Brain Besearch 68:144. [DT]Google ScholarPubMed
Bloedel, J. R. & Courville, J. (1981) Cerebellar afferent systems. In: Handbook of Plisyiology: sect. 1. The nervous system: vol. 2. Motor control, ed. Brookhart, J., Mountcastle, V., Brooks, V., & Geiger, S.. American Physiological Society. [aJCH]Google Scholar
Bloedel, J. R. & Ebner, T. J. (1984) Rhythmic discharge of climbing fibre afférents in response to natural peripheral stimuli in the cat. Journal of Physiology (London) 352:129–46. [aJIS]CrossRefGoogle ScholarPubMed
Bloedel, J. R. & Kelly, T. M. (1992) The dynamic selection hypothesis: A proposed function for the cerebellar sagittal zones. In: The cerebellum revisited, eds. Llinás, R. & Sotelo, C.. Springer-Verlag. [aJIS]Google Scholar
Bloedel, J. R. & Roberts, W. J. (1970) Action of climbing fiber in cerebellar cortex of the cat. Journal of Neurophysiology 34:1731. [aJIS, DO]CrossRefGoogle Scholar
Blomfield, S. & Marr, D. (1970) How the cerebellum may be used. Nature 227:1224–28. [aJCH]CrossRefGoogle ScholarPubMed
Bloom, F. E., Hoffer, B. J. & Siggins, G. R. (1971) Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum: 1. Localization of the fibers and their synapses. Brain Research 25:501–21. [aDJL]CrossRefGoogle Scholar
Bortolotto, Z. A., Bashir, Z. I., Davies, C. H. & Collingridge, G. L. (1994) A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 368:740–43. [MB]CrossRefGoogle ScholarPubMed
Bossom, J. (1965) The effect of brain lesions on prism adaptation in monkeys. Psychonomic Science 4546. [aWTT]CrossRefGoogle Scholar
Bossom, J. & Hamilton, C. R. (1963) Interocular transfer of prism-altered coordinations in split-brain monkeys. Journal of Comparative Psysiology and Psychology 56:769–74. [aWTT]CrossRefGoogle ScholarPubMed
Botez, M. I., Botez, T., Elie, R. & Attig, E. (1989) Role of the cerebellum in complex human behavior. Italian Journal of Neurological Science 10:291300. [aWTT, JDS]CrossRefGoogle ScholarPubMed
Botez, M. I., Gravel, J., Attig, E. & Vezina, J. -L. (1985) Reversible chronic cerebellar ataxia after phenytoin intoxication: Possible role of cerebellum in cognitive thought. Neurology 35:1152–57. [aWTT]CrossRefGoogle ScholarPubMed
Botez, M. I., Leveille, J. & Botez, T. (1988) Role of the cerebellum in cognitive thought: SPECT and neurological findings. In: The Australian Society for the Study of Brain Impairment, ed. Matheson, M. & Newman, H.. [aWTT]Google Scholar
Boucher, J. L., Genet, A., Vadon, S., Dclaforge, M. & Mansuy, D. (1992) Formation of nitrogen oxides and citrulline upon oxidation of Nn-hydroxy-L-arginine by hemeproteins. Biochemical and Biopliysical Research Communications 184:1158–64. [DO]CrossRefGoogle ScholarPubMed
Boulter, J., Hollman, M., O'Shea-Greenfild, A., Hartley, M., Deneris, E., Maron, C. & Heinemann, S. (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249:1033–37. [aFC, aSRV]CrossRefGoogle ScholarPubMed
Boulton, C. L., Southam, E. & Garthwaite, J. (1995) Nitric oxide-dependent long-term potentiation is blocked by a specific inhibitor of soluble guanyl cyclase. Neuroscience 69:699703. [LJB]CrossRefGoogle Scholar
Boussaoud, D. (1995) Primate premotor cortex: Modulation of preparatory neuronal activity by gaze angle. Journal of Neurophysiology 73:886–90. [PVD]CrossRefGoogle ScholarPubMed
Bower, J. M. (1992) Is the cerebellum a motor control device? Commentary on “Function heterogeneity with structural homogeneity: How does the cerebellum operate?” by Bloedel, J. R.. Behavioral and Brain Sciences 15:714–15. [JMB]Google Scholar
Bower, J. M. (1995a) The cerebellum as a sensory acquisition controller. Human Brain Mapping 2:255–56. [JMB]CrossRefGoogle Scholar
Bower, J. M. (1995b) Is the cerebellum sensory for motor's sake, or motor for sensory's sake? The cerebellum: From structure to control. Satellite Symposium of the Meeting of European Neuroscience [Abstracts: p 32], Rotterdam, August 31-September 3. [DT]Google Scholar
Bower, J. M. (in press) Is the cerebellum sensory for motor's sake, or motor for sensory's sake? Progress in Brain Research. [JMB]Google Scholar
Bower, J. M. & Kassel, J. (1990) Variability in tactile projection patterns to cerebellar folia Crus IIA in the Norway rat. Journal of Comparative Neurology 302:768–78. [JMB, RCM]CrossRefGoogle ScholarPubMed
Bower, J. M. & Woolston, D. C. (1983) Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: Vertical organization of cerebellar cortex. Journal of Neurophysiology 49:745–66. [JMB, DJ, FS, rAMS]CrossRefGoogle ScholarPubMed
Boylls, C. C. (1975a) A theory of cerebellar function with applications to locomotion, COINS Technical Report 76–1, Amherst, MA. [aJCH, MGP]Google Scholar
Boylls, C. C. (1975b) Synergies and cerebellar function. In: Conceptual models of neural organization. MIT Press. [MAA]Google Scholar
Boylls, C. C. (1980) Contributions to locomotor coordination of an olivo-cerebellar projection to vermis in the cat: Experimental results and theoretical proposals. In: The inferior olivary nucleus: Anatomy and physiology, eds. Courville, J., de Montigny, C. & Lamarre, Y.. Raven. [aJIS]Google Scholar
Braitenberg, A. & Atwood, R. P. (1958) Morphological observations on the cerebellar cortex. Journal of Corparative Neurology 109:127. [aJCH, aWTT. FS]CrossRefGoogle ScholarPubMed
Braitenberg, V. (1961) Functional interpretation of cerebellar histology. Nature 190:539–40. [FS]CrossRefGoogle Scholar
Braitenberg, V. (1983) The cerebellum revisited. Journal of Theoretical Neurobiology 2:237–41.Google Scholar
Brand, S., Dahl, A.-L. & Mugnaini, E. (1976) The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscope study. Experimental Brain Research 26:3958. [aWTT]CrossRefGoogle Scholar
Bracke-Tolkmitt, R., Linden, A., Canavan, G. M., Rockstroh, B., Scholz, E., Wessel, K. & Diener, H. C. (1989) The cerebellum contributes to mental skills. Behavioral Neuroscience 103:442–46. [aWTT]CrossRefGoogle Scholar
Bredt, D. S., Glatt, C. E., Hwang, P. M., Fotuhi, M., Dawson, T. M. & Snyder, S. H. (1991) Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7:615–24. [aSRV]CrossRefGoogle ScholarPubMed
Bredt, D. S., Hwang, P. M. & Snyder, S. H. (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–70. [aFC, aDJL, aSRV]CrossRefGoogle ScholarPubMed
Bredt, D. S. & Snyder, S. H. (1989) Nitric oxide mediates glutamate-Iinked enhancement of cGMP levels in the cerebellum. Proceedings of the National Academy of Sciences of the USA 86:9030–33. [aSRV]CrossRefGoogle ScholarPubMed
Bredt, D. S. & Snyder, S. H. (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proceedings of the National Academy of Sciences of the U.S.A. 87:682–85. [aSRV]CrossRefGoogle ScholarPubMed
Breese, G. R., Mailman, R. B., Ondrusek, M. G., Harden, T. K. & Mueller, R. A. (1978) Effects of dopaminergic agonists and antagonists on cerebellar guanosine-3, 5-monophosphate (cGMP). Life Sciences 23:533–36. [aSRV]CrossRefGoogle ScholarPubMed
Bridgeman, B., Hendry, D. & Stark, L. (1975) Failure to detect displacement of the visual world during saccadic eye movements. Vision Research 15:719–22. [HB]CrossRefGoogle ScholarPubMed
Briley, P. A., Kouyoumdjian, J. C., Haidamous, M. & Gonnard, P. (1979) Effect of L-glutamate and kainate on rat cerebellar cGMP levels in vivo. European Journal of Pharmacology 54:181–84. [aSRV]CrossRefGoogle ScholarPubMed
Brindley, G. S. (1964) The use made by the cerebellum of the information that it receives from the sense organs. International Brain Research Organization Bulletin 3:80. [aWTT, PFCG]Google Scholar
Brodal, P. et al. (1988) GABA-containing neurons in the pontine nuclei of rat, cat and monkey. An immunocytochemical study. Neuroscience 25:2745. [FS]CrossRefGoogle Scholar
Brooks, V. B. & Thach, W. T. (1981) Cerebellar control of posture and movement. In: Handbook of Physiology, sect. 1, vol. 2, pt. 2, ed. Brookhart, J. M., Mountcastle, V. B. & Brooks, V. B.. American Physiological Society. [KW]Google Scholar
Brooks, V. B., Kozlovskaya, I. B., Atkin, A., Horvath, F. E. & Uno, M. (1973) Effects of cooling dentate nucleus on tracking-task performance in monkeys. Journal of Neurophysiology 36:974–95. [aAMS]CrossRefGoogle ScholarPubMed
Brüne, B. & Lapetina, E. G. (1989) Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents. Jottmal of Biological Chemistry 264:8455–58. [aSRV]CrossRefGoogle ScholarPubMed
Brüning, G. (1993b) NADPH-diaphorase histocliemistiy in the postnatal mouse cerebellum suggests specific developmental functions for nitric oxide. Journal of Neuroscience Research 36:580–87. [arSRV]CrossRefGoogle ScholarPubMed
Buckingham, J. T., Houk, J. C. & Barto, J. G. (1994) Controlling a nonlinear spring-mass system with a cerebellar model. In: Proceedings of the eighth Yale workshop on adaptive and learning systems. [aJCH]Google Scholar
Buckingham, J. T., Houk, J. C. & Barto, J. G. (1995) Adaptive predictive control with a cerebellar model. Proceedings of the 1995 World Congress on Neural Networks, Erlbaum. [aJCH]Google Scholar
Bunn, S. J., Garthwaite, J. & Wilkin, G. P. (1986) Guanylate cyclase activites in enriched preparations of neurones, astroglia and a synaptic complex isolated from rat cerebellum. Neurochemistry International 8:179–85. [arSRV]CrossRefGoogle Scholar
Buonomano, D. V. & Mauk, M. D. (1994) Neural network model of the cerebellum: temporal discrimination and the timing of motor responses. Neural Computation 6:3855. [aJCH]CrossRefGoogle Scholar
Burkard, W. P., Pieri, L. & Haefely, W. (1976) In vivo changes of guanosine 3, 5 cyclic phosphate in rat cerebellum by dopaminergic mechanisms. Journal of Neurochemistry 27:297–98. [aSRV]CrossRefGoogle Scholar
Burnod, Y. & Dufossé, M. (1991) A model for the cooperation between cerebral cortex and cerebellar cortex in movement learning. In: Brain and space, ed. Paillard, J.. Oxford University Press. [MD]Google Scholar
Caddy, K. W. T. & Biscoe, T. J. (1979) Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philosophical Transactions of the Royal Society of London: Biology 287:167200. [aAMS]Google ScholarPubMed
Calabresi, P., Pisani, A., Mercuri, N. B. & Bernardi, G. (1994) Post-receptor mechanisms underlying striatal long-term depression. Journal of Neuroscience 14:4871–81. [PC]CrossRefGoogle ScholarPubMed
Callaway, J. C., Lasser-Ross, N. & Ross, W. N. (1995) IPSPs strongly inhibit climbing fiber-activated [Ca2*], increases in the dendrites of cerebellar Purkinje neurons. Journal of Neuroscience 15:2777–87. [aJIS, rSRV, JCF]CrossRefGoogle ScholarPubMed
Campbell, N. C., Ekerot, C. F. & Hesslow, G. (1983) Interaction between responses in Purkinje cells evoked by climbing fibre impulses and parallel fibre volleys in the cat. Journal of Physiology (London) 340:225–38. [aJIS]CrossRefGoogle ScholarPubMed
Cannon, S. C. & Robinson, D. A. (1987) Loss of the neural integrator of the oculomotor system from brainstem lesions in monkey. Journal of Neurophysiology 57:13831409. [aJCH]CrossRefGoogle ScholarPubMed
Carl, J. R. & Gellman, R. S. (1986) Adaptive responses in human smooth pursuit. In: Adaptive processes in the visual and oculomotor systems, ed. Keller, E. L. & Zee, D. S.. Pergamon. [PVD]Google Scholar
Carpenter, R. H. S. (1988) Movements of the eyes. Pion. [HB]Google Scholar
Carter, C. J., Noel, F. & Scatton, B. (1988) Ionic mechanisms implicated in the stimulation of cerebellar cyclic GMP levels by N-mcthyl-D-aspartate. Journal of Nerochemistry 49:195200. [aSRV]CrossRefGoogle Scholar
Carter, T. L. & McElligott, J. G. (1994) Metabotropic glutamate receptor antagonist (L-AP3) inhibits vestibulo-ocular reflex adaptation when administered into goldfish vestibulo-cercbellum. Society for Neuroscience Abstracts 20:17.10. [aJCH]Google Scholar
Cavada, C. & Goldman-Rakic, P. S. (1993) Multiple visual areas in the posterior parietal cortex of primates. Progress in Brain Research 95:123–37. [PVD]CrossRefGoogle ScholarPubMed
Chamberlain, T. J., Halick, P. & Gerrard, R. W. (1963) Fixation of experience in the rat spinal cord. Journal of Neurophysiology 26:662–73. [LPL]CrossRefGoogle ScholarPubMed
Chan-Palay, V. & Palay, S. L. (1979) Immunocytochemical localization of cyclic GMP: Light and electron microscopic evidence for involvement of neuroglia. Proceedings of the National Academy of Sciences of the USA 76:1485–88. [aSRV]CrossRefGoogle ScholarPubMed
Chapeau-Blondeau, F. & Chauvet, G. (1991) A neural network model of the cerebellar cortex performing dynamic associations. Biological Cybernetics 65:267–79. [aJCH]CrossRefGoogle ScholarPubMed
Chen, C. & Thompson, R. F. (1992) Associative long-term depression revealed by field potential recording in rat cerebellar slice. Society for Neuroscience Abstracts 18:1215. [aJCH, aDJL]Google Scholar
Chen, C. & Thompson, R. F. (1995) Temporal specificity of long-term depression in parallel fiber - Purkinje synapses in rat cerebellar slice. Learning & Memory 2:185–98. [JCH, rJCH, rDJL, rJIS]CrossRefGoogle ScholarPubMed
Chen, L. & Huang, L.-Y. M. (1992) Protein kinase C reduces Mg2* block of NMDA-receptor channels as a mechanism of modulation. Nature 356:521–23. [aDJL]CrossRefGoogle ScholarPubMed
Chen, C., Kano, M., Chen, L., Bao, S., Kim, J. J., Hashimoto, K., Thompson, R. F. & Tonegawa, S. (1995) Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKCg mutant mice. Cell 83:1233–42. [rMKan, rDJK]CrossRefGoogle Scholar
Chen, S. & Aston-Jones, G. (1994) Cerebellar injury induces NADPH diaphorase in Purkinje and inferior olivary neurons in the rat. Experimental Neurobiology 126:270–76. [rSRV]CrossRefGoogle ScholarPubMed
Chen, Q. X., stelzer, A., Kay, A. R. & Wong, R. S. K. (1990) GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurons. Journal of Physiology (London) 420:207–21. [aMKan]CrossRefGoogle Scholar
Cheng, H. C., Kemp, B. E., Pearson, R. B., Smith, A. J., Misconi, L., Van Patten, S. M. & Walsh, D. A. (1986) A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. Journal of Biological Chemistry 261:989–92. [aMKan]CrossRefGoogle ScholarPubMed
Chubb, M. C., Fuchs, A. F. & Scudder, C. A. (1984) Neuron activity in monkey vestibular nuclei during vertical stimulation and eye movements. Journal of Neurophysiology 52:724–42. [aJIS]CrossRefGoogle ScholarPubMed
Cintas, H. M., Rutherford, J. G. & Gwyn, D. G. (1980) Some midbrain and diencepbalic projections to the inferior olive in the rat. In: The inferior olivary nucleus: Anatomy and physiology, ed. Courville, J., de Montigny, C. & Lamarre, Y.. Raven. [JDS]Google Scholar
Clark, G. A., McCormick, D. A., Lavond, D. G. & Thompson, R. F. (1984) Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Research 291:125–36. [CW]CrossRefGoogle ScholarPubMed
Clément, G. & Rézette, D. (1985) Motor behavior underlying the control of an upside-down vertical posture. Experimental Brain Research 59:478–84. [aAMS]CrossRefGoogle ScholarPubMed
Cohen, H., Cohen, B., Raphan, T. & Waespe, W. (1992) Habitation and adaptation of the vestibuloocular reflex: A model of differential control by the vestibulocerebellum. Experimental Brain Researcli 90:526–38. [aJIS]Google Scholar
Colin, F., Manil, J. & Desclin, J. C. (1980) The olivocerebellar system. Delayed and slow inhibitory effects: An overlooked salient feature of the cerebellar climbing fibers. Brain Research 187:327. [aJIS]CrossRefGoogle ScholarPubMed
Collingridge, G. L., Kelh, S. J. & McLennan, H. (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. Journal of Physiology 334:3346. [aFC]CrossRefGoogle ScholarPubMed
Conquet, F., Bashir, Z. I., Davies, C. H., Daniel, H., Ferraguti, F., Bordi, F., Franz-Bacon, K., Reggian, A., Matarerse, V., Conde, F., Collingridge, G. L. & Crépel, F. (1994) Motor deficit and impairment of synaptic plasticity in mice lacking mGluRl. Nature 372:237–42. [aJCH, arMKan, TH, MKan, rDJK, rSRV]CrossRefGoogle Scholar
Conrad, B. & Brooks, V. B. (1974) Effects of dentate cooling on rapid alternating arm movements. Journal of Neurophysiology 37:792804. [aAMS]CrossRefGoogle ScholarPubMed
Cordo, P. J. & Nashner, L. M. (1982) Properties of postural adjustments associated with rapid arm movements. Journal of Neurophysiology 47:287302. [aAMS]CrossRefGoogle ScholarPubMed
Coulter, D. A., LoTurco, J. J., Kubota, M., Disterhoft, J. F., Moore, J. W. & Alkon, D. L. (1989) Classical conditioning reduces the amplitude and duration of the calcium-dependent afterhyperpolarization in rabbit hippocampal pyramidal cells. Journal of Neurophysiology 61:971–81. [CW]CrossRefGoogle ScholarPubMed
Crépel, F. & Audinat, E. (1991) Excitatory amino acid receptors of cerebellar Purkinje cells: Development and plasticity. Progress in Biophysic and Molecular Biology 55:3146. [aFC]CrossRefGoogle ScholarPubMed
Crépel, F., Audinat, E., Daniel, H., Hemart, N., Jaillard, D., Rossier, J. & Lambolez, B. (1994) Cellular locus of the nitric oxide-synthase involved in cerebellar long-term depression induced by high external potassium concentration. Neuropharmacology 33:13991405. [DO, rFC, rSRV]CrossRefGoogle ScholarPubMed
Crépel, F., Daniel, H., Conde, F., Ferraguit, F. & Conquet, F. (1995) Pre- and postsynaptic mechanisms of cerebellar LTD. Fourth IBRO World Congress of Neuroscience [abstract] 13.2. [rDJL]Google Scholar
Crépel, F., Daniel, H., Hemart, N. & Jaillard, D. (1991) Effects of ACPD and AP3 on parallel fibre-mediated EPSPs of Purkinje cells in cerebellar slices in vitro. Experimental Brain Research 86:402–6. [aFC, aDJL]CrossRefGoogle ScholarPubMed
Crépel, F., Daniel, H., Hemart, N. & Jaillard, D. (1993) Mechanisms of synaptic plasticity in the cerebellum. In: Long-term potentiation: A debate of current issties, vol. 2., ed. Baudry, M. & Davis, J., MIT Press. [aDJL]Google Scholar
Crépel, F., Dhanjal, S. S. & Sears, T. A. (1982) Effect of glutamate, aspartate and related derivatives on cerebellar Purkinje cell dendrites in the rat: An in vitro study. Journal of Physiology 329:297317. [aFC]CrossRefGoogle ScholarPubMed
Crépel, F. & Jaillard, D. (1990) Protein Idnases, nitric oxide and long-term depression of synapses in the cerebellum. NeuwReport 1:133–36. [aFC, arMKan, aDJL, aSRV, NAH. DO. PC]CrossRefGoogle ScholarPubMed
Crépel, F. & Jaillard, D. (1991) Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. Journal of Physiology (London) 432:123–41. [aFC. aDJL. PC]CrossRefGoogle ScholarPubMed
Crépel, F. & Jaillard, D. (1988) Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Research 458:397401. [aFC, aMKan, aDJL]CrossRefGoogle ScholarPubMed
Crépel, F. & Jaillard, D. (1990) Modulation of the responsiveness of cerebellar Purkinje cells to excitatory amino acids. In: Excitatory amino acids and neuronal plasticity, ed. Ben-Ari, Y.. Plenum. [aFC]Google Scholar
Crick, F. H. C. & Koch, C. (1995) Are we aware of visual activity in the primary visual cortex? Nature 375:121–23. [SMO]CrossRefGoogle Scholar
Crill, W. E. (1970) Unitary multiple-spiked responses in the cat inferior olive nucleus. Journal of Neurophysiology 33:199209. [aJIS]CrossRefGoogle ScholarPubMed
Cross, A. J., Misra, A., Sandilands, A., Taylor, M. J. & Green, A. R. (1993) Effect of chlormethiazole, dizocilpine and pentobarbital on harmaline-induced increase of cerebellar cyclic GMP and tremor. Psychopharmacology 111:9698. [aSRV]CrossRefGoogle ScholarPubMed
Cuenod, M., Do, K. Q., Vollenweider, F., Zollinger, M., Klein, A. & Streit, P. (1989) The puzzle of the transmitters in the climbing fibers. In: The olivocercbellar system in motor control [Brain Research Series 17], ed. Strata, P.. Springer-Verlag. [aFC, aDJL]Google Scholar
Daniel, H., Hemart, N., Jaillard, D. & Crépel, F. (1992) Coactivation of metabotropic glutamate receptors and of voltage-gated calcium channels induces long-term depression in cerebellar Purkinje cells in vitro. Experimental Brain Research 90:327–31. [aFC, aMKan, aDJL, DO, rSRV]CrossRefGoogle ScholarPubMed
Daniel, H., Hemart, N., Jaillard, D. & Crépel, F. (1993) Long-term depression requires nitric oxide and guanosine 3,-5 cyclic monophosphate production in cerebellar Purkinje cells. European Journal of Neuroscience 5:1079–82. [aFC, aDJL, aSRV, PC. LJB, NAH]CrossRefGoogle Scholar
Danysz, W., Wroblewski, J. T., Brooker, G. & Costa, E. (1989) Modulation of glutamate receptors by phencyclidine and glycine in the rat cerebellum: cGMP increase in vivo. Brain Research 479:270–76. [aSRV]CrossRefGoogle ScholarPubMed
Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S. & Snyder, S. H. (1991) Nitric oxide mediates glutamate neurotoxiciry in primary cortical cultures. Proceedings of the National Academy of Sciences of the USA 88:6368–71. [aSRV]CrossRefGoogle Scholar
De Camilli, P., Miller, P. E., Levitt, P., Walter, U. & Greengard, P. (1984) Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochcmical marker. Neuroscience 11:761817. [aDJL, aSRV]CrossRefGoogle Scholar
De Schutter, E. (1995) Cerebellar long-term depression might normalize excitation of Purkinje cells: A hypothesis. Trends in Neurosciences 18:291–95. [EDS]CrossRefGoogle ScholarPubMed
De Schutter, E. & Bower, J. M. (1994a) An active membrane model of the cerebellar Purkinje cell: 1. Simulation of current clamps in slice. Journal of Neurophysiology 71:375400. [JMB, KH, EDS]CrossRefGoogle ScholarPubMed
De Schutter, E. & Bower, J. M. (1994b) An active membrane model of the cerebellar Purkinje cell: 2. Simulation of synaptic response. Journal of Neurophysiology 71:401–19. [JMB, KH]CrossRefGoogle Scholar
De Schutter, E. & Bower, J. M. (1994c) Simulated responses of cerebellar Purldnje cell are independent of the dendritic location of granule cell synaptic inputs. Proceedings of the National Academy of Sciences of the USA 91:4736–40. [JMB, KH, EDS]CrossRefGoogle ScholarPubMed
de Graaf, J. B., Pelisson, D., Prablanc, C. & Goffart, L. (1955) Modifications in end positions of arm movements following short term saccadic adaptation. NeuroReport 6:1733–36. [HB]CrossRefGoogle Scholar
de Montigny, C. & Lamarre, Y. (1973) Rhythmic activity induced by harmaline in the olivo-cerebello-bulbar system of the cat. Brain Research 53:8195. [aJIS]CrossRefGoogle ScholarPubMed
de Vente, J., Bol, J. G. J. M., Berkelmans, H. S., Schipper, J. & Steinbusch, H. M. W. (1990) Immunocytochemistry of cGMP in the cerebellum of the immature, adult, and aged rat: The involvement of nitric oxide. A micropharmacological study. European Journal of Neuroscience 2:845–62. [aDJL, aSRV]CrossRefGoogle ScholarPubMed
de Vente, J., Bol, J. G. J. M. & Steinbusch, H. W. M. (1989a) cCMP-producing, atrial natriuretic factor-responding cells in the rat brain. European Journal of Neuroscience 1:436–60. [DO]CrossRefGoogle ScholarPubMed
de Vente, J., Bol, J. G. J. M. & Steinbusch, H. W. M. (1989b) Localization of cGMP in the cerebellum of the adult rat: An immunohistochemical study. Brain Research 504:332–37. [aSRV]CrossRefGoogle ScholarPubMed
de Vente, J. & Steinbusch, H. W. M. (1992) On the stimulation of soluble and particulate guanylate cyclase in the rat brain and the involvement of nitric oxide as studied by cGMP immunocytochemistry. Acta Histochemica 92:1338. [aDJL, aSRV]CrossRefGoogle ScholarPubMed
De Zeeuw, C. I. (1990) Ultrastructure of the cat inferior olive. Ph.D. thesis, Erasmus University, Rotterdam. [aJIS]Google Scholar
De Zeeuw, C. I., Gerrits, N. M., Voogd, J., Leonard, C. S. & Simpson, J. I. (1994) The rostral dorsal cap and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group y and the ventral dentate nucleus. Journal of Comparative Neurology 341:420–32. [arJIS]CrossRefGoogle ScholarPubMed
De Zeeuw, C. I., Hertzberg, E. & Mugnaini, E. (1995a) The dendritic lamellar body: A new neuronal organelle putatively associated with dendrodendritic gap junctions. Journal of Neuroscience 15(2):15871604. [aJIS]CrossRefGoogle ScholarPubMed
De Zeeuw, C. I., Holstege, J. C., Ruigrok, T. J. H. & Voogd, J. (1989) Ultrastructural study of the GABAergic, the cerebellar, and the mesodiencephalic innervation of the cat medial accessory olive: Anterograde tracing combined with immunocytochemistry. Journal of Comparative Neurology 284:1235. [aJIS]CrossRefGoogle ScholarPubMed
De Zeeuw, C. I., Holstege, J. C., Ruigrok, T. J. H. & Voogd, J. (1990) Mesodiencephalic and cerebellar terminals end up on the same dendritic spines within the glomeruli of the cat and rat inferior olive: An ultrastructural study using a combination of (3H)Ieucine and WGA-HRP anterograde tracing. Neuroscience 34:645–55. [aJIS, CW]CrossRefGoogle Scholar
De Zeeuw, C. I. & Ruigrok, T. J. H. (1994) Olivary neurons in the nucleus of Darkschewitsch in the cat receive excitatory monosynaptic input from the cerebellar nuclei. Brain Research 653:345–50. [aJIS]CrossRefGoogle ScholarPubMed
De Zeeuw, C. I., Ruigrok, T. J. H., Holstege, J. C., Jansen, H. J. & Voogd, J. (1990) Intracellular labeling of neurons in the medial accessory olive of the cat: 2. Ultrastructure of dendritic spines and their GABAergic innervation. Journal of Comparative Neurology 300:478–94.CrossRefGoogle Scholar
De Zeeuw, C. I., Ruigrok, T. J. H., Holstege, J. C., Schalekamp, M. P. A. & Voogd, J. (1990) Intracellular labeling of neurons in the medial accessory olive of the cat: 3, Ultrastructure of the axon hillock and initial segment and their GABAergic innervation. Journal of Comparative Neurology 300:495510. [aJIS]CrossRefGoogle Scholar
De Zeeuw, C. I., Wentzel, P. & Mugnaini, E. (1993) Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. Journal of Comparative Neurology 327:6382. [arJIS]CrossRefGoogle Scholar
De Zeeuw, C. I., Wylie, D. R., DiGiorgi, P. L. & Simpson, J. I. (1994b) Projections of individual Purkinje cells of identified zones in the flocculus to the vestiublar and cerebellar nuclei in the rabbit. Journal of Comparative Neurology 349:428–47. [aJIS]CrossRefGoogle Scholar
De Zeeuw, C. I., Wylie, D. R., Stahl, J. S. & Simpson, J. I. (1995b) Phase relations of Purkinje cells in the rabbit flocculus during compensatory eye movements. Journal of Neurophysiology 74:2051–64. [aJIS]CrossRefGoogle ScholarPubMed
Deadwyler, S. A. & Hampson, R. E. (1995) Ensemble activity and behavior: What's the code? Science 270.1316–18. [CW]CrossRefGoogle ScholarPubMed
Dean, P. (1995) Modelling the role of the cerebellar fastigial nuclei in producing accurate saccades: The importance of burst timing. Neuroscience 68:1059–77. [PD]CrossRefGoogle ScholarPubMed
Dean, P., Mayhew, J. E. W. & Langdon, P. (1994) Learning and maintaining saccadic accuracy: A model of brainstem-cerebellar interactions. Journal of Cognitive Neuroscience 6:117–38. [aJCH, MAA, HB, PD]CrossRefGoogle Scholar
Decety, J. & Michel, F. (1989) Comparative analysis of actual and mental movement times in two graphic tasks. Brain and Cognition 11:8797. [aWTT]CrossRefGoogle ScholarPubMed
Decety, J., Sjoholm, H., Ryding, E., Stenberg, G. & Ingvar, D. H. (1990) The cerebellum participates in mental activity: Tomographie measurements of regional cerebral blood flow. Brain Research 535:313–17. [aWTT]CrossRefGoogle ScholarPubMed
Deecke, L., Grözinger, B. & Korhuber, H. H. (1976) Voluntary finger movement in man: Cerebral potentials and theory. Biological Cybernetics 23:99119. [KW]CrossRefGoogle ScholarPubMed
Demer, J. L., Echelman, D. A. & Robinson, D. A. (1985) Effects of electrical stimulation and reversible lesions of the olivocerebellar pathway on Purkinje cell activity in the flocculus of the cat. Brain Research 346:2231. [aJIS]CrossRefGoogle ScholarPubMed
Denk, W., Sugimori, M. & Llinas, R. (1995) Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the USA 92:8279–82. [rDJL]CrossRefGoogle ScholarPubMed
Desclin, J. C. (1974) Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Research 77:365–84. [aJIS]CrossRefGoogle ScholarPubMed
DeSerres, S. J. & Milner, T. E. (1991) Wrist muscle activation patterns and stiffness associated with stable and unstable mechanical loads. Experimental Brain Research 86:451–58. [aAMS]CrossRefGoogle Scholar
Desmond, J. E. & Moore, J. W. (1991) Single-unit activity in red nucleus during the classically conditioned rabbit nictitating membrane response. Neuroscience Research 10:260–79. [aJCH]CrossRefGoogle ScholarPubMed
Detre, J. A., Maim, A. C., Aswad, D. W. & Greengard, P. (1984) Localization in mammalian brain of G-substrate, a specific substrate for guanosine 3, 5-cyclic monophosphate-dependent protein kinase. Journal of Neuroscience 4:2843–49. [aSRV]CrossRefGoogle Scholar
Deubel, H., Wolf, W. & Hauske, G. (1986) Adaptive gain control of saccadic eye movements. Human Neurobiology 5:245–53. [HB]Google ScholarPubMed
Deuschl, G., Toro, C., Zeffiro, T., Massaquoi, S. & Hallett, M. (in press) Adaptation motor learning of arm movements in patients with cerebellar disease. Journal of Neurology, Neurosurgery, and Psychiatry. [MH]Google Scholar
Di Pellegrino, G., Fadiag, L., Fogassi, L., Gallese, V. & Rizzolatti, G. (1992) Understanding motor events: A neurophysiological study. Experimental Brain Research 91:176–80. [aWTT]CrossRefGoogle ScholarPubMed
Dickie, B. G. M., Lewis, M. J. & Davies, J. A. (1990) Potassium-stimulated release of nitric oxide from cerebellar slices. British Journal of Pharmacology 101:89. [aSRV]CrossRefGoogle ScholarPubMed
Dickie, B. G. M., Lewis, M. J. & Davies, J. A. (1992) NMDA-induced release of nitric oxide potentiates aspartate overflow from cerebellar slices. Neuroscience Letters 138:145–48. [aSRV]CrossRefGoogle ScholarPubMed
Diener, H.-C., & Dichgans, J. (1992) Pathophysiology of cerebellar ataxia. Movement Disorders 7:95109. [JH]CrossRefGoogle ScholarPubMed
Diener, H. C., Dichgans, J., Guschlbauer, B., Bacher, M., Rapp, H. & Langenbach, P. (1990) Associated postural adjustments with body movements in normal subjects and patients with Parkinsonism and cerebellar disease. Revue Neurologique (Paris) 146:555–63. [aAMS]Google ScholarPubMed
Diener, H. C., Hore, J., Ivry, R. B. & Dichgans, J. (1993) Cerebellar dysfunction of movement and perception. Canadian Journal of Neurological Sciences 20(suppl. 3):S62–S69. [aAMS, CG]CrossRefGoogle ScholarPubMed
Dietrichs, E. (1984) Cerebellar autonomie function: Direct hypothalamo-cerebellar pathway. Science 223:591–93. [JDS]CrossRefGoogle Scholar
Dinnendahl, V. & Stock, K. (1975) Effects of arecoline and cholinesterase-inhibitors on cyclic guanosine 3, 5-monophosphate in mouse brain. Naunyn-Schmiedebergs Archives of Pharmacology 290:297306. [aSRV]CrossRefGoogle ScholarPubMed
Disterhoft, J. F., Coulter, D. A. & Alkon, D. L. (1986) Conditioning-specific membrane changes of rabbit hippocampal neurons measured in vitro. Proceedings of the National Academy of Sciences of the USA 83:2733–37. [CW]CrossRefGoogle ScholarPubMed
Disterhoft, J. F., Kronforst, M. A., Moyer, J. R. Jr., Thompson, L. T., Van der Zee, E. & Weiss, C. (1995) Hippocampal neuron changes during trace eyeblink conditioning in the rabbit. In: Acquisition of motor behavior in vertebrates, ed. Bloedel, J. R., Ebner, T. J. & Wise, S. P.. MIT Press. [CW]Google Scholar
Disterhoft, J. F., Kwan, H. H. & Lo, W. D. (1977) Nictitating membrane conditioning to tone in the immobilized albino rabbit. Brain Research 137:127–43. [CW]CrossRefGoogle ScholarPubMed
Dodson, R. A. & Johnson, W. E. (1979) Effects of ethanol, arecoline, atropine and nicotine, alone and in various combinations, on rat cerebellar cyclic guanosine 3, 5-monophosphate. Neuropharmacology 18:871–76. [aSRV]CrossRefGoogle ScholarPubMed
Dodson, R. A. & Johnson, W. E. (1980) Effects of general central nervous system depressants with and without calcium ionophore A23187 on rat cerebellar cyclic guanosine 3, 5-monophosphate. Research Communications in Chemical Pathology and Pharmacology 29:265–80. [aSRV]Google ScholarPubMed
Dolphin, A. C., Detre, J. A., Schlichter, D. J., Nairn, A. C., Yeh, H. H., Woodward, D. J. & Greengard, P. (1983) Cyclic nucleotide-dependent protein kinases and some major substrates in the rat cerebellum after neonatal X-irradiation. Journal of Neurochemistry 40:577–81. [aSRV]CrossRefGoogle ScholarPubMed
Dom, R., King, J. S. & Martin, G. F. (1973) Evidence for two direct cerebello-olivary connections. Brain Research 57:498501. [aJIS]CrossRefGoogle ScholarPubMed
Dornay, M., Uno, Y., Kawato, M. & Suzuki, R. (in press) Minimum muscle tension change trajectories. Journal of Motor Behavior. [MD]Google Scholar
Dow, R. S. (1942) The evolution and anatomy of the cerebellum. Biological Reviews 17:179220. [aJIS]CrossRefGoogle Scholar
Dow, R. s. & Moruzzi, G. (1958) The physiology and pathology of the cerebellum. University of Minnesota Press. [JDS]Google Scholar
Drevets, W. C., Videen, T. O., MacLeod, A.-M. K., Haller, J. W. & Raichle, M. E. (1992) PET imagees of blood flow changes during anxiety: Correction [letter]. Science 256:1696. [aWTT]CrossRefGoogle ScholarPubMed
Dufossé, M., Ho, M., Jastreboff, P. & Miyashita, Y. (1978) A neuronal correlate in rabbit's cerebellum to adaptive modification of the vestibulo-ocular reflex. Brain Research 150:611–16. [MD]CrossRefGoogle ScholarPubMed
Dugas, C. & Smith, A. M. (1992) Responses of cerebellar Purkinje cells to slip of a hand-held object. Journal of Neurophysiology 67:483–95. [aAMS]CrossRefGoogle ScholarPubMed
Dunn, M. E. & Mugnaini, E. (1993) Influence of granule cells on the survival and differentiation of Purkinje cells in dissociated cerebellar cultures. Society for Neuroscience Abstracts 19:1723. [aDJL]Google Scholar
Dunwiddie, T. V. (1990) Adenosine and adenosine receptors, ed. Williams, M.. Humana Press. [aDJL]Google Scholar
East, S. J. & Garthwaite, J. (1990) Nanomolar NG-nitroarginine inhibits NMDA-induced cyclic GMP formation in rat cerebellum. European Journal of Pharmacology 184:311–13. [aSRV]CrossRefGoogle ScholarPubMed
East, S. J. & Garthwaite, J. (1992) Actions of a metabotropic glutamate receptor agonist in immature and adult rat cerebellum. European Journal of Pharmacology 219:395400. [aSRV]CrossRefGoogle ScholarPubMed
Ebner, T. J. & Bloedel, J. R. (1981a) Temporal patterning in simple spike discharge of Purkinje cells and its relationship to climbing fiber activity. Journal of Neurophysiology 45:933–47. [aJIS]CrossRefGoogle ScholarPubMed
Ebner, T. J. & Bloedel, J. R. (1981b) Role of climbing fiber afferent input in determining responsiveness of Purkinje cells to mossy fiber inputs. Journal of Neurophysiology 45:962–71. [aJIS]CrossRefGoogle ScholarPubMed
Ebner, T. J. & Bloedel, J. R. (1984) Climbing fiber action on the responsiveness of Purkinje cells to parallel fiber inputs. Brain Research 309:1822–186. [aJIS]CrossRefGoogle ScholarPubMed
Ebner, T. J., Flament, D. & Shanbhag, S. J. (1996) The cerebellum's role in voluntary motor learning: Clinical, electrophysiological, and imaging studies. In: Acquisition of motor behavior in vertebrates, ed. Bloedel, J. R., Ebner, T. J. & Wise, S. P.. MIT Press. [DF]Google Scholar
Ebner, T. J., Yu, Q. & Bloedel, J. R. (1983) Increase in Purkinje cell gain associated with naturally activated climbing fiber input. Journal of Neurophysiology 50:205–19. [aJIS]CrossRefGoogle ScholarPubMed
Ecclcs, J. C., Ito, M. & Szentagothai, J. (1967) The cerebellum as a neuronal machine. Springer-Verlag Berlin. [aFC, aAMS, aJIS, aWTT, MGP]CrossRefGoogle Scholar
Eccles, J. C., Llinás, R. & Sasaki, K. (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. Journal of Physiology (London) 182:268–96. [aJIS]CrossRefGoogle ScholarPubMed
Eccles, J. C., Sabah, N. H., Schmidt, R. F. & Táboríková, H. (1972) Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex: 3. In Purkinje cells by climbing fiber input. Experimental Brain Research 15:484–97. [aJIS]CrossRefGoogle ScholarPubMed
Edwards, F. A., Konnerth, A., Sakmann, B. & Takahashi, T. (1989) A thin slice preparation for patch-clamp recordings from neurones of the mammalian central nervous system. Pfügers Archiv 414:600–12. [aMKan]CrossRefGoogle ScholarPubMed
Eilers, J., Augustine, G. J. & Konnerth, A. (1995) Subthreshold synaptic Ca2* signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature 373:155–58. [NAH, DO, rSRV]CrossRefGoogle ScholarPubMed
Eisenman, L. N., Keifer, J. & Houk, J. C. (1991) Positive feedback in the cerebro-cerebellar recurrent network may explain rotation of population vectors. In: Analysis and modeling of neural systems, ed. Eeckman, F.. Kluwer. [arJCH]Google Scholar
Ekerot, C.-R., Garwicz, M. & Schouenborg, J. (1991) Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. Journal of Physiology (London) 441:257–74. [aJCH]CrossRefGoogle Scholar
Ekerot, C. F. & Kano, M. (1985) Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Research 342:357–60. [aFC, aMKan, aDJL, aJIS, aWTT]CrossRefGoogle ScholarPubMed
Ekerot, C. F. & Kano, M. (1989) Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses. Neuroscience Research 6:264–68. [aJCH, aDJL, CFE. JCF, EDS]CrossRefGoogle ScholarPubMed
Ekerot, C. F. & Oscarsson, O. (1981) Prolonged depolarization elicited in Purkinje cell dendrites by climbing fibre impulses in the cat. Journal of Physiology (London) 318:207–21. [aFC. aJIS]CrossRefGoogle ScholarPubMed
El-Husseini, A. E.-D., Bladen, C. & Vincent, S. R. (1995a) Expression of the olfactory cyclic nuceotide gated channel (CNG1) in the rat brain. Neuroreport 6:1331–35. [rSRV]CrossRefGoogle Scholar
El-Husseini, A. E.-D., Bladen, C. & Vincent, S. R. (1995b) Molecular characterization of a type II cyclic GMP-dependent protein kinase expressed in the rat brain. Journal of Neurochemistry 64:2814–17. [rSRV]CrossRefGoogle ScholarPubMed
Enright, J. T. & Hendriks, A. W. (1994) To stare or to scrutinize: “Grasping” the eye for better vision. Vision Research 34:2039–42. [GPVG]CrossRefGoogle ScholarPubMed
Escudero, M., de la Cruz, R. R. & Delgado-Garcia, J. M. (1992) A physiological study of vestibular and prepositus hypoglossi neurons projecting to the abducens nucleus in the alert cat. Journal of Physiology (London) 458:539–60. [aJIS]CrossRefGoogle Scholar
Fagni, L., Bossu, J. L. & Bockaert, J. (1991) Activation of a large-conductance Ca2*-dependent K* channel by stimulation of glutamate phosphoinositide-coupled receptors in cultured cerebellar granule cells. European Journal of Neuroscience 3:788–96. [aSRV]CrossRefGoogle ScholarPubMed
Farrant, M. or Cull-Candy, S. G. (1991) Excitatory amino acid receptor-channels in Purkinje cells in thin cerebellar slices. Proceedings of the Royal Society of London, Series B 244:179–84. [aSRV]Google ScholarPubMed
Feldman, A. G. (1980a) Superposition of motor programs: 2. Rapid forearm flexion in man. Neuroscience 5:9195. [aAMS]CrossRefGoogle Scholar
Feldman, A. G. (1980b) Superposition of motor programs: 1. Rhjthmic forearm movements in man. Neuroscience 5:8190. [aAMS]CrossRefGoogle ScholarPubMed
Feldman, A. G., Adamovich, S. V. & Levin, M. D. (1995) The relationship between control, kinematic and electromyographic variables in fast single-joint movements in humans. Experimental Brain Research 103:440–50. [AGF]CrossRefGoogle ScholarPubMed
Feldman, A. G. & Levin, M. F. (1993) Control variables and related concepts in motor control. Concepts in Neuroscience 4:2551. [AGF]Google Scholar
Feldman, A. G. & Levin, M. F. (1995) Positional frames of reference in motor control: Their origin and use. Beliavioral and Brain Sciences 78:723806. [AGF]CrossRefGoogle Scholar
Ferrendelli, J. A., Chang, M. M. & Kinscherf, D. A. (1974) Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino acids. Journal of Neurochemistry 22:535–40. [aSRV]CrossRefGoogle ScholarPubMed
Ferrendelli, J. A., Kinscherf, D. A. & Kipnis, D. M. (1972) Effects of amphetamine, chlorpromazine and reserpine on cyclic GMP and cyclic AMP levels in mouse cerebellum. Biochemical and Biophysical Research Communications 46:2114–20. [aSRV]CrossRefGoogle ScholarPubMed
Ferster, D. & Spruston, N. (1995) Cracking the neural code. Science 270:756–57. [EDS]CrossRefGoogle Scholar
Fiala, J. C., Grossberg, S. & Bullock, D. (1995) Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye blink response. Technical Report CSD/CNS-TR-95–029, Department of Cognitive and Neural Systems, Boston University. ]JCF]Google Scholar
Fiez, J. A., Petersen, S. E., Cheney, M. K. & Raichle, M. E. (1992) Impaired nonmotor learning and error detection associated with cerebellar damage. Brain 115:155–78. [aWTT]CrossRefGoogle ScholarPubMed
Fitts, P. M. (1954) The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47:381–91. [aAMS, GPVG]CrossRefGoogle ScholarPubMed
Flament, D., Eilermann, J., Ugurbil, K. & Ebner, T. J. (1994) Functional magnetic resonance imaging (fMRI) of cerebellar activation while learning to correct for visuomotor errors. Society for Neuroscience Abstracts 20:20. [DF]Google Scholar
Flament, D. & Hore, J. (1986) Movement and electromyographic disorders associated with cerebellar dysmetria. Journal of Neurophysiology 55:1221–33. [aAMS]CrossRefGoogle ScholarPubMed
Flament, D., Lee, J.-H., Ugurbil, K. & Ebner, T. J. (1995) Changes in motor cortical and subcortical activity, during the acquisition of motor skill, investigated usuing functional MRI (4T, echo planar imaging). Society for Neuroscience Abstracts 21:1422. [DF]Google Scholar
Flash, T. (1987) The control of hand equilibrium trajectories in multi-joint arm movements. Biological Cybernetics 57:257–74. [HG]CrossRefGoogle ScholarPubMed
Flash, T. & Mussa-Ivaldi, F. A. (1990) Human arm stiffness characteristics during the maintenance of posture. Experimental Brain Research 82:315–26. [aAMS]CrossRefGoogle ScholarPubMed
Floeter, M. K. & Greenough, W. T. (1979) Cerebellar plasticity: Modification of Purkinje cell structure by differential rearing in monkeys. Science 206:227–29. [aWTT]CrossRefGoogle ScholarPubMed
Flourens, P. (1824/1968) Recherches expérimentales sur les propriétés et les fonctions du systèm nerveux dan les animaux vertébres. Paris: Cervot. Translated, 1968, in: The human brain and spinal cord, ed. Clarke, E. & O'Malley, C. D.. University of California Press, Berkeley. [aJCH, aWTT, RCM]Google Scholar
Forget, R. & Lamarre, Y. (1987) Rapid elbow flexion in the absence of proprioceptive and cutaneous feedback. Human Neurobiology 6:2737. [rAMS]Google ScholarPubMed
Förstermann, U., Gorsky, L. E., Pollock, J. S., Schmidt, H. H. H. W., Heller, M. & Murad, F. (1990) Regional distribution of EDRF/NO-synthesizing enzymes(s) in rat brain. Biochemical and Biophysical Research Communications 168:727–32. [aSRV]CrossRefGoogle Scholar
Fortier, P. A., Kalaska, J. F. & Smith, A. M. (1989) Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. Journal of Neurophysiology 62:198211. [aAMS]CrossRefGoogle ScholarPubMed
Fortier, P. A., Smith, A. M. & Kalaska, J. F. (1993) Comparison of cerebellar and motor cortex activity during reaching: Directional tuning and response variability. Journal of Neurophysiology 69:1136–49. [aAMS, HG]CrossRefGoogle ScholarPubMed
Fortier, P. A., Smith, A. M. & Rossignol, S. (1987) Locomotor deficits in the mutant mouse Lurcher. Experimental Brain Research 66:271–86. [aAMS]CrossRefGoogle ScholarPubMed
Foy, M. R. & Thompson, R. F. (1986) Single unit analysis of Purkinje cell discharge in classically conditioned and untrained rabbits. Neuroscience Abstracts 12:753. [RFT]Google Scholar
Frens, M. A., Van Opstal, A. J. (1994) Auditory-evoked saccades in two dimensions: Dynamical characteristics, influence of eye position and sound source spectrum. In: Information processing underlying gaze control, ed. Delgado-Garcla, J., Vidal, P. & Godaux, E.. Oxford University Press. [CG]Google Scholar
Frick, R. B. (1982) The ego and the vestibulocerebellar system. Psychoanalytic Quarterly 51:93122. [JDS]CrossRefGoogle ScholarPubMed
Fries, W. (1990) Pontine projection from striate and prestriate visual cortex in the macaque monkey: An anterograde study. Visual Neuroscience 4:205–16. [JDS]CrossRefGoogle ScholarPubMed
Friston, K. J., Frith, C. D., Passingham, R. E., Liddle, P. F. & Frackowiak, R. S. J. (1992) Motor practice and neurophysiological adaptation in the cerebellum: A positron tomography study. Proceedings of the Royal Society of London 248:223–28. [aWTT, DT]Google ScholarPubMed
Frolov, A. A., Roschin, V. Y. & Biryukova, E. V. (1993) Adaptive neural model of multijoint movement control by working point analysis. Neural Network World 4:141–56. [MD]Google Scholar
Frysinger, R. C., Bourbonnais, D., Kalaska, J. F. & Smith, A. M. (1984) Cerebellar cortical activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. Joumal of Neurophysiology 51(1):3249. [aAMS, aWTT, HG]CrossRefGoogle ScholarPubMed
Fuchs, A. F., Robinson, F. R. & Straube, A. (1993) Role of the caudal fastigial nucleus in saccade generation: 1. Neuronal discharge pattern. Journal of Neurophysiology 70:1723–40. [aJCH, PD]CrossRefGoogle ScholarPubMed
Fujita, M. (1982) Adaptive filter model of the cerebellum. Biological Cybernetics 45:195206. [aJCH]CrossRefGoogle ScholarPubMed
Fukuda, M., Yamamoto, T. & Llinás, R. (1987) Simultaneous recordings from Purkinje cells of different folia in the rat cerebellum and their relation to movement. Society for Neuroscience Abstracts 13:603. [aJIS]Google Scholar
Funabiki, K., Mishina, M. & Hirano, T. (1995) Retarded vestibular compensation in mutant mice deficient d2 glutamate receptor subunit. NeuroReport 7:189–92. [TH, rMKan]Google Scholar
Furuyama, T., Inagaki, S. & Takagi, H. (1993) Localizations of al and bl subunits of soluble guanylate cyclase in the rat brain. Molecular Brain Research 20:335–44. [aSRV]CrossRefGoogle Scholar
Fushiki, H., Sato, Y., Miura, A. & Kawasaki, T. (1994) Climbing fiber responses of Purkinje cells to retinal image movement in cat cerebellar flocculus. Journal of Neurophysiology 71:1336–50. [aJIS]CrossRefGoogle ScholarPubMed
Gabbiani, F., Midtgaard, J. & Knöpfel, T. (1994) Synaptic integration in a model of cerebellar granule cell. Journal of Neurophysiology 72:9991009. [KH]CrossRefGoogle Scholar
Gabrieli, J. D. E., McGlinchey-Berroth, R., Canillo, M. C., Gluck, M. A., Cermak, L. S. & Disterhoft, J. F. (1995) Intact delay-eyeblink classical conditioning in amnesics. Behavioral Neuroscience 109:819–27. [CW]CrossRefGoogle Scholar
Gaffan, D. (1992) The role of the hippocampus-fomix-mammillary system in episodic memory. In: Neuropsychology of memory, ed. Squire, L. R. & Butters, N.. Guilford. [SMO]Google Scholar
Gaffan, D. & Harrison, S. (1989) A comparison of the effects of fomix transection and sulcus principalis ablation upon spatial learning by monkeys. Behavioral Brain Research 31:207–20. [SMO]CrossRefGoogle Scholar
Galiana, H. L. (1985) Comissural vestibular nuclear coupling: A powerful putative site for producing adaptive change. In: Adaptive mechanisms in gaze control: Facts and theories, ed. Berthoz, A. & Melvill Jones, G.. Elsevier. [aJCH]Google Scholar
Galiana, H. L. (1986) A new approach to understanding adaptive visual-vestibular interactions in the central nervous system. Journal of Neurophysiology 55:349–74. [aJCH]CrossRefGoogle ScholarPubMed
Galiana, H. L. & Guitton, D. (1992) Central organization and modelling of eye-head coordination during orienting gaze shifts. In: Sensing and controlling motion: Vestibular and sensorimotor function, vol. 656, ed. Cohen, B., Tomka, D. L. & Guedry, F.. Annals of the New York Academy of Science. [aJCH]Google Scholar
Galiana, H. L. & Outerbridge, J. S. (1984) A bilateral model for central neural pathways in the vestibuloocular reflex. Journal of Neurophysiology 51:210–41. [aJCH]CrossRefGoogle ScholarPubMed
Galione, A., White, A., Willmott, N., Turner, M., Potter, B. V. L. & Watson, S. P. (1993) cGMP mobilizes intracellular Ca2* in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature 365:456–59. [aSRV]CrossRefGoogle ScholarPubMed
Gao, J.-H., Parsons, L. M., Bower, J. M. Xiong, J., Li, J. & Fox, P. T. (in press) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science. [JMB]Google Scholar
Garthwaite, J. (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends in Neuroscience 14:6067. [aSRV]CrossRefGoogle ScholarPubMed
Garthwaite, J., Charles, S. L. & Chess-Williams, R. (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–88. [aFC, aSRV]CrossRefGoogle ScholarPubMed
Garthwaite, J. & Brodbelt, A. R. (1989) Glutamate as the principal mossy fibre transmitter in rat cerebellum: Pharmacological evidence. European Journal of Neuroscience 2:177–80. [aSRV]CrossRefGoogle Scholar
Garthwaite, J. & Garthwaite, G. (1987) Cellular origins of cyclic GMP responses to excitatory amino acid receptor agonists in rat cerebellum in vitro. Journal of Neurochemistry 48:2939. [aDJL, LK]CrossRefGoogle ScholarPubMed
Garthwaite, J., Garthwaite, G., Palmer, R. M. J. & Moncada, S. (1989a) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. European Journal of Pharmacology 172:413–16. [aSRV]CrossRefGoogle ScholarPubMed
Garthwaite, J., Southam, E. & Anderson, M. (1989b) A kainate receptor linked to nitric oxide synthesis from arginine. Journal of Neurochemistry 53:1952–54. [aFC, aSRV]CrossRefGoogle ScholarPubMed
Gasic, G. P. & Hollman, M. (1992) Molecular neurobiology of glutamate receptors. Annual Review of Physiology 54:507–36. [aFC]CrossRefGoogle ScholarPubMed
Gauthier, G. M., Hofferer, J.-M., Hoyt, W. F. & Stark, L. (1979) Visual-motor adaptation: Quantative demonstration in patients with posterior fossa involvement. Archives of Neurology 36:155–60. [aWTT]CrossRefGoogle Scholar
Gellman, R. S., Gibson, A. R. & Houk, J. C. (1985) Inferior olivary neurons in the awake cat: Detection of contact and passive body displacement. Journal of Neurophysiology 54:4060. [aJCH, aJIS, RCM, RFT, CW]CrossRefGoogle ScholarPubMed
Gellman, R. S., Houk, J. C. & Gibson, A. R. (1983) Somatosensory properties of the inferior olive in the cat. Journal of Comparative Neurology 215:228–43. [aJIS, RFT]CrossRefGoogle ScholarPubMed
Gcorgopoulos, A. P., Kalaska, J. F., Crutcher, M. D., Caminiti, R. & Massey, J. T. (1984) The representation of movement direction in the motor cortex: Single cell and population studies. In: Dynamic aspects of neocortical function, ed. Edelman, G. M., Cowan, W. M. & Gall, W. E.. Wiley. [CG]Google Scholar
Georgopoulos, A. P. & Massey, J. T. (1987) Cognitive spatial-motor processes: 1. The making of movements at various angles from a stimulus direction. Experimental Brain Research 65:361–70. [CG]CrossRefGoogle ScholarPubMed
Gerrits, N. M., Voogd, J. & Magras, I. N. (1985) Vestibular afferents of the inferior olive and the vestibulo-olivo-cerebellar climbing fiber pathway to the flocculus in the cat. Brain Research 332:325–36. [aJIS]CrossRefGoogle Scholar
Ghelarducci, B., Ito, M. & Yagi, N. (1975) Impulse discharges From flocculus Purkinje cells of alert rabbit during visual stimulation combined with horizontal head rotation. Brain Research 87:6672. [aJIS]CrossRefGoogle ScholarPubMed
Ghez, C., Hening, W. & Favilla, M. (1990) Parallel interacting channels in the initiation and specification of motor response features. In: Attention and performance: 8. Motor representation and control, ed. Jeannerod, M.. Erlbaum. [aJCH]Google Scholar
Gibson, A. R., Horn, K. M. & Van Kan, P. L. E. (1990) Interpositus discharge during reaching. Society for Neuroscience Abstracts 16:637. [aAMS]Google Scholar
Gibson, A. R., Robinson, F. R., Alam, J. & Houle, J. C. (1987) Somatotopic alignment between climbing fiber input and nuclear output of the intermediate cerebellum. Joumal of Comparative Neurology 260:362–77. [aJCH.CW]CrossRefGoogle ScholarPubMed
Gielen, C. C. A. M. & van Gisbergen, J. A. M. (1990) The visual guidance of saccades and fast aiming movements. News in Physiological Science 5:5863. [aJCH]Google Scholar
Gilbert, P. F. C. (1974) A theory of memory that explains the function and structure of the cerebellum. Brain Research 70:118. [aJCH, aWTT, PFCG]CrossRefGoogle ScholarPubMed
Gilbert, P. F. C. (1975) How the cerebellum could memorize movements. Nature (London) 254:688–89. [aJCH, PFCG]CrossRefGoogle Scholar
Gilbert, P. F. C. & Thach, W. T. (1977) Purkinje cell activity during motor learning. Brain Research 128:309–28. [aJCH, aJIS, aWTT, MD, PFCG, JCH, DT]CrossRefGoogle ScholarPubMed
Gilman, S. (1969a) Fusimotor fiber responses in the decerebellate cat. Brain Research 14:218–21. [aAMS]CrossRefGoogle ScholarPubMed
Gilman, S. (1969b) The mechanism of cerebellar hypotonia: An experimental study in the monkey. Brain 92:621–38. [aAMS]CrossRefGoogle ScholarPubMed
Glasauer, S., Amoriaum, M. A., Vitte, E. & Berthoz, A. (1994) Goal-directed linear locomotion in normal and Iabyrintfiine-defective subjects. Experimental Brain Research 98:323–35. [SMO]CrossRefGoogle ScholarPubMed
Glaum, S. R., Slater, N. T., Rossi, D. J. & Miller, J. R. (1992) The role of metabotropic glutamate receptors at the parallel-fiber-Purkinje cell synapse. Journal of Neurophysiology 68:1453–62. [aFC, aSRV, aDJL, LJB, NAH, DO]CrossRefGoogle ScholarPubMed
Glickstein, M. (1993) Motor skills but not cognitive tasks. Trends in Neuroscience 16:450–51. [PFCG]CrossRefGoogle Scholar
Glickstein, M. (1994) Cerebellar agenesis. Brain 117:1209–12. [SMO]CrossRefGoogle ScholarPubMed
Glickstein, M., Gerrits, N., Kralj-Hans, J., Mercier, B., Stein, J., Voogd, J. (1994) Visual pontocerebellar projections in the macaque. Journal of Comparative Neurology 349:5172.CrossRefGoogle ScholarPubMed
Glickstein, M., May, J. G. & Mercier, B. E. (1985) Corticopontine projection in the macaque: The distribution of labeled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. Journal of Comparative Neurology 235:343–59. [JDS]CrossRefGoogle ScholarPubMed
Gluck, M. A. & Thompson, R. F. (1990) Adaptive signal processing and the cerebellum: Models of classical conditioning and VOR adaptation. In: Neuroscience and connectionist theory, ed. Gluck, M. A. & Rumelhart, D. E.. Erlbaum. [aJCH]Google Scholar
Goldberg, M. E., Musil, S. Y., Fitzgibbon, E. J., Smith, M. & Oison, C. R. (1993) The role of the cerebellum in the control of saccadic eye movements. In: Role of the basal ganglia and cerebellum in voluntary movements, ed. Mano, N., Hamada, I. & DeLong, M. R.. Elsevier. [PD, CG]Google Scholar
Gomi, H. & Kawato, M. (1992) Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biological Cybernetics 68:105–14. [aJCH, aAMS]CrossRefGoogle ScholarPubMed
Gomi, H. & Kawato, M. (1995) The change of human arm mechanical impedance during movements under different environmental conditions. In: Society for Neuroscience 25th Annual Meeting. San Diego, CA: Society for Neuroscience. [HG, MKaw]Google Scholar
Gomi, H. & Kawato, M. (1996) Mechanical impedance of human arm during multi-joint movemnt in the horizontal plane. Jounal of the Society of Instrument and Control Engineers 32(3) [in Japanese]. [HG]Google Scholar
Gonshor, A. & Melvill-Jones, G. (1976) Extreme vestibulor-ocular adaptation induced by prolonged optical reversal of vision. Journal of Physiology (London) 256:381414. [aWTT, rJIS]CrossRefGoogle Scholar
Goodkin, H. P., Keating, J. G., Martin, T. A. & Thach, W. T. (1993) Preserved simple and impaired compound movement after infarction in the territory of the superior cerebellar artery. Canadiam Journal of Neurology Science 20(suppl.3):S93104. [aWTT]CrossRefGoogle ScholarPubMed
Goodman, D. & Kelso, J. (1983) Exploring the functional significance of physiological tremor: A biospectroscopic approach. Experimental Brain Research 49:419–31. [aJIS]CrossRefGoogle ScholarPubMed
Goodman, R. R., Kuhar, M. J., Hester, L. & Snyder, S. H, (1983) Adenosine receptors: Autoradiographic evidence for their location on axon terminals of excitatory neurons. Science 220:967–69. [aDJL]CrossRefGoogle ScholarPubMed
Gorassini, M., Prochazka, A. & Taylor, J. L. (1993) Cerebellar ataxia and muscle spindle sensitivity. Journal of Neurophysiology 70:1853–62. [aAMS]CrossRefGoogle ScholarPubMed
Görcs, T. J., Penke, B., Bóti, Z., Katarova, Z. & Hámori, J. (1993) Immunohistochemical visualization of a metabotropic glutamate receptor. NeuroReport 4:283–86. [aSRV]Google ScholarPubMed
Gordon, A. M., Huxley, A. F. & Julien, F. J. (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. Journal of Physiology 184:170–92. [aAMS]CrossRefGoogle ScholarPubMed
Gormezano, I. (1966) Classical conditioning. In: Experimental methods and instrumentation in psychology, ed. Sidowski, J. B.. McGraw-Hill. [CW]Google Scholar
Goslow, G. E. Jr., Reinking, R. M. & Stuart, D. G. (1973) The cat step cycle: Hind limb joint angles and mucles lengths during unrestrained locomotion. Journal of Morphology 141:142. [aAMS]CrossRefGoogle Scholar
Gottlieb, J. P., MacAvoy, M. G. & Bruce, C. J. (1994) Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field. Journal of Neurophysiology 72:1634–53. [PVD]CrossRefGoogle ScholarPubMed
Graf, W., Simpson, J. I. & Leonard, C. S. (1988) Spatial organization of visual messages of the rabbit's cerebellar flocculus. II. Complex and simple spike responses of Purkinje cells. Journal of Neurophysiology 60:20912121. [arJIS]CrossRefGoogle ScholarPubMed
Grafman, J., Litvan, I., Massaquoi, S., Stewart, M., Sirigu, A., & Hallett, M. (1992) Cognitive planning deficity in patients with cerebellar atrophy. Neurology 42:14931496.CrossRefGoogle Scholar
Grafton, S. T., Hazeltine, E. & Ivry, R. (1995) Functional mapping of sequence learning in normal humans. Journal of Cognitive Neuroscience 7:497510. [MH]CrossRefGoogle ScholarPubMed
Grafton, S. T., Mazziotta, J. C., Presty, S., Friston, K. J., Frackowiak, R. S. J. & Phelps, M. E. (1992) Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. Journal of Neuroscience 12:2542–48. [aWTT]CrossRefGoogle ScholarPubMed
Granit, R. & Phillips, C. G. (1956) Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. Journal of Physiology (London) 133:520–47. [aJIS]CrossRefGoogle ScholarPubMed
Grant, S. G., O'Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P. & Kandel, E. R. (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258:1903–10. [aMKan]CrossRefGoogle ScholarPubMed
Graybiel, A. M., Nauta, H. J. W., Lasek, R. J. & Nauta, W. J. H. (1973) A cerebello-olivary pathway in the cat: An experimental study using autoradiographic tracing techniques. Brain Research 58:205–11. [aJIS]CrossRefGoogle Scholar
Greenberg, L. H., Troyer, E., Ferrendelli, J. A. & Weiss, B. (1978) Enzymatic regulation of the concentration of cyclic GMP in mouse brain. Neuropharmacology 17:737–45. [aSRV]CrossRefGoogle ScholarPubMed
Greengard, P., Jen, J., Nairn, A. C. & Stevens, C. F. (1991) Enhancement of the glutamate receptor response by cAMP dependent protein kinase in hippocampal neurons. Science 253:1135–38. [MB]CrossRefGoogle ScholarPubMed
Grill, S. E., Hallett, M., Marcus, C., McShane, L. (1994) Disturbance of kinaesthesia in patients with cerebellar disorders. Brain 117:1433–47.CrossRefGoogle ScholarPubMed
Groenewegen, H. J. & Voogd, J. (1977) The parasagittal zonation within the olivocerebellar projection: 1. Climbing fiber distribution in the vermis of the cat cerebellum. Journal of Comparative Neurology 174:417–88. [aJIS]CrossRefGoogle Scholar
Groenewegen, H. J., Voogd, J. & Freedman, S. L. (1979) The parasagittal zonation within the olivocerebellar projection: 2. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. Journal of Comparative Neurology 183:551602. [aJIS]CrossRefGoogle Scholar
Grossberg, S. & Kuperstein, M. (1989) Neural dynamics of adaptive sensory-motor control. Pergamon. [aJCH]Google Scholar
Grover, L. M. & Teyler, T. J. (1992) N-methyl-D-aspartate receptor-independent long-term potentiation in area CAI of rat hippocampus: Input-specific induction and preclusion in a non-tetanized pathway. Neuroscience 49:711. [MB]CrossRefGoogle Scholar
Gruart, A. & Yeo, C. H. (1995) Cerebellar cortex and eyeblink conditioning: Bilateral regulation of conditioned responses. Experimental Brain Research 104:431–48. [CW]CrossRefGoogle ScholarPubMed
Grusser, O. J., Pause, M. & Schreiter, U. (1990) Vestibular neurones in the parietoinsular cortex of monkeys ( macaca fascicularis): Visual and neck receptor responses. Journal of Physiology 430:559–83. [SMO]CrossRefGoogle ScholarPubMed
Guidotti, A., Biggio, G. & Costa, E. (1975) 3-AcetyIpyridine: A tool to inhibit the tremor and increase of cGMP content in cerebellar cortex elicited by harmaline. Brain Research 96:201–5. [aSRV]CrossRefGoogle ScholarPubMed
Guiramand, J., Vignes, M., Mayat, E., Lebrun, F., Sassetti, I. & Recasens, M. (1991) A specific transduction mechanism for the glutamate action on phosphoinositide metabolism via the quisqualate metabotropic receptor in rat brainsynaptoneurosomes: 1. External Na+ requirement. Journal of Neuwchemistry 57:14881500. [aDJL]CrossRefGoogle ScholarPubMed
Guitton, D., Munoz, D. P. & Galiana, H. L. (1990) Gaze control in the cat: Studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks. Journal of Neurophysiology 64:509–31. [aJCH]CrossRefGoogle ScholarPubMed
Gusovsky, F., Hollingsworth, E. B. & Daly, J. W. (1986) Regulation of phosphatidylinositol turnover in brain synaptoneurosomes: Stimulatory effects of agents that enhance influx of sodium ions. Proceedings of the National Academy of Science of the USA 83:3003–7. [aDJL]CrossRefGoogle ScholarPubMed
Guzmán-Lara, S. (1993) Adjusting connections using reflexes as guklance. NPB Technical Report 8, Northwestern University Institute of Neuroscience. [aJCH]Google Scholar
Haby, C., Lisovoski, F., Aunis, D. & Zwiller, J. (1994) Stimulation of the cyclic GMP pathway by NO induces expression of the immediate early genes c-fos and junB in PC12 cells. Journal of Neurochemistry 62:496501. [aSRV]CrossRefGoogle ScholarPubMed
Haggard, P. N., Jenner, J. R. & Wing, A. M. (1994) Kinematic patterns in a case of unilateral cerebellar damange. Neuwpsychologia 32:827–46. [PH]CrossRefGoogle Scholar
Haggard, P. & Wing, A. M. (1995) Coordinated responses following mechanical perturbation of the arm during prehension. Experimental Brain Research 102:483–94. [PH]CrossRefGoogle ScholarPubMed
Haidamous, M., Kouyoumdjuan, J. C., Briley, P. A. & Gonnard, P. (1980) In vivo effects of noradrenaline and noradrenergic receptor agonists and antagonists on rat cerebellar cyclic GMP levels. European Journal of Pharmacology 63:287–94. [aSRV]CrossRefGoogle ScholarPubMed
Haier, R. J., Siegel, B. W. Jr., MacLachlan, A., Soderling, E., Lottenberg, S. & Buchbaum, M. (1992) Regional glucose metabolic changes after learning a complex visuospatial motor task: A positron emission tomography study. Brain Research 570:134–43. [aWTT]CrossRefGoogle Scholar
Hallett, M., Berardelli, A., Matheson, J., Rothwell, J. & Marsden, C. D. (1991) Physiological analysis of simple rapid movements in patients with cerebellar deficits. Journal of Neurology, Neurosurgery, and Psychiatry 53:124–33. [JH]CrossRefGoogle Scholar
Hallett, M., Pascual-Leone, A. & Topica, H. (in press) Adaptation and skill learning. Evidence for different neural substrates. In: Acquisition of motor behavior in vertebrates, ed. Bloedel, J. R., Ebner, T. J. & Wise, S. P.. [MH]Google Scholar
Hallett, M., Shahani, B. T. & Young, R. R. (1975) EMG analysis of patients with cerebellar deficits. Journal of Neurology, Neurosurgery and Psychiatry 38:1163–69. [aAMS, aWTT, CG. JH]CrossRefGoogle ScholarPubMed
Hansel, C., Batchelor, A., Cuénod, M., Garthwaite, J., Knöpfel, T. & Do, K. Q. (1992) Delayed increase of extracellular arginine, the nitric oxide precursor, following electrical white matter stimulation in rat cerebellar slices. Neuroscience Letters 142:211–14. [arSRV]CrossRefGoogle ScholarPubMed
Harris, C. M. (1995) Does saccadic undershoot minimize saccadic flight-time? A Monte Carlo study. Vision Research 35:691701. [PD]CrossRefGoogle ScholarPubMed
Harrison, N. L. & Lambert, N. A. (1989) Modification of GABAA receptor function by an analog of cyclic AMP. Neuroscience Letters 105:137–42. [aMKan]CrossRefGoogle ScholarPubMed
Hartell, N. A. (1994a) Induction of cerebellar long-term depression requires activation of glutamate metabotropic receptors. NeuroReport 5:913–16. [NAH, MKan, rSRV]CrossRefGoogle ScholarPubMed
Hartell, N. A. (1994b) cGMP acts within cerebellar Purkinje cells to produce long-term depression via mechanisms involving PKC and PKG. NeuroReport 5:833–36. [NAH, rDJL, rSRV]CrossRefGoogle ScholarPubMed
Hartell, N. A. (in press) Strong activation of paralell fibers produces localized calcium transients and a form of LTD which spreads to distant synapses. Neuron. [NAH, rDJL]Google Scholar
Harting, J. K. (1977) Descending pathways from the superior colliculus: An autoradiographic analysis in the rhesus monkey (Macaca mulatta). Journal of Comparative Neurology 173:583612. [JDS]CrossRefGoogle ScholarPubMed
Harvey, R. J., Porter, R. & Rawson, J. A. (1977) The natural discharges of Purkinje cells in paravermal regions of lobules V and VI of the monkey's cerebellum. Journal of Physiology 271:515–36. [arJCH]CrossRefGoogle ScholarPubMed
Hartell, N. A. (1979) Discharges of intracerebellar nuclear cells in monkeys. Journal of Physiology 297:559–80. [aJCH]Google Scholar
Hasan, Z. (1986) Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements. Biological Cybernetics 53:373–82. [arAMS]CrossRefGoogle ScholarPubMed
Hassler, R. (1950) Uber kleinhimprojektionen zum mittlehim und thalamus beim menschen. Deutsche Zeitscrift fur Nervenheikunde 163:629–71. [aWTT]CrossRefGoogle Scholar
Hawkes, R., Blyth, S., Chockkan, V., Tano, D., Ji, Z. & Mascher, C. (1993) Structural and molecular compartmentation in the cerebellum. Canadian Journal of Neurological Science 20:S29–S35. [aJCH]Google ScholarPubMed
Heath, R. G. (1977) Modulation of emotion with a brain pacemaker. Joumal of Nervous and Mental Disease 165:300–17. [JDS]CrossRefGoogle Scholar
Hebb, D. O. (1949) The organization of behavior. Wiley. [aFC, aAMS]Google Scholar
Heck, D. (1993) Rat cerebellar cortex in vitro responds specifically to moving stimuli. Neuroscience Letters 157:9598. [FS]CrossRefGoogle ScholarPubMed
Heck, D. (1995) Sequential input to guinea pig cerebellar cortex in vitro strongly affects Purkinje cells via parallel fibers. Naturwissenschaften 82:201–3. [FS]CrossRefGoogle Scholar
Hecker, M., Sessa, W. C., Harris, H. J., Anggard, E. E. & Vane, J. R. (1990) The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: Cultured endothelial cells recycle L-citrulline to L-arginine. Proceedings of the National Academy of Sciences of the USA 87:8612–16. [LK]CrossRefGoogle Scholar
Hemart, N., Daniel, H., Jaillard, D. & Crépel, F. (1994) Properties of glutamate receptors are modified during long-term depression in cerebellar Purkinje cells. Neuroscience Research 19:213–21. [aFC, rDJL]CrossRefGoogle ScholarPubMed
Hemart, N., Daniel, H., Jaillard, D. & Crépel, F. (1995) Receptors and second messengers involved in long-term depression in rat cerebellar slices in vitro: A reappraisal. European Journal of Neuroscience 7:4553. [aFC, DO, rDJL, rSRV]CrossRefGoogle ScholarPubMed
Herdnon, R. M. & Coyle, J. T. (1978). Glutaminergic innervation, kainic acid and selective vulnerability in the cerebellum. In: Kainic acid as a tool in neurobiology, ed. McGeer, G., Olney, J. W. & McGeer, P. L.. Raven. [aFC]Google Scholar
Herrmann-Frank, A. & Varsanyi, M. (1993) Enhancement of Ca2* release channel activity by phosphorylation of the skeletal muscle ryanodine receptor. Federation of European Biochemical Societies Letters 332:237–42. [aSRV]CrossRefGoogle ScholarPubMed
Hertz, J., Krogh, A. & Palmer, R. G. (1991) Introduction to the theory of neural computation. Addison-Wesley. [EDS]Google Scholar
Hesslow, G. (1994a) Correspondence between climbing fibre input and motor output in eyeblink related areas in cat cerebellar cortex. Journal of Physiology 476:229–44. [GH]CrossRefGoogle ScholarPubMed
Hesslow, G. (1994b) Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the cat. Journal of Physiology 476:245–25. [GH]CrossRefGoogle Scholar
Hidaka, H., Tanaka, T., Onoda, K., Hagiwara, M., Watanabe, M., Ohta, H., Ito, Y., Tsurudome, M. & Yoshida, T. (1988) Cell-specific expression of protein kinase C isozymes in the rabbit cerebellum. Journal of Biological Chemistry 263:4523–26. [aFC, aDJL]CrossRefGoogle Scholar
Hikosaka, O., Matsumara, M., Kojima, J. & Gardiner, T. W. (1993) Role of basal ganglia in initiation and suppression of saccadic eye movements. In: Role of the cerebellum and basal ganglia in voluntary movement, ed. Mano, N., Hamada, I. & DeLong, M. R.. Excerpta Medica. [MAA]Google Scholar
Hirano, T. (1990a) Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture. Neuwscience Letters 119:141–44. [aDJL]CrossRefGoogle Scholar
Hirano, T. (1990b) Effects of postsynaptic depolarization in the induction of synaptic depression between a granule cell and a Purkinje cell in rat cerebellar culture. Neuroscience Letters 119:145–47. [aDJL, aMKan]CrossRefGoogle Scholar
Hirano, T. (1991) Differential pre- and postsynaptic mechanisms for synaptic potentiation and depression between a granule cell and a Purkinje cell in rat cerebellar culture. Synapse 7:321–23. [aDJL]CrossRefGoogle Scholar
Hirano, T. & Kasono, K. (1993) Spatial distribution of excitatory and inhibitory synapses on a Purkinje cell in rat cerebellar culture. Journal of Neurophysiology 70:1316–25. [aDJL]CrossRefGoogle ScholarPubMed
Hirano, T. Kasono, K., Araki, K. & Mishina, M. (1995) Suppression of LTD in cultured Purkinje cells deficient in the glutamate receptor d2 subunit. NeuroReport 6:524–26. [TH, MKan, rDJL, rSRV]CrossRefGoogle Scholar
Hirano, T., Kasono, K., Araki, K., Shinozuka, K. & Mishina, M. (1994) Involvement of the glutamate receptor d2 subunit in the long-term depression of glutamate responsiveness in cultured rat Purkinje cells. Neuroscience Letters 182:172–76. [TH, MKan, rDJL]CrossRefGoogle Scholar
Hirsch, J. C. & Crépel, F. (1990) Use-dependent changes in synaptic efficacy in rat prefrontal neurons in vitro. Journal of Physiology 427:3149. [aFC]CrossRefGoogle ScholarPubMed
Hoff, B. & Arbib, M. A. (1992) A model of the effects of speed, accuracy, and perturbation on visually guided reaching. In: Control of arm movement in space: Neurophysiological and computational approaches [Experimental Brain Research Series 22], ed. Caminiti, R., Johnson, P. B. & Bumod, Y.. [MAA]Google Scholar
Hoffer, B. J., Siggins, G. R., Oliver, A. P. & Bloom, F. E. (1971) Cyclic AMP mediation of norepinephrine inhibition in rat cerebellar cortex: A unique class of synaptic responses. Annals of the New York Academy of Sciences 185:531–49. [aSRV]CrossRefGoogle ScholarPubMed
Hoffer, J. A. & Andreassen, S. (1981) Limitations in the servo-regulation of soleus muscle stiffness in premammillary cats. Muscle Receptors & Movement 308:311–24. [aAMS]CrossRefGoogle Scholar
Hofmann, M., Spano, P. F., Trabucchi, M. & Kumakura, K. (1977) Guanylate cyclase activity in various rat brain areas. Journal of Neurochemistry 29:395–96. [aSRV]Google ScholarPubMed
Hogan, N. (1990) Mechanical impedance of single- and multi-articular systems. In: Multiple muscle systems: Biomechanics and movement organization, ed. Winters, J. M. & Woo, S. L.. Springer-Verlag. [arAMS]Google Scholar
Hogan, N. & Flash, T. (1987) Moving gracefully: Quantitative theories of motor coordination. Trends in Neuroscience 10:170–74. [aAMS]CrossRefGoogle Scholar
Hollman, M., O'Shea-Greenfield, A., Rogers, S. W. & Heinemann, S. (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342:643–48. [aFC]CrossRefGoogle Scholar
Holmes, G. (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461535. [aWTT]CrossRefGoogle Scholar
Holmes, G. (1922a) Clinical symptoms of cerebellar disease and their interpretation. The Croonian lectures 1. Lancet 1:1117–82. [aWTT]Google Scholar
Holmes, G. (1922b) Clinical symptoms of cerebellar disease and their interpretation. The Croonian lectures 2. Lancet 1:1237. [aWTT]Google Scholar
Holmes, G. (1922c) Clinical symptoms of cerebellar disease and their interpretation. The Croonian lectures 3. Lancet 2:5965. [aWTT]Google Scholar
Holmes, G. (1922d) Clinical symptoms of cerebellar disease and their interpretation. The Croonian lectures 4. Lancet 2:111–15. [aWTT]Google Scholar
Holmes, G. (1939) The cerebellum of man. Brain 62:130. [aAMS, aWTT, MAA]CrossRefGoogle Scholar
Hope, B. T., Michael, G. J., Knigge, K. M. & Vincent, S. R. (1991) Neuronal NADPH-diaphorase is a nitric oxide synthase. Proceedings of the National Academy of Sciences of the USA 88:2811–14. [aSRV]CrossRefGoogle ScholarPubMed
Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the USA 2554–58. [rJCII]CrossRefGoogle ScholarPubMed
Horak, F. B. (1990) Comparison of cerebellar and vestibular loss on scaling of postural responses. In: Disorders of posture and gait, ed. Brandt, T., Paulus, W., Bles, W., Dietrerich, M., Drafczyk, S. & Straube, A.. Stuttgart: Georg Thieme Verlag. [aWTT]Google Scholar
Horak, F. B. & Diener, H. C. (1993) Cerebellar control of postural scaling and central set in stance. Journal of Neurophysiology 72:479–93. [aAMS, aWTT, JMB, DT]CrossRefGoogle Scholar
Horak, F. B., Esselman, P. E., Anderson, M. E. & Lynch, M. K. (1984) The effects of movement velocity, mass displaced and task certainty on associated postural adjustments made by normal and hémiplégie individuals. Journal of Neurology, Neurosurgery, and Psychiatry 47:1020–28. [aAMS]CrossRefGoogle Scholar
Hore, J. (1993) Arm ataxia: Disorders in cerebellar-cortical function. Biomedicai Research 14(suppl. l):2326. [JH]Google Scholar
Hore, J. & Flament, D. (1988) Changes in motor cortex neural discharge associated with the development of cerebellar limb ataxia. Journal of Neurophysiology 60:12851302. [JH]CrossRefGoogle ScholarPubMed
Hore, J., Wild, B. & Diener, H.-C. (1991) Cerebellar dysmetria at the elbow, wrist and fingers. Journal of Neurophysiology 65:563–71. [JH, FS]CrossRefGoogle Scholar
Horn, A. K. E. & Hoffmann, K. P. (1987) Combined GABA immunocytochemistry TMB/HRP histochemistry of pretecto nuclei projecting to the inferior olive in rats, cats, and monkeys. Brain Research 409:135–38. [aJIS]CrossRefGoogle Scholar
Horn, R. & Marty, A. (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. Journal of Cenerai Physiology 92:145159. [aDJL]CrossRefGoogle ScholarPubMed
Houk, J. C. (1989) Cooperative control of limb movements by the motor cortex, brainstem and cerebellum. In: Modeh of brain function, ed. Cotterill, R. M. J.. Cambridge University Press. [aJCH]Google Scholar
Houk, J. C. (1990) Role of cerebellum in classical conditioning. Society for Neuroscience Abstracts 16:474. [aJCH]Google Scholar
Houk, J. C. (1992) Learning in modular networks. In: Proceedings of the 7th Yale workshop on adaptive and learning systems, ed. Narendra, K. S.. Center for Systems Science. [aJCH]Google Scholar
Houk, J. C., Adams, J. L. & Bario, A. G. (1995) A model of how the basal ganglia generates and uses neural signals that predict reinforcement. In: Models of Information processing in the basal ganglia, ed. Houk, J. C., Davis, J. L. & Beiser, D. G.. MIT Press. [aJCH, JCH]Google Scholar
Houk, J. C. & Barto, A. G. (1992) Distributed sensorimotor learning. In: Tutorials in motor behavior 2, ed. Stelmach, G. E. & Requin, J.. Elsevier. [arJCH, aMS, PD, JCH]Google Scholar
Houk, J. C., Galiana, H. L. & Guitton, D. (1992) Cooperative control of gaze by the superior colliculus, brainstem and cerebellum. In: Tutorials in motor behavior 2, ed. Stelmach, G. E. & Requin, J.. Elsevier. [arJCH, PD]Google Scholar
Houk, J. C. & Gibson, A. R. (1987) Sensorimotor processing through the cerebellum. In: New concepts in cerebellar neurobiology, ed. King, J. S.. Liss, Alan R.. [aJCH]Google Scholar
Houk, J. C., Keifer, J. & Barto, A. G. (1993) Distributed motor commands in the limb premotor network. Trends in Neuroscience 16:2733. [arJCH, PD, JCH]CrossRefGoogle ScholarPubMed
Houk, J. C., Singh, S. P., Fisher, C. & Barto, A. G. (1990) An adaptive sensorimotor network inspired by the anatomy and physiology of the cerebellum. In: Neural networks for control, ed. Miller, W. T., Sutton, R. S. & Werbos, P. J.. MIT Press. [arJCH, PD]Google Scholar
Houk, J. C. & Rymer, W. Z. (1981) Neural control of length and tension. In: Handbook of physiology: vol. 2. The nervous system: pt. 1. Motor control, ed. Brookhardt, J. M. & Mountcastle, V. B.. American Physiological Society. [aAMS, MD, CG]Google Scholar
Houk, J. C. & Wise, S. P. (1995) Distributed modular architectures linking basal ganglia, cerebellum and cerebral cortex: Their role in planning and controlling action. Cerebral Cortex 5:95110. [aJCH]CrossRefGoogle ScholarPubMed
Huang, P. L., Dawson, T. M., Bredt, D. S., Snyder, S. H. & Fishman, M. C. (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75:1273–86. [TH, rSRV]CrossRefGoogle ScholarPubMed
Hudson, B. D., Valcana, T., Bean, G. & Timiras, P. S. (1976) Glutamic acid: A strong candidate as the neurotransmitter of cerebellar granule cell. Neurochemical Research 1:7382. [aFC]CrossRefGoogle Scholar
Hufschmidt, H. J. & Hufschmidt, T. (1954) Antagonist inhibition as the earliest sign of a sensory-motor reaction. Nature 174:607. [rAMS]CrossRefGoogle ScholarPubMed
Hultborn, H. & Illert, M. (1991) How is motor behavior reflected in the organization of spinal systems? In: Motor control: Concepts and issues, ed. Humphrey, D. R. & Freund, H.-J.. Wiley. [rAMS]Google Scholar
Hultborn, H., Lindstrom, S. & Wigstrom, H. (1979) On the function of recurrent inhibition in the spinal cord. Experimental Brain Research 37:399403. [rAMS]CrossRefGoogle ScholarPubMed
Humphrey, D. R., Gold, R. & Reed, D. J. (1984) Sizes, laminar and topographic origins of cortical projections to the major divisions of the red nucleus in the monkey. Journal of Comparative Neurology 225:7594. [JDS]CrossRefGoogle Scholar
Humphrey, D. R. or Reed, D. J. (1983) Separate cortical systems for control of joint movement and joint stiffness: Reciprocal activation and co-activation of antagonist muscles. In: Motor control in health and disease, ed. Desmedt, J. E.. Raven. [aAMS]Google Scholar
Hunter, I. W. & Kearney, R. E. (1982) Dynamics of human ankle stiffness: Variation with mean ankle torque. Journal of Biomechanics 15:747–52. [aAMS]CrossRefGoogle ScholarPubMed
Ignarro, L. J., Ballot, B. & Wood, K. S. (1984) Regulation of soluble guanylate cyclase activity by porphyrins and metalloporphyrins. Journal of Biological Chemistry 259:6201–7. [DO]CrossRefGoogle ScholarPubMed
Ikeda, M., Monta, I., Murota, S.-L., Seldguchi, F., Yuasa, T. & Miyatake, T. (1993) Cerebellar nitric oxide synthase activity is reduced in nervous and Purkinje cell degeneration mutants but not in climbing fiber-Iesioned mice. Neuroscience Letters 155:148–50. [arSRV]CrossRefGoogle Scholar
Inhoff, A. W., Diener, H. C., Rafal, R. D. & Ivry, R. B. (1989) The role of cerebellar structures in the execution of serial movements. Brain 112:565–81. [aAMS, aWTT]CrossRefGoogle ScholarPubMed
Inoue, M., Oomura, Y., Yakushiji, T. & Akaike, N. (1986) Intracellular calcium ions decrease the affinity of the GABA receptor. Nature 324:156–58. [aMKan]CrossRefGoogle ScholarPubMed
Iriki, A., Pavlides, C., Keller, A. & Asanuma, H. (1989) Long-term potentiation in the motor cortex. Science 245:1385–87. [aMKan]CrossRefGoogle ScholarPubMed
Isaac, J. T. R., Nicoli, R. A. & Malenka, R. C. (1995) Evidence for silent synapses: Implications for the expression of LTP. Neuron 15:427–34. [MB]CrossRefGoogle ScholarPubMed
Isaacson, J. S. & Nicoll, R. A. (1991) Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus. Proceedings oftlxe National Academy of Sciences of the USA 88:10936–40. [aFC]CrossRefGoogle ScholarPubMed
Ishikawa, J., Kawaguchi, S. & Rowe, M. J. (1972) Actions of afferent impulses from muscle receptors on cerebellar Purldnje cells: 2. Responses to muscle contraction. Effects mediated via the climbing fiber pathway. Experimental Brain Research 16:104–14. [aJIS]CrossRefGoogle Scholar
Ito, M. (1969) Neurons of cerebellar nuclei. In: The interneuron, ed. Brazier, M.A.B.. UCLA Forum. [aJCH]Google Scholar
Ito, M. (1970) Neurophysiological aspects of the cerebellar motor control system. International Journal of Neurology 7:162–76. [aJCH], aJISGoogle ScholarPubMed
Ito, M. (1972) Neural design of the cerebellar motor control system. Brain Research 40:8184. [aJIS, aWTT]CrossRefGoogle ScholarPubMed
Ito, M. (1982) Cerebellar control of the vestibulo-ocular reflex-around the flocculus hypothesis. Annual Review of Neuroscience 5:275–96. [aJIS]CrossRefGoogle ScholarPubMed
Ito, M. (1984) The cerebellum and neural control. Raven. [aFC, aJCH, aMKan, aAMS, aJIS. aWTT, PD. EDS]Google Scholar
Ito, M. (1987) Characterization of synaptic plasticity in cerebellar and cerebral neocortex. In: The neural and molecular bases of learning, ed. Changeux, J. P. & Nonishi, M.. Wiley. [aFC]Google Scholar
Ito, M. (1989) Long-term depression. Annual Review in Neuroscience 12:85102. [aFC, aJCH, aMKan. aJIS. aWTT, EDS, RFT]CrossRefGoogle ScholarPubMed
Ito, M. (1990) A new physiological concept on the cerebellum. Revue Neurologique 10:564–69. [aWTT]Google Scholar
Ito, M. (1991) The cellular basis of cerebellar plasticity. Current Opinion in Neurobiology 1:616–20. [aDJL]CrossRefGoogle ScholarPubMed
Ito, M. (1993) Movement and thought: Identical control mechanism by the cerebellum. Trends in Neurosciences 16:448–50. [aJCH, MKaw]CrossRefGoogle ScholarPubMed
Ito, M., Jastreboff, P. J. & Miyashita, Y. (1982b) Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Experimental Brain Research 45:233–42. [aJIS]Google ScholarPubMed
Ito, M. & Karachot, L. (1990) Messengers mediating long-term desensitization in cerebellar Purkinje cells. NeuroReport 1:129–32. [aFC, aMKan, arDJL, aSRV, DO]Google ScholarPubMed
Ito, M. & Karachot, L. (1989) Long-term desensitization of quisqualate-specific glutamate receptors in Purldnje cells investigated with wedge recording from rat cerebellar slices. Neuroscience Research 7:168–71. [aWTT]CrossRefGoogle ScholarPubMed
Ito, M. & Karachot, L. (1992) Protein kinases and phosphatase inhibitors mediating long-term desensitization of glutamate receptors in cerebellar Purldnje cells. Neuroscience Research 14:2738. [aFC, aDJL, NAH]CrossRefGoogle ScholarPubMed
Ito, M., Kawai, N. & Udo, M. (1968) The origin of cerebellar-induced inhibition of Deiters neurones: 3. Localization of the inhibitory zone. Experimental Brain Research 4:310–20. [aAMS]CrossRefGoogle ScholarPubMed
Ito, M., Nisimaru, N. & Yamamoto, M. (1977) Specific patterns of neuronal connections involved in the control of the rabbit's vestibulo-ocular reflexes by the cerebellar flocculus. Journal of Physiology (London) 265:833–54. [aJIS]CrossRefGoogle ScholarPubMed
Ito, M., Obata, K. & Ochi, R. (1966) The origin of cerebellar-induced inhibition of Deiters' neurons: 2. Temporal correlation between the trans-synaptic activation of Purkinje cells and the inhibition of Deiters neurons. Experimental Brain Research 2:350–64. [aAMS]CrossRefGoogle Scholar
Ito, M., Sakurai, M. & Tongroach, P. (1982) Climbing fibre induced depression of both mossy fiber responsiveness and glutamate sensitivity of cerebellar Purkinje cells. Journal of Physiology (London) 324:113–34. [aFC, aDJL, aMKan, aJIS, aWTT, MD. RFT]CrossRefGoogle ScholarPubMed
Ito, M., Shiida, T., Yagi, N. & Yamamoto, M. (1974) The cerebellar modification of rabbit's horizontal vestibulo-ocular reflex induced by sustained head rotation combined with visual stimulation. Proceedings of the Japan Academy 50:8589. [aWTT]CrossRefGoogle Scholar
Ito, M. & Simpson, J. (1971) Discharges in Purkinje cell axons during climbing fibre activation. Brain Research 31:215–19. [aJIS]CrossRefGoogle Scholar
Ito, M., Tanabe, S., Kohda, A. & Sugiyama, H. (1990) Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. Journal of Physiology (London) 424:533–43. [aFC]CrossRefGoogle ScholarPubMed
Ito, M. & Yoshida, M. (1966) The origin of cerebellar-induced inhibition of Deiters' neurons: 1. Monosynaptic initiation of the inhibitory post synaptic potential. Experimental Brain Research 2:330–49. [aAMS]CrossRefGoogle Scholar
Ivry, R. D. & Diener, H. C. (1991) Impaired velocity perception in patients with lesions of the cerebellum. Journal of Cognitive Neuroscience 3:355–66. [aAMS]CrossRefGoogle ScholarPubMed
Ivry, R. B. & Keele, S. W. (1989) Timing functions of the cerebellum. Journal of Cognitive Neuwscience 1:136–52. [aAMS, aWTT]CrossRefGoogle ScholarPubMed
Ivry, R. B., Keele, S. W. & Diener, H. C. (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental Brain Research 73:167–80. [aAMS]CrossRefGoogle ScholarPubMed
Jackson, J. H. (1890) A study of convulsions. In: Selected writings of John Hughlings Jackson (1932), ed. Taylor, J.. Basic. [aWTT]Google Scholar
Jaeger, D. & Bower, J. M. (1994) Prolonged responses in rat cerebellar Purkinje cells following activation of the granule cell layer: An intracellular in vitro and in vivo investigation. Experimental Brain Research 100:200–14. [JMB, DJ]CrossRefGoogle ScholarPubMed
Jahnsen, H. (1986) Extracellular activation and membrane conductances of neurones in the guinea-pig deep cerebellar nuclei in vitro. Journal of Physiology (London) 372:149–68. [aJIS]CrossRefGoogle ScholarPubMed
Jakab, R. L. & Hàmori, J. (1988) Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anatomy and Embryology 179:8188. [FS]CrossRefGoogle ScholarPubMed
Jami, L. (1992) Golgi tendon organs in mammalians skeletal muscle: Functional properties and central actions. Physiological Reviews 72:623–66. [MD]CrossRefGoogle ScholarPubMed
Jankowska, E. & Roberts, W. J. (1972) An electrophysiological demonstration of the axonal projections of single spinal interneurones in the cat. Journal of Physiology (London) 222:597622. [rAMS]CrossRefGoogle ScholarPubMed
Jansen, J. & Brodai, A. (1954) Aspects of cerebellar anatomy. Oslo: Johan Grundt Tanum Forlag. [aJIS]Google Scholar
Jeannerod, M. (1981) Intersegmental coordination during reaching at natural visual objects. In: Attention and performance 9, ed. Long, J. & Baddeley, A.. Erlbaum. [PH]Google Scholar
Jeannerod, M. (1994) The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Science 17:187201. [aWTT]CrossRefGoogle Scholar
Jenkins, I. H., Brooks, D. J., Nixon, P. D. & Frackowiak, R. S. J. (1994) Motor sequence learning: A study with positron emission tomography. Journal of Neuwscience 14:3775–90. [aWTT, DT, JDS]Google ScholarPubMed
Jeromin, A., Huganir, R., & Linden, D. J. (1996) Suppression of the glutamate receptor delta-2 subunit produces a specific impairment in cerebellar long-term depression. Journal of Neurojilisiology, in press. [rDJL]CrossRefGoogle Scholar
Jongen, H. A. H., Denier Van Der Con, J. J. & Gielen, C. C. A. M. (1989) Inhomogeneous activation of motoneurone pools as revealed by co-contraction of antagonistic human arm muscles. Experimental Brain Research 75:555–62. [aAMS]CrossRefGoogle ScholarPubMed
Kalaska, J. F., Cohen, D. A. D., Prud'homme, M. & Hyde, M. L. (1990) Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Experimental Brain Research 80:351–64. [MKaw]CrossRefGoogle Scholar
Kandel, E. & Schwartz, J. (1982) Molecular biology of learning: Modulation of transmitter release. Science 218:433–43. [aMKan]CrossRefGoogle ScholarPubMed
Kano, M. (1995) Plasticity of inhibitory synapses in the brain: A possible memory mechanism that has been overlooked. Neuwscience Reseawh 21:177–82. [aMKan]CrossRefGoogle Scholar
Kano, M. Hashimoto, K., Chen, C., Abeliovich, A., Aiba, A., Kurihara, H., Watanabe, M., Inoue, Y. L. & Tonegawa, S. (1995) Impaired synapse elimination during cerebellar development in PKCγ mutant mice. Cell 83:1223–31. [rMKan, rDJL]CrossRefGoogle Scholar
Kano, M. & Kato, M. (1987) Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 325:276–79. [aFC, aMKan, aDJL]CrossRefGoogle ScholarPubMed
Kano, M. & Kato, M. (1988) Mode of induction of long-term depression at parallel fibre-Purkinje cell synapses in rabbit cerebellar cortex. Neuroscience Research 5:544–56. [aDJL, aJIS]CrossRefGoogle ScholarPubMed
Kano, M., Kano, M.-S., Kusunoki, M. & Maekawa, K. (1990a) Nature of optokinetic response and zonal organization of climbing fiber afferents in the vestibulocerebellum of the pigmented rabbit: 2. The nodulus. Experimental Brain Research 80:238–51. [aJIS]CrossRefGoogle ScholarPubMed
Kano, M., Kano, M.-S. & Maekawa, K., (1991) Optokinetic response of simple spikes of Purkinje cells in the cerebellar flocculus and nodulus of the pigmented rabbit. Experimental Brain Research 87:484–96. [rJIS]CrossRefGoogle ScholarPubMed
Kano, M., & Konnerth, A. (1992a) Potentiation of GABA-mediated currents by cAMP-dependent protein kinase. NeuroReport 3:563–66. [aMKan]CrossRefGoogle ScholarPubMed
Kano, M., & Konnerth, A. (1992b) Cerebellar slices for patch clamp recording. In: Practical electrophysiological methods, ed. Kettenmann, H. & Grantyn, R.. Wiley-Liss. [aMKan]Google Scholar
Kano, M., Rexhausen, U., Dreessen, J. & Konnerth, A. (1992) Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature (London) 356:601–4. [aMKan, aJIS]CrossRefGoogle ScholarPubMed
Kano, M.-S., Kano, M. & Maekawa, K. (1990) Receptive field organization of climbing fiber afferents responding to optokinetic stimulation in the cerebellar nodulus and flocculus of the pigmented rabbit. Experimental Brain Research 82:499512. [aJIS]CrossRefGoogle ScholarPubMed
Kapoula, Z. & Robinson, D. A. (1986) Saccadic undershoot is not inevitable: Saccades can be accurate. Vision Research 26:735–43. [HB]CrossRefGoogle ScholarPubMed
Karachot, L., Kado, R. T. & Ito, M. (1994) Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells. Neuroscience Research 21:161–68. [EDS, rJIS]CrossRefGoogle ScholarPubMed
Kasai, H. & Petersen, O. H. (1994) Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trench in Neurosciences 17:95101.CrossRefGoogle Scholar
Kashiwabuchi, N., Ikeda, K., Araki, K., Hirano, T., Shibuki, K., Takayama, C., Inoue, Y., Kutsuwada, T., Yagi, T., Kang, Y., Aizawa, S. & Mishina, M. (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluRd2 mutant mice. Cell 81:245–52. [MKan, rMKan, TH, rDJL, rSRV]CrossRefGoogle Scholar
Kasono, K. & Hirano, T. (1994) Critical role of postsynaptic calcium in cerebellar long-term depression. NeuwReport 6:1720. [PC, TH, rDJL]CrossRefGoogle ScholarPubMed
Kasono, K. & Hirano, T. (1995) Involvement of inositol triphosphate in cerebellar long-term depression. Neuro Report 6:569–72. [TH, MKan, rDJL, rSRV]Google Scholar
Katayama, S. & Nisimaru, N. (1988) Parasagittal zonal pattern of olivo-nodular projections in rabbit cerebellum. Neuwscience Research 5:424–38. [aJIS]CrossRefGoogle ScholarPubMed
Kawano, K., Shidara, M., Takemura, A., Inoue, Y., Gomi, H. & Kawato, M. (1994) A linear time-series regression analysis of temporal firing patterns of cerebral, pontine and cerebellar neurons during ocular following. Japanese Journal of Physiology 44:S219. [MKaw]Google Scholar
Kawano, K., Shidara, M., Watanabe, Y. & Yamane, S. (1994) Neural activity in cortical area MST of alert monkey during ocular following responses. Journal of Neurophysiology 71:2305–24. [MKaw]CrossRefGoogle ScholarPubMed
Kawano, K., Shidara, M. & Yamane, S. (1992) Neural activity in dorsolateral pontine nucleus of alert monkey during ocular following responses. Journal of Neurophysiology 67:680703. [MKaw]CrossRefGoogle ScholarPubMed
Kawato, M. (1990a) Computational schemes and neural network models for formation and control of multijoint arm trajectory. In: Neural networks for control, ed. Miller, T., Sutton, R. S. & Werbos, P. J.. MIT Press. [aJCH]Google Scholar
Kawato, M. (1990b) Feedback-error learning neural network for supervised motor learning. In. Advanced neural computers, ed. Eckmiller, R.. Elsevier. [HB]Google Scholar
Kawato, M. (1995) Analysis of neural firing frequency by a generalized linear model. Technical Report of The Institute of Electronics, Information and Communication Engineers NC95–33:31. [MKaw]Google Scholar
Kawato, M. & Gomi, H. (1992a) A computational model of four regions of the cerebellum based on feedback-error learning. Biological Cybernetics 68:95103. [arAMS, aJCH, CG. RCM]CrossRefGoogle ScholarPubMed
Kawato, M. & Gomi, H. (1992b) The cerebellum and VOR/OKR learning models. Trends in Neuroscience 15:445–53. [aJCH, aJIS, DF]CrossRefGoogle ScholarPubMed
Kawato, M. & Gomi, H. (1993) Feedback-error-leaming model of cerebellar motor control. In: Role of the cerebellum and basal ganglia in voluntary movement, ed. Mano, N., Hamada, I. & DeLong, M. R.. Elsevier. [aJCH, DF, rAMS]Google Scholar
Keating, J. G. & Thach, W. T. (1993) Complex spike activity in the awake behaving monkey: Non-clock-like discharge. Society of Neuroscience Abstracts 19:980. [aJIS]Google Scholar
Keating, J. G. & Thach, W. T. (1995) Nonclock behavior of inferior olive neurons: Interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. Journal of Neurophysiology 73:1329–40. [aWTT]CrossRefGoogle ScholarPubMed
Keele, S. W. (1981) Behavioral analysis of movement. In: Handbook of Physiology: sect. 1. The nervous system: vol. 2. Motor control, pt. 2., ed. Brookhart, J. M., Mountcastle, V. B. & Brooks, V. B.. American Physiological Society, [aWTT]Google Scholar
Keele, S. W. & Ivry, R. (1990) Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Annals of the New York Acadamy of Science 608:179211. [aWTT. FS]CrossRefGoogle ScholarPubMed
Keifer, J. & Houk, J. C. (1995) In vitro classical conditioning of abducens nerve discharge in turtles. Journal of Neuroscience. [aJCH]CrossRefGoogle Scholar
Keinänen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoom, T. A., Sakmann, B. & Seeburg, P. H. (1990) A family of AMPA-selective glutamate receptors. Science 249:556–60. [aFC]CrossRefGoogle ScholarPubMed
Keller, E. L. (1989) The cerebellum. In: The neurobiology of saccadic eye movements, ed. Wurtz, R. H. & Goldberg, M. E.. Elsevier. [HB, PD]Google Scholar
Kelso, J. A. S. (1995) Dynamic patterns of the self-organization of the brain and beliavior. MIT Press. [AGF]Google Scholar
Kennedy, P. R. (1990) Corticospinal, rubrospinal, and nibroolivaary projections: A unifying hypothesis. Trends in Neuroscience 13:474–79. [aWTT]CrossRefGoogle ScholarPubMed
Kennedy, P. R., Gibson, A. R. & Houk, J. C. (1986) Functional and anatomic differentiation between parvicellular and magnocellular regions of red nucleus in the monkey. Brain Research 364:124–36. [JDS]CrossRefGoogle ScholarPubMed
Kennelly, P. J. & Krebs, E. G. (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. Journal of Biological Chemistry 266:15555–58. [aSRV]CrossRefGoogle ScholarPubMed
Khater, T. T., Quinn, K. J., Pena, J., Baker, J. F. & Peterson, B. W. (1993) The latency of the cat vestibulo-ocular reflex before and after short- and long-term adaptation. Experimental Brain Research 94:1632. [aJCH]CrossRefGoogle Scholar
Khodakhah, K. & Ogden, D. (1993) Functional heterogeneity of calcium release by inositol trisphosphate in single Purkinje neurones, cultured cerebellar astrocytes, and peripheral tissues. Proceedings of the National Academy of Sciences of the USA 90:4976–80. [rDJL]CrossRefGoogle ScholarPubMed
Kiedrowski, L., Costa, E. & Wroblewski, J. T. (1992a) Glutamate receptor agonists stimulate nitric oxide synthase in primary cultures of cerebellar granule cells. Journal of Neurochemistry 58:335–41. [arSRV, LK]CrossRefGoogle ScholarPubMed
Kiedrowski, L., Costa, E. & Wroblewski, J. T. (1992b) In vitro interaction between cerebellar astrocytes and granule cells: A putative role for nitric oxide. Neuroscience Letters 135:5961. [LK]CrossRefGoogle Scholar
Kim, J. H., Wang, J.-J. & Ebner, T. J. (1987) Climbing fiber afferent modulation during treadmill locomotion in the cat. Journal of Neurophysiology 57:787802. [aJIS]CrossRefGoogle ScholarPubMed
Kim, J. H., Wang, J.-J. & Ebner, T. J. (1988) Alterations in simple spike activity and locomotor behavior associated with climbing fiber input to Purkinje cells in a decerebrate walking cat. Neuroscience 25:475–89. [aJIS]CrossRefGoogle Scholar
Klann, E., Chen, S. J. & Sweatt, J. D. (1993) Mechanism of protein kinase C activation during the induction and maintenance of long-term potentiation probed using a selective peptide substrate. Proceedings of the National Academy of Sciences of the USA 90:8337–41. [aFC]CrossRefGoogle ScholarPubMed
Klein, P. S., Sun, T. J., Saxe, C. L. III, Kimmel, A. R., Johnson, R. L. & Devreotes, P. N. (1988) A chemoattractant receptor controls development in Dictyostelium discoideum. Science 241:1467–72. [aSRV]CrossRefGoogle ScholarPubMed
Klopf, A. H. (1982) The hedonistic neuron: A theory of memory, learning and intelligence. Harper and Row Hemispheres. [aJCH]Google Scholar
Knöpfel, T., Vranesic, I., Staub, C. & Gahwiler, B. H. (1991) Climbing fibre responses in olivo-cerebellar slice cultures: 2. Dynamics of cytosolic calcium in Purkinje cells. European Journal of Neuroscience 3:343–48. [aMKan]CrossRefGoogle ScholarPubMed
Knowles, R. G., Palacios, M., Palmer, R. M. & Moncada, S. (1989) Formation of nitric oxide from L-arginine in the central nervous system: A transduction mechanism for stimulation of the soluble guanylate cyclase. Proceedings of the National Academy of Sciences of the USA 86:5159–62. [aFC, aSRV]CrossRefGoogle ScholarPubMed
Kobayashi, Y., Kawano, K., Takemura, A., Inoue, Y., Kitama, T., Comi, H. & Kawato, M. (1995) Inverse-dynamics representation of complex spike discharges of Purkinje cells in monkey cerebellar ventral parafloculus during ocular following responses. Society for Neuroscience Abstracts 21:140. [MKaw]Google Scholar
Kobayashi, Y., Kawano, K., Takemura, A., Inoue, Y., Kitama, T., Comi, H. & Kawato, M. (submitted) Climbing fiber discharges can convey information sufficient for motor learning with their ultra-low firing rates. [MKaw]Google Scholar
Koch, C. & Segev, I. (1989) Methods in neuronal modeling. MIT Press. [rJCH]Google Scholar
Kocsis, J. D., Eng, D. L. & Bhisitkul, R. B. (1984). Adenosine selectively blocks parallel fiber-mediated synaptic potentials in rat cerebellar coretx. Proceedings of the National Academy of Sciences of the USA 81:6531–34. [aDJL]CrossRefGoogle Scholar
Kohda, K., Inoue, T. & Mikoshiba, K. (1995). Ca2* release from Ca2* stores, particularly from ryanodine-sensitive Ca2* stores, is required for the induction of LTD in cultured cerebellar Purkinje cells. Journal of Neurophysiology 74:2184–88. [MKan, rDJL, rSRV]CrossRefGoogle ScholarPubMed
Kolb, F. P. & Rubia, F. J. (1980) Information about peripheral events conveyed to the cerebellum via the climbing fiber system in the decerebrate cat. Experimental Brain Research 38:363–73. [arJIS]CrossRefGoogle Scholar
Kolb, F. P., Rubia, F. J. & Bauswein, E. (1987) Cerebellar unit responses of the mossy fibre system to passive movements in the cerebrate cat: 1. Responses to static parameters. Experimental Brain Research 68:234–43. [DT]CrossRefGoogle Scholar
Komatsu, Y., Toyama, K., Maeda, J. & Sakaguchi, H. (1981) Long-term potentiation investigated in a slice preparation of striate cortex of young kittens. Neuroscience Letters 26:269–74. [aMKan]CrossRefGoogle Scholar
Konnerth, A. (1990) Patch-clamping in slices of mammalian CNS. Trends in Neuroscience 13:321–23. [aMKan]CrossRefGoogle ScholarPubMed
Konnerth, A., Dreessen, J. & Augustine, G. J. (1992) Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the USA 89:7051–55. [aFC, aMKan, arDJL, aSRV]CrossRefGoogle ScholarPubMed
Konnerth, A., Llano, I. & Armstrong, C. M. (1990) Synaptic currents in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the USA 87:2662–65. [aMKan, aDJL]CrossRefGoogle ScholarPubMed
Kom, H., Oda, Y. & Faber, D. S. (1992) Long-term potentiation of inhibitory circuits and synapses in the central nervous system. Proceedings of the National Academy of Sciences of the USA 89:440–43. [aMKan, RFT]Google Scholar
Kowall, N. W. & Mueller, M. O. (1988) Morphology and distribution of nicotinamide adenine dinucleotide phosphate (reduced form) diaphorase reactive neurons in human brainstem. Neuroscience 26:645–54. [aSRV]CrossRefGoogle ScholarPubMed
Krommenhoek, K. P., Van Opstal, A. J., Gielen, C. C. A. M. & Van Gisbergen, J. A. M. (1993) Remapping of neural activity in the motor colliculus: A neural network study. Vision Research 33:1287–98. [aJCH]CrossRefGoogle ScholarPubMed
Krupa, M. & Crépel, F. (1990) Transient sensitivity of rat cerebellar Purkinje cells to N-methyl-D-aspartate during development. A voltage-clamp study in in vitro slices. European Journal of Neuroscience 2:312–16. [aDJL]CrossRefGoogle ScholarPubMed
Krupa, D. J., Thompson, J. K. & Thompson, R. F. (1993) Localization of a memory trace in mammalian brain. Science 260:989–91. [aWTT, CW]CrossRefGoogle ScholarPubMed
Kuhnt, U. & Voronin, L. L. (1994) Interaction between paired-pulse facilitation and long-term potentiation in area CAI of guinea-pig hippocampal slices: Application of quanta! analysis. Neuroscience 62:392–97. [LJB]CrossRefGoogle Scholar
Kullman, D. M. (1994) Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: Implications for long-term potentiation. Neuron 12:1111–20. [LBJ]Google Scholar
Kusunold, M., Kano, M., Kano, M.-S. & Maekawa, K. (1990) Nature of optokinetic response and zonal organization of climbing fiber afférents in the vestibulo-cerebellum of die pigmented rabbit: 1. The flocculus. Experimental Brain Research 80:225–37. [aJIS]Google Scholar
Kuypers, H. G. J. M. & Lawrence, D. G. (1967) Cortical projections to the red nucleus and the brainstem in the rhesus monkey. Brain Research 4:151–88. [JDS]CrossRefGoogle Scholar
Künzle, H. & Akert, K. (1977) Efferent connections of cortical area 8 (frontal eye field) in Macaco fascicularis. A reinvestigation using the autoradio-graphie technique. Journal of Comparative Neurology 173:147–64. [JDS]CrossRefGoogle Scholar
Lackner, J. R. & DiZio, P. (1994) Rapid adaptation to coriolis force perturbations of arm trajectory. Journal of Neurophysiology 72:299313. [aAMS]CrossRefGoogle ScholarPubMed
Lacquaniti, F., Carrozzo, M. & Borghese, N. A. (1993) Time-varying mechanical behavior of multijointed arm in man. Journal of Neurophysiology 69:1443–64. [arAMS]CrossRefGoogle ScholarPubMed
Lacquaniti, F. & Maioli, C. (1989) The role of preparation in tuning anticipatory and reflex responses during catching. Journal of Neuroscience 9:134–48. [aAMS]CrossRefGoogle ScholarPubMed
Laine, J. & Axelrad, H. (1994) The candelabrum cell: A new interneuron in the cerebellar cortex. Journal of Comparative Neurology 339:159173. [aSRV]CrossRefGoogle ScholarPubMed
Lamarre, Y., Montigny, C., Dumont, M. & Weiss, M. (1971) Harmaline-induced rhythm activity of cerebellar and lower brain stem neurons. Brain Research 32:246–50. [aJIS]CrossRefGoogle Scholar
Lambolez, B., Audinat, E., Bochet, P., Crépel, F. & Rossier, J. (1992) AMPA receptor subunits expressed by single Purkinje cells. Neuron 9:247–58. [aFC]CrossRefGoogle ScholarPubMed
Lang, E. J. (1995) Synchronicity, rhythmicity, and movement: The role of the ilvocerebellar system in motor coordination. Ph.D. thesis. New York University. [arJIS]Google Scholar
Lang, E. J., Sugihara, I. & Llinás, R. (1989) Intraolivary injection of picrotoxin causes reorganization of complex spike activity. Society of Neuroscience Abstracts 15:77.5. [aJIS]Google Scholar
Lang, E. J., (1990) Lesions of the cerebellar nuclei, but not of the mesencephalic structures, alters the spatial pattern of complex spike synchronicity as demonstrated by multiple electrode recordings. Society Neuroscience Abstracts 16:370.3. [aJIS]Google Scholar
Lang, E. J., (1992) The ability of motor cortex stimulation to evoke vibrissal movements is modulated by a 10 Hz signal arising in the inferior olive. Society of Neuroscience Abstracts 18:178.6. [aJIS]Google Scholar
Larkman, A., Hannay, T., Stratford, K. & Jack, J. (1992) Presynaptic release probability influences the locus of long-term potentiation. Nature 360:7073. [LBJ]CrossRefGoogle ScholarPubMed
Lashley, K. S. (1951) The problem of serial order in behavior. Cerebral mechanisms in behavior. The Hixon Symposium 36:506–28. [aAMS]Google Scholar
Latash, L. P. (1979) Trace changes in the spinal cord and some basic problems of the neurophysiology of memory. In: Seventh Gagra talks: The neurophysiological basis of memory, ed. Ontani, T. N.. Tbilisi: Metsniereba. [LPL]Google Scholar
Latash, M. L. & Gottlieb, G. L. (1991) Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements. Neuroscience 43:697712. [aAMS]CrossRefGoogle ScholarPubMed
Latash, M. L. & Zatsiorsky, V. M. (1993) Joint stiffness: Myth or reality? Human Movement Sciences 12:653–92. [LPL]CrossRefGoogle Scholar
Lavond, D. G., Kanzawa, S. A., Ivkovich, D. & Clark, R. E. (1994) Transfer of learning but not memory after unilateral cerebellar lesion in rabbits. Behavioral Neuroscience 108:284–93. [CW]CrossRefGoogle Scholar
Lichtenberg, R. & Gilman, S. (1978) Speech disorders in cerebellar disease. Annals of Neurology 3:285–90. [aWTT]CrossRefGoogle Scholar
Lee, W. A. (1984) Neuromotor synergies as a basis for coordinated intentional action. Journal of Motor Behavior 16:135–70. [aAMS]CrossRefGoogle ScholarPubMed
Lee, W. A., Buchanan, T. S. & Rogers, M. W. (1987) Effects of arm acceleration and behavioral condition on the organization of postural adjustments during arm flexion. Experimental Brain Research 66:257–70. [aAMS]CrossRefGoogle ScholarPubMed
Leicht, R., Rowe, M. J. & Schmidt, R. F. (1977) Mossy and climbing fiber inputs from cutaneous mechanoreceptors to cerebellar Purkyne cells in unanesthetized cats. Experimental Brain Research 27:459–77. [aJIS]CrossRefGoogle ScholarPubMed
Leinders-Zufall, T., Rosenboom, H., Bamstable, C. J., Shepherd, G. M. & Zuff, F. (1995) A calcium-permeable cGMP-activated cation conductance in hippocampal neurons. NeuroReport 1761–65. [rSRV]CrossRefGoogle ScholarPubMed
Leiner, H. C. & Leiner, A. L. (1989) Reappraising the cerebellum: What does the hindbrain contribute to the forebrain? Behavioral Neuroscience 103:9981008. [aWTT]CrossRefGoogle ScholarPubMed
Leiner, H. C., Leiner, A. L. & Dow, R. S. (1986) Does the cerebellum contribute to mental skills? Behavioral Neuroscience 100:443–53. [aWlT, JDS, CW]CrossRefGoogle ScholarPubMed
Leiner, H. C., Leiner, A. L. & Dow, R. S. (1987) Cerebro-cerebellar learning loops in apes and humans. Italian Journal of Neurological Science 425436.Google ScholarPubMed
Leiner, H. C., Leiner, A. L. & Dow, R. S. (1989) Reappraising the cerebellum: What does the hindbrain contribute to the forebrain? Behavioral Neuroscience 103:9981008. [aJCH]CrossRefGoogle ScholarPubMed
Leiner, H. C., Leiner, A. L. & Dow, R. S. (1991) The human cerebrocerebellar system: Its computing, cognitive, and language skills. Behavioral and Brain Research 44:113–28. [aWTT]CrossRefGoogle ScholarPubMed
Leiner, H. C., Leiner, A. L. & Dow, R. S. (1993) Cognitive and language functions of the human cerebellum. Trends in Neuroscience 16:444–54. [PFCG, JDS]CrossRefGoogle ScholarPubMed
Lemij, H. G. (1990) Asymetrical adaptation of human saccades to anisometropic spectacles. Thesis, Erasmus University, Rotterdam. [HB]Google Scholar
Leonard, C. S. & Simpson, J. I. (1986) Simple spike modulation of floccular Purkinje cells during the reversible blockade of their climbing fiber afferents. In: Adaptive processes in visual and oculomotor systems, ed. Keller, E. & Zee, D.. Pergamon. [aJIS]Google Scholar
Leonard, C. S., Simpson, J. I. & Graf, W. (1988) Spatial organization of visual messages of the rabbit's cerebellar flocculus: 1. Typology of inferior olive neurons of the dorsal cap of Kooy. Journal of Neurophysiology 60:2073–90. [aJIS]CrossRefGoogle ScholarPubMed
Leranth, C. & Hamori, J. (1981) Quantitative electron microscope study of synaptic terminals to basket neurons in cerebellar cortex of rat. Journal of Mikroskopik-Anatomy Forsch. 95:114. [aSRV]Google ScholarPubMed
Lev-Ram, V., Makings, L. R., Keitz, P. F., Kao, J. P. Y. & Tsien, R. Y. (1995) Long-term depression in cerebellar Purkije neurons results from coincidence of nitric oxide and depolarization-induced Ca2* transients. Neuron 15:407–15. [JCH, NAH, TU, LBJ, MKan, DO, rDJL, rSRV]CrossRefGoogle Scholar
Lev-Ram, V., Miyakawa, H., Lasser-Ross, N. & Ross, W. N. (1992) Calcium transients in cerebellar Purkinje neurons evokes by intracellular stimulation. Journal of Neurophysiology 68:1167–77. [aMKan]CrossRefGoogle ScholarPubMed
Levi, G., Gordon, R. D., Gallo, V., Willdn, G. P. & Balazs, R. (1982) Putative amino acid transmitters in the cerebellum: 1. Depolarization induced release. Brain Research 239:425–45. [aDJL]CrossRefGoogle Scholar
Levin, M. F., Feldman, A. G., Milner, T. E. & Lamarre, Y. (1992) Reciprocal and coactivation commands for fast wrist movements. Experimental Brain Research 89:669–77. [aAMS, AGF]CrossRefGoogle ScholarPubMed
Li, J., Smith, S. S. & McElligott, J. G. (1995) Cerebellar nitric oxide is necessary for vestibulo-ocular reflex adaptation, a sensorimotor model of learning. Journal of Neurophysiology 74:489–94. [rDJL]CrossRefGoogle ScholarPubMed
Liao, D. Z., Hessler, N. A. & Malinow, R. (1995) Activation of postsynaptically silent synapses during pairing-induced LTP in cal region of hippocampal slice. Nature 375:400–4. [MB. LBJ]CrossRefGoogle Scholar
Lieberman, P. (1969) Primate vocalizations and human linguistic ability. Journal of the Acoustical Society of America 44:1574–84. [aWTT]CrossRefGoogle Scholar
Lincoln, T. M. & Comwell, T. L. (1993) Intracellular cyclic GMP receptor proteins. Federation of American Societies of Experimental Biology Journal 7:328–38. [aSRV]CrossRefGoogle ScholarPubMed
Linden, D. J. (1994a) Input-specific induction of cerebellar long-term depression does not require presynaptic alteration. Learning and Memory 1:121–28. [aDJL, NAH, LBJ]CrossRefGoogle Scholar
Linden, D. J. (1994b) Long-term synaptic depression in the mammalian brain. Neuron 12:457–72. [aJCH, aMKan. aDJL, RFT]CrossRefGoogle ScholarPubMed
Linden, D. J. (1995) Phospholipase A2 controls the induction of short-term versus long-term depression in the cerebellar Purkinje neuron in culture. Neuron 15:13931401. [rDJL]CrossRefGoogle ScholarPubMed
Linden, D. J. & Connor, J. A. (1991) Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 254:1656–59. [aFC, aMKan, aDJL, rSRV]CrossRefGoogle ScholarPubMed
Linden, D. J. & Connor, J. A. (1992) Long-term depression of glutamate currents in cultured cerebellar Purkinje neurons does not require nitric oxide signalling. European Journal of Neuroscience 4:1015. [aFC, aDJL. aSRV, NAH, DO]CrossRefGoogle Scholar
Linden, D. J. & Connor, J. A. (1993) Cellular mechanisms of long-term depression in the cerebellum. Current Opinion in Neurohiology 3:401–6. [aDJL]CrossRefGoogle ScholarPubMed
Linden, D. J. & Connor, J. A. (1995) Long-term synaptic depression. Annual Review of Neuroscience 18:319–57. [aDJL, RFT]CrossRefGoogle ScholarPubMed
Linden, D. J., Dawson, T. M. & Dawson, V. L. (1995) An evaluation of the nitric oxide/cGMP-dependent protein kinase cascade in die induction of cerebellar long-term depression in culture. Journal of Neuroscience 15(7):50985105. [NAH, rDJL, rSRV]CrossRefGoogle Scholar
Linden, D. J., Dickinson, M. H., Smeyne, M. & Connor, J. A. (1991) A long-term depression of AMPA currents in cultured cerebellar Purldnje neurons. Neuron 7:8189. [aFC, aJCH, aMKan, aDJL]CrossRefGoogle ScholarPubMed
Linden, D. J. & Routtenberg, A. (1989) The role of protein kinase C in long-term potentiation: A testable model. Brain Research Reviews 14:279–96. [MB]CrossRefGoogle ScholarPubMed
Linden, D. J., Smeyne, M. & Connor, J. A. (1993) Induction of cerebellar long-term depression in culture requires postsynaptic action of sodium ions. Neuron 10:10931100. [aDJL, PC]CrossRefGoogle Scholar
Linden, D. J., Smeyne, M. & Connor, J. A. (1994) Trons-ACPD, a metabotropic receptor agonist, produces calcium mobilization and an inward current in cultured cerebellar Purkinje neurons. Journal of Neurophysiology 71:1992–98. [aDJL]CrossRefGoogle Scholar
Linden, D. J., Smeyne, M., Sun, S. C. & Connor, J. A. (1992) An electrophysiological correlate of protein kinase C isozyme distribution in cultured cerebellar neurons. Journal of Neuroscience 12:3601–8. [aDJL]CrossRefGoogle ScholarPubMed
Lisberger, S. G. (1988) The neuronal basis for learning of simple motor skills. Science 242:728–35. [aJIS]CrossRefGoogle Scholar
Lisberger, S. G. (1994) Neural basis for motor learning in the vestibuloocular reflex of primates: 3. Computational and behavioral analysis of the sites of learning. Journal of Neurophysiology 72:974–98. [aJCH]CrossRefGoogle ScholarPubMed
Lisberger, S. G. & Fuchs, A. F. (1978) Role of primate flocculus during rapid behavioral modication of vestibuloocular reflex: 1. Purkinje cell activity during visually guided horizontal smooth pursuit eye movements and passive head rotation. Journal of Neurophysiology 41:733–63. [KH]CrossRefGoogle Scholar
Lisberger, S. G. & Pavelko, T. A. (1988) Brain stem neurons in modified pathways for motor learning in the primate vestibulo-ocular reflex. Science 242:77173. [aJIS]CrossRefGoogle ScholarPubMed
Lisberger, S. G. & Sejnowski, T. J. (1992) Motor learning in a recurrent network model based on the vestibulo-ocular reflex. Nature (London) 360:159–61. [aJIS]CrossRefGoogle Scholar
Llano, I., DiPolo, R. & Marty, A. (1994) Calcium-induced calcium release in cerebellar Purkinje cells. Neuron 12:663–73. [PC, rSRV]CrossRefGoogle ScholarPubMed
Llano, I., Dreessen, J., Kano, M. & Konnerth, A. (1991) Intradendritic release of calcium induced by glutamate in cerebellar Purkinje cells. Neuron 7:577–83. [aFC. aMKan. aDJL]CrossRefGoogle ScholarPubMed
Llano, I., Leresche, N. & Marty, A. (1991) Calcium entry increases die sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory postsynaptic currents. Neuron 6:565–74. [aMKan]CrossRefGoogle Scholar
Llano, I., Marty, A., Armstrong, C. & Konnerth, A. (1991) Synaptic- and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices. Journal of Physiology (London) 424:183213. [aMKan]CrossRefGoogle Scholar
Llinás, R. (1964) Mechanisms of supraspinal actions upon spinal cord activities differences between reticular and cerebellar inhibitory actions upon alpha extensor motorneurons. Journal of Neurophysiology 27:1117–26. [aAMS]CrossRefGoogle Scholar
Llinás, R. (1970) Neuronal operations in cerebellar transactions. In: The neurosciences: Second study program, ed. Schmitt, F. O.. Rockefeller University Press. [aJIS]Google Scholar
Llinás, R. (1974) Eighteenth Bowditch lecture: Motor aspects of cerebellar control. Physiologist 17:1946. [aJIS]Google ScholarPubMed
Llinás, R. (1981) Electrophysiology of cerebellar networks. In: Handbook of physiology, sect. 1, vol 2, part 2, ed. Brooks, V. B.. American Physiological Society. [aWTT]Google Scholar
Llinás, R. (1985) Functional significance of the basic cerebellar circuit in motor coordination. In: Cerebellar functions, ed. Bloedel, J. R., Dichgans, J. & Precht, W.. Springer-Verlag. [aJIS]Google Scholar
Llinás, R. (1991) The noncontinuous nature of movement execution. In: Motor control: Concepts and issues, ed. Humphrey, D. R. & Freund, H.-J.. Wiley. [aJIS]Google Scholar
Llinás, R. (1995) Thorny issues in neurons [News and Views]. Nature 373:107–8. [rDJL]CrossRefGoogle ScholarPubMed
Llinás, R., Baker, R. & Sotelo, C. (1974) Electrotonic coupling between neurons in cat inferior olive. Journal of Neurophysiology 37:560–71. [arJIS]CrossRefGoogle ScholarPubMed
Llinás, R. & Mühlethaler, M. (1988a) An electrophysiological study of the in vitro, perfused brain stem-cerebellum of adult guinea-pig. Journal of Physiology (London) 404:215–40. [aJIS]CrossRefGoogle ScholarPubMed
Llinás, R. & Mühlethaler, M. (1988b) Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. Journal of Physiology (London) 404:241–58. [arJIS.aSRV]CrossRefGoogle ScholarPubMed
Llinás, R. & Sasaki, K. (1989) The functional organization of the olivo-cerebellar system as examined by multiple Purkinje cell recordings. European Journal of Neuroscience 1:587602. [aJIS, CW]CrossRefGoogle ScholarPubMed
Llinás, R. & Sugimori, M. (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. Journal of Physiology (London) 305:197213. [aJIS]CrossRefGoogle ScholarPubMed
Llinás, R. & Volkind, R. A. (1973) The olivo-cerebellar system: Functional properties as revealed by harmaline-induced tremor. Experimental Brain Research 18:6987. [aJIS]CrossRefGoogle ScholarPubMed
Llinás, R., Walton, K., Hillman, D. E. & Sotelo, C. (1975) Inferior olive: Its role in motor learning. Science 190:230–31. [aWTT]CrossRefGoogle Scholar
Llinás, R. & Welsh, J. P. (1993) On the cerebellum and motor learning. Current Opinion in Neurobiology 3:958–65. [aJCH, aJIS]CrossRefGoogle ScholarPubMed
Llinás, R. & Yarom, Y. (1981a) Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. Journal of Physiology (London) 315:549–67. [aJIS]CrossRefGoogle ScholarPubMed
Llinás, R. & Yarom, Y. (1981b) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. Journal of Physiology (London) 315:569–84. [aJIS]CrossRefGoogle ScholarPubMed
Llinás, R. & Yarom, Y. (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: An in vitro study. Journal of Physiology (London) 376:163–82. [aJIS]CrossRefGoogle ScholarPubMed
Logan, C. G. & Grafton, S. T. (1995) Functional anatomy of humaneyeblink conditioning determined with regional cerebral glucose metabolism and positron-emission tomography. Proceedings of National Academy of Sciences of the USA 92:7500–4. [DT]CrossRefGoogle ScholarPubMed
Lohmann, S. M., Walter, U., Miller, P. E., Greengard, P. & Camilli, P. D. (1981) Immunohistochemical localization of cyclic GMP-dependent protein kinase in mammalian brain. Proceedings of the National Academy of Sciences of the USA 78:653–57. [aFC, aDJL, aSRV]CrossRefGoogle ScholarPubMed
Lopez-Bameo, J., Darlot, C., Berthoz, A. & Baker, R. (1982) Neuronal activity in prepositus nucleus correlated with eye movement in the alert cat. Journal of Neurophysiology 47:329–52. [aJIS]CrossRefGoogle Scholar
Lou, J.-S. & Bloedel, J. R. (1986) The responses of simultaneously recorded Purkinje cells to the perturbations of the step cycle in the walking ferret: A study using a new analytical method – the real time post synaptic response (RTPR). Brain Research 365:340–44. [aJIS]Google Scholar
Lou, J.-S. & Bloedel, J. R. (1992a) Responses of sagittally aligned Purkinje cells during perturbed locomotion: synchronous activation of climbing fiber inputs. Journal of Neurophysiology 68:570–80. [aJIS]CrossRefGoogle ScholarPubMed
Lou, J.-S. & Bloedel, J. R. (1992b) Responses of sagittally aligned Purkinje cells during perturbed locomotion: relation of climbing fiber activation to simple spike modulation. Journal of Neurophysiology 68:1820–33. [aJIS]CrossRefGoogle ScholarPubMed
Luciano, L. (1891) Il cervelletto: Nuovi studi di fisiologia normale e patolgica. Firenze: Le Monnier. [aWTT]Google Scholar
Lou, J.-S. & Bloedel, J. R. (1915) The hindbrain. In: Human physiology, trans. Welby, F. A.. Macmillan. [aWTT]Google Scholar
Luebke, A. E. & Robinson, D. A. (1992) Climbing fiber intervention blocks plasticity of the vestibuloocular reflex. Annals of the New York Academy of Science 656:428–30. [aJCH]CrossRefGoogle ScholarPubMed
Lum-Ragan, J. T. & Gribkoff, V. K. (1993) The sensitivity of hippocampal long-term potentiation to nitric oxide synthse inhibitors is dependent upon the pattern of conditioning stimulation. Neuroscience 57:973–83. [aDJL]CrossRefGoogle Scholar
Luo, D., Knezevich, S. & Vincent, S. R. (1993) N-methyl-D-aspartate-induced nitric oxide release: An in vivo microdialysis study. Neuroscience 57:897900. [aSRV]CrossRefGoogle ScholarPubMed
Luo, D., Leung, E. & Vincent, S. R. (1994) Nitric oxide-dependent efflux of cGMP in rat cerebellar cortex: An in vivo microdialysis study. Journal of Neuroscience 14:263–71. [arSRV, LK]CrossRefGoogle ScholarPubMed
Luo, D. & Vincent, S. R. (1994) Metalloporphyrins inhibit nitric oxide-dependent cGMP formation in vivo. European Journal of Pharmacology 267:263–67. [DO]CrossRefGoogle ScholarPubMed
Luthi, A., Laurent, J. P., Figurov, A., Muller, D. & Schachner, M. (1994) Hippocampal long-term potentiation and pleural cell-adhesion molecules LI and NCAM. Nature 372:777–79. [MB]CrossRefGoogle Scholar
Lynch, J. C., Hoover, J. E. & Strick, P. L. (1992) The primate frontal eye field is the target of neural signals from the substantia nigra, superior colliculus, and dentate necleus. Society for Neuroscience Abstracts 18:855. [aWTT]Google Scholar
MacKay, W. A. (1988) Unit acitivity in the cerebellar nuclei related to arm reaching movements. Brain Research 442:240. [aAMS]CrossRefGoogle Scholar
MacKay, W. A. & Murphy, J. T. (1979) Cerebellar modulation of reflex gain. Progress in Neurobiology 13:1410–23. [aAMS, aWTT]CrossRefGoogle ScholarPubMed
Macklis, R. M. & Macklis, J. D. (1992) Historical and phrenologic reflections on the nonmotor functions of the cerebellum: Love under the tent? Neurology 42:928–32. [aWTT]CrossRefGoogle ScholarPubMed
Macpherson, J. M. (1988a) Strategies that simplify the control of quadrupedal stance: 1. Forces at the ground. Journal of Neurophysiology 60:204–17. [aAMS]CrossRefGoogle ScholarPubMed
Macpherson, J. M. (1988b) Strategies that simplify the control of quadrupedal stance: 2. Electromyographic activity. Journal of Neurophysiology 60:218–31. [aAMS]CrossRefGoogle ScholarPubMed
Macpherson, J. M. (1991) How flexible are muscle synergies? In: Motor control: Concepts and issues, ed. Humphrey, D. R. & Freund, H.-J.. Wiley. [aAMS]Google Scholar
Maekawa, K. & Simpson, J. I. (1973) Climbing fiber responses evoked in vestibulo-cerebellum of rabbit from visual system. Journal of Neurophysiology 36:649–66. [aJIS]CrossRefGoogle Scholar
Mahamud, S., Barto, A. G., Kettner, R. E. & Houk, J. C. (1995) A model of prediction in smooth eye movements. Fourth Annual Computation and Neural Systems Conference. [aJCH]Google Scholar
Mai, N., Bolsinger, P., Avarello, M., Diener, H. C. & Dichgans, J. (1988) Control of isometric finger force in patients with cerebellar disease. Brain 111:973–98. [aAMS]CrossRefGoogle ScholarPubMed
Mailman, R. B., Mueller, R. A. & Breese, G. R. (1978) The effect of drugs which alter GABA-ergic function on cerebellar guanosine-3',5'- monophosphate content. Life Sciences 23:623–28. [aSRV]CrossRefGoogle ScholarPubMed
Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoli, R. A. & Waxham, M. N. (1989) An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340:554–57. [MB]CrossRefGoogle ScholarPubMed
Malkmus, M., Miall, R. C. & Stein, J. F. (in preparation) A model of the cerebellar cortex: Learning sensory predictions. [RCM]Google Scholar
Mallorga, P., Tallman, J. F., Henneberry, R. C., Hirata, F., Strittmatter, W. T. & Axelrod, J. (1980). Mepacrine blocks beta adrenergic agonist-induced desensitization in astrocytoma cells. Proceedings of the National Academy of Sciences of the USA 77:1341–45. [aDJL]CrossRefGoogle ScholarPubMed
Mano, N., Kanazawa, I. & Yamamoto, K. (1986) Complex-spike activity of cerebellar Purkinje cells related to wrist tracking movement in monkey. Journal of Neurophysiology 56:137–58. [aJCH, aJIS, MD]CrossRefGoogle ScholarPubMed
Mano, N., I., Kanazawa & Yamamoto, K. (1989) Voluntary movements and complex-spike discharges of cerebellar Purkinje cells. In: The olivocerebellar system in motor control: Experimental brain research series 17, ed. Strata, P.. Springer-Verlag. [aJIS]Google Scholar
Mano, N.-I. & Yamamoto, K. I. (1980) Simple-spike activity of cerebellar Purkinje cells related to visually guided wrist tracking movement in the monkey. Journal of Neurophysiology 43:713–28. [aAMS]CrossRefGoogle ScholarPubMed
Manzoni, O. J., Weisskopf, M. G. & Nicoli, R. A. (1994) MCPG antagonizes metabotropic glutamate receptors but not long-term potentiation in the hippocampus. European Journal of Neuroscience 6:1050–54. [MB]CrossRefGoogle Scholar
Mao, C. C., Guidotti, A. & Costa, E. (1974a) The regulation of cyclic guanosine monophosphate in rat cerebellum: Possible involvement of putative amino acid neurotransmitters. Brain Research 79:510–14. [aSRV]CrossRefGoogle ScholarPubMed
Mao, C. C., Guidotti, A. & Costa, E. (1974b) Interactions between g-aminobutyric acid and cyclic guanosine 3',5' monophosphate in rat cerebellum. Molecular Pharmacology 10:736–45. [aSRV]Google Scholar
Mao, C. C., Guidotti, A. & Landis, S. (1975) Cyclic GMP: Reduction of cerebellar concentrations in ‘nervous’ mutant mice. Brain Research 90:335–39. [arSRV, LK]CrossRefGoogle ScholarPubMed
Marcinkiewicz, M., Morcos, R. & Chretien, M. (1989) CNS connections with the median raphe nucleus: Retrograde tracing with WGA-apoHRP-gold complex in the rat. Journal of Comparative Neurology 289:1135. [JDS]CrossRefGoogle ScholarPubMed
Maren, S. & Baudry, M. (1995) Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: Relationships to learning and memory. Neurobiology of Learning & Memory 63:118. [MB]CrossRefGoogle ScholarPubMed
Marquis, M. & Green, E. J. (1994) Cortical representation of motion during unrestrained spatial navigation in the rat. Cerebral Cortex 7:2739. [SMO]Google Scholar
Marr, D. (1969) A theory of cerebellar cortex. Journal of Physiology (London) 202:437–70. [aFC, arJCH, aJIS, aWTT, MD, CG, PFCG, DJ, EDS, FS, JDS]CrossRefGoogle ScholarPubMed
Martin, L. J., Blackstone, C. D., Huganir, R. L. & Price, D. L. (1992) Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9:259–70. [aFC, aDJL]CrossRefGoogle ScholarPubMed
Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J. & Thach, W. T. (1993) Storage of multiple gaze-hand calibrations. Society for Neuroscience Abstracts 19:980. [aWTT]Google Scholar
Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J. & Thach, W. T. (1995) Localization of specific regions of the cerebellar system involved in prism adaptation. Society for Neuroscience Abstracts. [aWTT]Google Scholar
Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J. & Thach, W. T. (in press a) Throwing while looking through prisms: 1. Focal olivocerebellar lesions impair adaptation. Brain. [rWTT]Google Scholar
Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J. & Thach, W. T. (in press b) Throwing while looking through prisms: 2. Specificity and storage of multiple gaze-throw calibrations. Brain. [rWTT]Google Scholar
Marwaha, J., Palmer, M. R., Woodward, D. J., Hoffer, B. J. & Freedman, R. (1980) Electrophysiological evidence for presynaptic actions for phencyclidine on noradrenergic transmission in rat cerebellum. Journal of Pharmacology and Experimental Therapeutics 215:606–13. [aSRV]Google ScholarPubMed
Massicotte, G. & Baudry, M. (1991) Triggers and substrates of hippocampal synaptic plasticity. Neurobiology and Biobehavioral Review 15:415–23. [MB]CrossRefGoogle ScholarPubMed
Massion, J. (1973) Intervention des voies cérébello-corticales et cortico-cérébelleuses dans l'organisation et la régulation du mouvement. Jounal of Physiology (Paris) 67:117A–170A. [aAMS]Google Scholar
Massion, J. (1992) Movement, posture and equilibrium: Interaction and coordination. Progress in Neurobiology 38:3556. [aAMS]CrossRefGoogle ScholarPubMed
Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R. & Nakanishi, S. (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349:760–65. [aDJL]CrossRefGoogle ScholarPubMed
Matsumoto, M., Nakagawa, T., Inoue, T., Nagata, E., Tanaka, K., Takano, H., Minowa, O., Kuno, J., Sakakibara, S., Yamada, M., Yoneshima, H., Miyawaki, A., Fukuuchi, Y., Furuichi, T., Okano, H., Miloshita, K. & Noda, T. (1996) Ataxia and epileptic seizures in mice lacking type 1 inositol-1,4,5-triphosphate receptor. Nature 379:168–71. [rDJL]CrossRefGoogle Scholar
Matsumoto, T., Nakane, M., Pollock, J. S., Kuk, J. E. & Forstermann, U. (1993) A correlation between soluble brain nitric oxide synthase and NADPH-diaphorase is only seen after exposure of the tissue to fixative. Neuroscience Letters 155:6164. [aSRV]CrossRefGoogle ScholarPubMed
Matsuoka, I., Giuili, G., Poyard, M., Stengel, D., Parma, J., Guellaen, G. & Hanoune, J. (1992) Localization of adenylyl and guanylyl cyclase in rat brain by in situ hybridization: Comparison with calmodulin mRNA distribution. Journal of Neuroscience 12:3350–60. [aSRV]CrossRefGoogle ScholarPubMed
Mauk, M. D., Steinmetz, J. E. & Thompson, R. F. (1986) Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proceedings of the National Academy of Sciences of the USA 83:5349–53. [RFT, CW]CrossRefGoogle ScholarPubMed
May, J. G. & Anderson, R. A. (1986) Different patterns of corticopontine projections from separate cortical fields within the inferior parietal lobule and dorsal prelunate gyrus of the macaque. Experimental Brain Research 63:265–78. [JDS]CrossRefGoogle ScholarPubMed
May, P. J., Hall, W. C., Porter, J. D. & Sakai, S. T. (1993) The comparative anatomy of nigral and cerebellar control over tectally initiated orienting movements. In: Role of the cerebellum and basal ganglia in voluntary movement, ed. Mano, N., Hamada, I. & DeLong, M. R.. Excerpta Medica. [aWTT]Google Scholar
Mayer, B., John, M. & Böhme, E. (1990) Purification of a Ca2+ calmodulin-dependent nitric oxide synthase from porcine cerebellum. Federation of European Biocliemical Societies Letters 277:215–19. [aSRV]CrossRefGoogle ScholarPubMed
Mayer, B., Klatt, P., Bohme, E. & Schmidt, K. (1992) Regulation of neuronal nitric oxide and cyclic GMP formation by Ca2+. Journal of Neurochemistry 59:2024–29. [aSRV, LK]CrossRefGoogle ScholarPubMed
Mayer, M. L. & Westbrook, G. L. (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Progress in Neurobiology 28:197276. [aFC]CrossRefGoogle ScholarPubMed
Mays, L. E. & Sparks, D. L. (1980) Saccades are spatially, not retinocentrally, coded. Science 208:1163–65. [HB]CrossRefGoogle Scholar
Mazziotta, J. C., Grafton, S. T. & Woods, R. C. (1921) The human motor system studied with PET measurements of cerebral blood flow: Topography and motor learning. In: Brain work and mental activity (Alfred Benzen Symposium 31), ed. Lassen, N. A. Ingvar, D. H., Raichle, M. E. & Friberg, L.. Copenhagen: Munksgaard. [aWTT]Google Scholar
McCollum, G. (1992) Rules of combination that generate climbing fiber tactile receptive fields. Neuroscience 50(3):707–25. [aJIS]CrossRefGoogle ScholarPubMed
McCollum, G. (submitted) Climbing fiber ensemble activity indicated by receptive fields. [PDR]Google Scholar
McCormick, D. A., Lavond, D. G., Clark, G. A., Kettner, R. E., Rising, C. E. & Thompson, R. F. (1981) The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. Bulletin of the Psychonomic Society 18:105–15. [aWTT]CrossRefGoogle Scholar
McCormick, D. A., Steinmetz, J. E. & Thompson, R. F. (1985) Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Research 359:120–30. [RFT]CrossRefGoogle ScholarPubMed
McCormick, D. A. & Thompson, R. F. (1984) Cerebellum: Essential involvement in the classically conditioned eyelid response. Science 223:296–99. [aWTT]CrossRefGoogle ScholarPubMed
McCrea, D. A. (1992) Can sense be made of spinal intemeurons. Beliavioral and Brain Sciences 15:633–43. [aAMS]Google Scholar
McCrea, R. A. & Baker, R. (1985). Anatomical connections of the nucleus prepositus of the cat. Journal of Comparative Neurology 237:377407. [aJIS]CrossRefGoogle ScholarPubMed
McDevitt, C. J., Ebner, T. J. & Bloedel, J. R. (1982) The changes in Purkinje cell simple spike activity following spontaneous climbing fiber inputs. Brain Researcli 237:484–91. [aJIS]CrossRefGoogle ScholarPubMed
McDonald, L. J. & Moss, J. (1993) Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. Proceedings of the National Academy of Sciences of the USA 90:6238–41. [aSRV]CrossRefGoogle ScholarPubMed
McFarland, J. L. & Fuchs, A. F. (1992) Discharge patterns in nucleus prepositus hyposglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques. Journal of Neurophysiology 68:319–32. [aJIS]CrossRefGoogle ScholarPubMed
McGlade-McCulloh, E., Yamamoto, H., Tan, S. E., Bricjey, D. A. & Soderling, T. R. (1993) Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II. Nature 362:640–42. [MB]CrossRefGoogle ScholarPubMed
McGlinchey-Berroth, R., Cermak, L. S., Carrillo, M. C., Armfield, S., Gabrieli, J. D. E. & Disterhoft, J. F. (1995) Impaired delay eyeblink conditioning in amnesic Korsakoffs patients and recovered alcoholics. Alcoholism: Clinical Experimental Research 19:1127–32. [CW]CrossRefGoogle ScholarPubMed
Mcllwain, J. (1986) Effects of eye position on saccades evoked electrically from superior colliculus of alert cats. Journal of Neurophysiology 55:97112. [aJCH]CrossRefGoogle Scholar
McLaughlin, S. (1967) Parametric adjustment in saccadic eye movements. Perception & Psychophysics 2:359–62. [HB]CrossRefGoogle Scholar
McNaughton, B. L. & Nadel, L. (1990) Hebb-Marr networks and the neurobiological representation of action of space. MIT Press. [SMO]Google Scholar
Meffert, M. K., Haley, J. E., Schuman, E., Schulman, H. & Madison, D. V. (1994) Inhibition of hippocampal heme oxygenase, nitric oxide synthase, and long-term potentiation by metalloporphyrins. Neuron 13:1225–33. [DO]CrossRefGoogle ScholarPubMed
Melis, B. J. M. & van Gisbergen, J. A. M. (1995) Short-term adaptation of electrically-induced saccades in monkey superior colliculus. Submitted manuscript. [CG]CrossRefGoogle Scholar
Melvill-Jones, G. & Watt, D. G. D. (1971) Observations on the control of stepping and hopping movements in man. Journal of Physiology 40:1038–50. [aWTT]Google Scholar
Meyer-Lohman, J., Hore, J. & Brooks, V. B. (1977) Cerebellar participation in generation of prompt arm movements. Journal of Neurophysiology 40:1038–50. [aWTT]CrossRefGoogle Scholar
Miall, R. C., Weir, D. J. & Stein, J. F. (1987) Visuo-motor tracking during reversible inactivation of the cerebellum. Experimental Brain Research 65:455–64. [aAMS]CrossRefGoogle ScholarPubMed
Miall, R. C., Weir, D. J., Wolpert, D. M. & Stein, J. F. (1993) Is the cerebellum a Smith predictor? Journal of Motor Behavior 25:203–16. [aJCH, RCM, rAMS]CrossRefGoogle ScholarPubMed
Miall, R. C. & Wolpert, D. M. (1996) Forward models in physiological motor control. Submitted manuscript. [RCM]CrossRefGoogle Scholar
Middleton, F. A. & Strick, P. L. (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–61. [aJCH, JDS, CW]CrossRefGoogle ScholarPubMed
Midtgaard, J. (1992) Membrane properties and synaptic responses of Golgi cells and stellate cells in the turtle cerebellum in vitro. Journal of Physiology (London) 457:329–54. [KH]CrossRefGoogle ScholarPubMed
Milak, M. S., Bracha, V. & Bloedel, J. R. (1995) Relationship of simultaneously recorded cerebellar nuclear neuron discharge to the acquisition of a complex, operantly conditioned forelimb movement in cats. Experimental Brain Research 105:325–30. [rAMS]CrossRefGoogle Scholar
Miles, F. A., Braitman, D. J. & Dow, B. M. (1980) Long-term adaptive changes in primate vestibuloocular reflex: 4. Electrophysiological observations in flocculus of adapted monkeys. Journal of Neurophysiology 43:1477–93. [aJIS]CrossRefGoogle Scholar
Miles, F. A. & Lisberger, S. G. (1981) Plasticity in the vestibulo-ocular reflex: A new hypothesis. Annual Review of Neuroscience 4:273–99. [aJCH, aJIS]CrossRefGoogle ScholarPubMed
Miller, S. & Oscarsson, O. (1970) Termination and functional organization of spinoolivocerebellar paths. In: The cerebellum in health and disease, ed. Fields, W. S. & Willis, W. D.. Green. [DF]Google Scholar
Miller, W. T. (1987) Sensor-based control of robotic manipulators using a general learning algorithm. IEEE Journal of Robotics & Automation RA-3:157–65. [aJCH]CrossRefGoogle Scholar
Milner, T. E. (1993) Dependence of elbow viscoelastic behavior on speed and loading in voluntary movements. Experimental Brain Research 93:177–80. [aAMS]CrossRefGoogle ScholarPubMed
Milner, T. E. & Cloutier, C. (1993) Compensation for mechanically unstable loading in voluntary wrist movement. Experimental Brain Research 94:522–32. [arAMS]CrossRefGoogle ScholarPubMed
Mink, J. W. & Thach, W. T. (1991a) Basal ganglia motor control: 1. Nonexclusive relation of paludal discharge to five movement modes. Journal of Neurophysiology 65:273300. [rWTT]CrossRefGoogle Scholar
Mink, J. W. & Thach, W. T. (1991b) Basal ganglia motor control: 2. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. Journal of Neurophysiology 65:201–29. [rWTT]CrossRefGoogle ScholarPubMed
Mink, J. W. & Thach, W. T. (1991c) Basal ganglia motor control: 3. Pallidal ablation: Normal reaction time, muscle cocontraction, and slow movement, Journal of Neurophysiology 65:330–51. [rWTT]CrossRefGoogle ScholarPubMed
Minsky, M. L. (1963) Steps toward artificial intelligence. In: Computers and thought, ed. Feigenbaum, E. A. & Feldman, J.. McGraw-Hill. [JCH]Google Scholar
Minsky, M. & Paperi, S. (1969) Perceptrons. MIT Press.Google Scholar
Mitoma, H., Kobayashi, T., Song, S.-Y. & Konishi, S. (1994) Enhancement by serotonin of GABA-mediated inhibitory currents in cerebellar Purkinje cells. Neuroscience Letters 173:127–30. [aMKan]CrossRefGoogle ScholarPubMed
Miyakawa, H., Lev-Ram, V., Lasser-Ross, N. & Ross, W. N. (1992) Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. Journal of Neurophysiology 4:1178–89. [aFC, aMKan]CrossRefGoogle Scholar
Miyashita, E. & Tamai, Y. (1989) Subcortical connections to frontal “oculomotor” areas in the cat. Brai. Research 502:7587. [aJIS]Google Scholar
Mizukawa, K., McGeer, P. L., Vincent, S. R. & McGeer, E. G. (1989) Distribution of reduced-nicotinamide-adenine-dinucleotide phosphate diaphorase positive cells and fibers in the cat central nervous system. Journal of Comparative Neurology 279:281311. [aSRV]CrossRefGoogle ScholarPubMed
Molchan, S. E., Sunderland, T., Mclntosh, A. R., Herscovitch, P. & Schreurs, B. G. (1994) A functional anatomical study of associative learning in humans. Proceedings of National Academy of Sciences of the USA 91:8122–26. [DT]CrossRefGoogle ScholarPubMed
Montarolo, P. G., Palestini, M. & Strata, P. (1982) The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. Journal of Physiology (London) 332:187202. [aJIS]CrossRefGoogle ScholarPubMed
Moore, J. W., Desmond, J. E. & Berthier, N. E. (1989) Adaptively timed conditioned responses and the cerebellum: A neural network approach. Biological Cybernetics 62:1728. [aJCH]CrossRefGoogle ScholarPubMed
Mori–Okamoto, J., Okamoto, K. & Tatsuno, J. (1993) Intracellular mechanisms underlying the suppression of AMPA responses by frans-ACPD in cultured chick Purkinje neurons. Molecular and Cellular Neurosciences 4:375–86. [aSRV, JMO]CrossRefGoogle ScholarPubMed
Morishita, W. & Shastry, B. R. (1993) Long-term depression of IPSPs in rat deep cerebellar nuclei. NeuroReport 4:719–22. [aMKan, RFT]CrossRefGoogle ScholarPubMed
Mortimer, J. A. (1973) Temporal sequence of cerebellar Purkinje and nuclear activity in relation to the acoustic startle response. Brain Research 50:457–62.CrossRefGoogle Scholar
Moss, S. J., Doherty, C. A. & Huganir, R. L. (1992) Identification of the cAMP-dependent protein kinase and protein kinase C phosphorylation sites within the major intracellular domains of the βl, γ2S, and γ2L subunits of the γ-aminobutyric acid type A receptor. Journal of Biological Chemistry 267:14470–76. [aMKan]CrossRefGoogle Scholar
Moss, S. J., Smart, T. G., Blackstone, C. D. & Huganir, R. L. (1992) Functional modulation of GABAA receptors by cAMP-dependent protein phosphorylation. Science 257:661–65. [aMKan]CrossRefGoogle ScholarPubMed
Moyer, J. R., Deyo, R. A. & Disterhoft, J. F. (1990) Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behavioral Neuroscience 104:243–52. [CW]CrossRefGoogle ScholarPubMed
Mugnaini, E. (1983) The length of cerebellar parallel fibers in chicken and rhesus monkey. Journal of Comparative Neurology 220:715. [aWTT]CrossRefGoogle ScholarPubMed
Mugnaini, E. & Maler, L. (1993) Comparison between the fish electrosensory lateral line lobe and the mammalian dorsal eochlear nucleus. In: Contributions of electrosensory systems to neurobiology and neuroethology, vol. 173, ed. Bell, C. C., Hopkins, C. D. & Grant, K.. Journal of Comparative Physiology A. [arJCH]Google Scholar
Mulkey, R. M., Herron, C. E. & Malenka, R. C. (1993) An essential role for protein phosphatases in hippocampal long-term depression. Science 261:1051–55. [MB]CrossRefGoogle ScholarPubMed
Mulle, C., Choquet, D., Korn, H. & Changeux, J. P. (1992) Calcium influx through nicotinic receptor in rat central neurons: Its relevance to cellular regulation. Neuron 8:135–43. [aMKan]CrossRefGoogle ScholarPubMed
Murphy, J. T. & Sabah, N. H. (1970) The inhibitory effect of climbing fiber activation and cerebellar Purkinje cells. Brain Research 19:486–90. [aJIS, MAA]CrossRefGoogle ScholarPubMed
Murphy, S., Simmons, M. L., Agullo, L., Garcia, A., Feinstein, D. L., Galea, E., Reis, D. J., Minc-Golomb, D. & Schwartz, J. P. (1993) Synthesis of nitric oxide in CNS glial cells. Trends in Neuroscience 8:323–28. [DO, rSRV]CrossRefGoogle Scholar
Mussa-Ivaldi, F. A., Hogan, N. & Bizzi, E. (1985) Neural, mechanical, and geometric factors subserving arm posture in humans. Journal of Neuroscience 5:2732–43. [aAMS]CrossRefGoogle ScholarPubMed
Nagao, S. (1983) Effects of vestibulo-cerebellar lesions upon dynamic characteristics and adaptation of vestibulo-ocular and optoldnetic responses ain pigmented rabbits. Experimental Brain Research 53:3646. [aJIS]CrossRefGoogle Scholar
Nagao, S. (1988) Behavior of floccular Purkinje cells correlated with adaptation of horizontal optokinetie eye movement response in pigmented rabbits. Experimental Brain Research 73:489–97. [aJIS]CrossRefGoogle ScholarPubMed
Nagao, S. & M., Ito (1991) Subdural application of hemoglobin to the cerebellum blocks vestibuloocular reflex adaptation. NeuroReport 2:193–96. [aFC, aMKan. aSRV, aDJL]CrossRefGoogle Scholar
Nairn, A. C. & Greengard, P. (1983) Cyclic GMP-dependent protein phosphorylation in mammalian brain. Federation of American Societies of Experimental Biology, Proceedings 42:3107–13. [aSRV]Google ScholarPubMed
Nakamura, H., Saheki, T., Ichiki, H., Nakata, K. & Nakagawa, S. (1991) Immunocytochemical localization of argininosuccinate synthetase in the rat brain. Journal of Comparative Neurology 312:652–79. [aSRV, LK]CrossRefGoogle ScholarPubMed
Nakamura, H., Saheki, T. & Nakagawa, S. (1990) Differential cellular localization of enzymes of L-arginine metabolism in the rat brain. Brain Research 530:108–12. [aSRV, LH]CrossRefGoogle ScholarPubMed
Nakane, M., Ichikawa, M. & Deguchi, T. (1983) Light and electron microscopic demonstration of guanylate cyclase in rat brain. Brain Research 273:915. [aSRV, LK]CrossRefGoogle ScholarPubMed
Nakanishi, N. (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597603. [aFC]CrossRefGoogle ScholarPubMed
Nakanishi, N., Sneider, N. A. & Axel, R. (1990) A family of glutamate receptor genes: Evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5:569–81. [aFC]CrossRefGoogle ScholarPubMed
Nakazawa, K., Mikawa, S., Hashikawa, T. & Ito, M. (1995) Transient and persistent phosphorylation of AMPA-type glutamate receptor subunits in cerebellar Purkinje cells. Neuron 15:697709. [rDJL]CrossRefGoogle ScholarPubMed
Nakazawa, K. & Sano, M. (1974) Studies on guanylate cyclase. A new assay method for guanylate cyclase and properties of the cyclase from rat brain. Journal of Biological Chemistry 249:4207–11. [aSRV]CrossRefGoogle ScholarPubMed
Napper, R. M. A. & Harvey, R. J. (1988) Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. Journal of Comparative Neurology 274:168–77. [FS]CrossRefGoogle Scholar
Nathanson, J. A., Scavone, C., Scanlon, C. & McKee, M. (1995) The cellular Na pump as a site of action for carbon monoxide and glutamate: A mechanism for long-term modulation of cellular activity. Neuron 14:781–94. [DO, rSRV]CrossRefGoogle ScholarPubMed
Nelson, M. E. & Bower, J. M. (1990) Brain maps and parallel computers. Trends in Neuroscience 13:403–8. [aWTT]CrossRefGoogle ScholarPubMed
Nelson, B. & Mugnaini, E. (1989a) Origins of the GABAergic inputs to the inferior olive. Experimental Brain Research 17:86107. [aAMS]Google Scholar
Nelson, B. (1989b) Origins of GABAergic inputs to the inferior olive. In: The olivocerebellar system in motor control: Experimental brain research series 17, ed. Strata, P.. Springer–Verlag. [aJIS]Google Scholar
Newell, K. M. (1985) Coordination, control and skill. In: Differing perspectives in motor learning, memory, and control, ed. Goodman, D. Wilberg, R. B. & Franks, I. M.. North-Holland. [SPS]Google Scholar
Newsome, W. T., Wurtz, R. H. & Komatsu, H. (1988) Relation of cortical area MT and MST to pursuit eye movements: 2. Differentiation of retinal from extraretinal inputs. Journal of Neurophysiology 60:604–20. [MKaw]CrossRefGoogle ScholarPubMed
Nichols, T. R. (1994) A biomechanical perspective on spinal mechanisms of coordinated muscular action: An architectural principal. Ada Anatomica 151:113. [AGF]Google Scholar
Nichols, T. R. & Houk, J. C. (1976) Improvement of linearity and regulation of stiffness that results from action of the stretch reflex. Journal of Neurophysiology 39:119–42. [aAMS]CrossRefGoogle ScholarPubMed
Nicoletti, F., Meek, J. M., Iadora, M. J., Chuang, D. M., Roth, B. L. & Costa, E. (1986) Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. Journal of Neurochemistry 46:4046. [aFC]CrossRefGoogle ScholarPubMed
Nicoletti, F., Wroblewski, J. T., Novelli, A., Guidotti, A. & Costa, A. (1986) The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. Journal of Neurosciences 6:1905–11. [aSRV, LK]CrossRefGoogle ScholarPubMed
Nicoli, R. A. & Malenka, R. C. (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377:115–18. [MB]CrossRefGoogle Scholar
Nishizuka, Y. (1986) Studies and perspectives of protein kinase C. Science 233:305–11. [aFC]CrossRefGoogle ScholarPubMed
Nishizuka, Y. (1992). Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–14. [aDJL]CrossRefGoogle ScholarPubMed
Noda, H. (1991) Cerebellar control of saccadic eye movements: Its neural mechanisms and pathways. Japanese Journal of Physiology 41:351–68. [PD]Google ScholarPubMed
Novelli, A. & Henneberry, R. C. (1987) cGMP synthesis in cultured cerebellar neurons is stimulated by glutamate via a Ca2+-mediated, differentiation-dependent mechanism. Developmental Brain Research 34:307–10. [aSRV]CrossRefGoogle Scholar
Nuñes-Cardozo, B. & Van der Want, J. J. L. (1990) Ultrastructural organization of the retinal-pretecto-olivary pathway. A combined WGA-HRP retrograde/GABA immunohistochemical study. Journal of Comparative Neurology 291:313–27. [aJIS]CrossRefGoogle Scholar
O‘Dell, T. J., Hawkins, R. D., Kandel, E. R. & Arancio, O. (1991) Tests of the roles of two diffusible substances in long-term potentiation: Evidence for nitric oxide as a possible early retrograde messenger. Proceedings of the National Academy of Sciences of the USA 88:11285–89. [MB]CrossRefGoogle ScholarPubMed
O[Dell, T. J. & Kandel, E. R. (1994) Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases. Learning & Memory 1:129–39. [MB]CrossRefGoogle Scholar
O‘Heam, E., Zhang, P. & Molliver, M. E. (1995) Excitotoxic insult due to ibogaine leads to delayed induction of neuronal NOS in Purkinje cells. NeuroReport 6:1611–16. [rSRV]Google Scholar
O‘Mara, S. M. (1995) Spatially selective firing properties of hippocampal formation neurons in rodents and primates. Progress in Neurobiology 45:253–74. [SMO]CrossRefGoogle ScholarPubMed
O‘Mara, S. M., Rolls, E. T.. Berthoz, A. & Kesner, R. P. (1994) Neurons responding to whole-body motion in the primate hippocampus. Journal of Neuroscience 14:6511–23. [SMO]CrossRefGoogle ScholarPubMed
Ohata, K., Shimazu, K., Komatsumoto, S., Araki, N., Shibata, M. & Fukuuchi, Y. (1994) Modification of striatal arginine and citrulline matabolism by nitric oxide synthase inhibitors. NeuroReport 5:766–68. [rSRV]CrossRefGoogle Scholar
Ohtsuka, K. & Noda, H, (1995) Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. Journal of Neurophysiology 74:1828–40. [PD]CrossRefGoogle ScholarPubMed
Ojakangas, C. L. & Ebner, T. (1992) Purkinje cell complex spike changes during a voluntary arm movement learning task in the monkey. Journal of Neurophysiology 68:2222–36. [aJCH, aJIS, aWTT, PD]CrossRefGoogle ScholarPubMed
Ojakangas, C. L. & Ebner, T. (1994) Purkinje cell complex spike activity during voluntary motor learning: relationship to kinematics. Journal of Neurophysiology 72:2617–30. [arJIS]CrossRefGoogle ScholarPubMed
Okada, D. (1992) Two pathways of cyclic GMP production by glutamate receptor-mediated nitric oxide synthesis. Journal of Neurochemistry 59:1203–9. [aSRV, DO]CrossRefGoogle ScholarPubMed
Okada, Y. & Miyamoto, T. (1989) Formation of long-term potentiation in superior colliculus slices from the guinea pig. Neuroscience Letters 96:108–13. [aMKan]CrossRefGoogle ScholarPubMed
Oliva, A. M. & Garcia, A. (1995) Cyclic GMP inhibition of stimulated phosphoinositide hydrolysis in neuronal cultures. NeuroReport 6:565–68. [rSRV]CrossRefGoogle ScholarPubMed
Optican, L. M. (1985) Adaptive properties of the saccadic system. In: Adaptive mechanisms in gaze control, ed. Berthoz, A. & Melvill Jones, G.. Elsevier. [PD]Google Scholar
Optican, J. M. & Robinson, D. A. (1980) Cerebellar adaptive control of primate saccadic system. Journal of Neurophysiology 44:1058–76. [aJCH, HB, PD, CG]CrossRefGoogle ScholarPubMed
Orioli, P. J. & Strick, P. L. (1989) Cerebellar connections with the motor cortex and the arcuate premotor area: An analysis employing retrograde transneuronal transport of WGA-HRP. Journal of Comparative Neurology 288:612–26. [aWTT]CrossRefGoogle ScholarPubMed
Orlovsky, G. N. (1972) The effect of different descending systems on flexor and extensor activity during locomotion. Brain Research 40:359–71. [MAA]CrossRefGoogle ScholarPubMed
Oscarsson, O. (1969) The sagittal organization of the cerebellar anterior lobe as revealed by the projection patterns of the climbing fiber system. In: Neurobiology of cerebellar evolution and development, ed. Llinás, R.. AMA. [aJIS]Google Scholar
Oscarsson, O. (1973) Functional organization of spinocerebellar paths. In: Handbook of sensory physiology, vol. 2, ed. Iggo, A.. Springer-Verlag. [aJIS, DF]Google Scholar
Oscarsson, O. (1979) Functional units of the cerebellum-sagittal zones and microzones. Trends i. Neuroscience 2:143–45. [aJIS]Google Scholar
Oscarsson, O. (1980) Functional organization of olivary projection to the cerebellar anterior lobe. In: The inferior olivary nucleus: Anatomy and physiology, ed. Courville, J., de Montigney, C. & Lamarre, Y.. Raven. [aJCH, aJIS, DF]Google Scholar
Parfitt, K. D., Hoffer, B. J., Bickford-Wimer, P. C. (1990) Potentiation of gamma-aminobutyric acid-mediated inhibition by isoproterenol in the cerebellar cortex: Receptor specificity. Neuropharmacology 29:909–16. [aMKan]CrossRefGoogle ScholarPubMed
Parsons, L. M., Fox, P. T., Downs, J. H., Glass, T., Hirsch, T. B., Martin, C. C., Jerabek, P. A. & Lancaster, J. L. (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375:54. [JDS]CrossRefGoogle ScholarPubMed
Partsalis, A. M., Zhang, Y. & Highstein, S. M. (1993) The y group in vertical visual-vestibular interactions and VOR adaptation in the squirrel monkey. Society of Neuroscience Abstracts 19:138. [aJIS]Google Scholar
Partsalis, A. M., Zhang, Y. & Highstein, S. M. (1995) Dorsal Y group in the squirrel monkey: 2. Contribution of the cerebellar flocculus to neuronal responses in normal and adapted animals. Journal of Neurophysiology 73:632–50. [aJCH]CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Cammarota, A., Wassermann, E. M., Brasil-Neto, J. P., Cohen, L. G. & Hallett, M. (1993a) Modulation of motor cortical outputs to the reading hand of Braille readers. Annals of Neurology 34:3337. [MH]CrossRefGoogle Scholar
Pascual-Leone, A., Cohen, L. G., Dang, N., Brasil-Neto, J. P., Cammarotta, A. & Hallett, M. (1993b) Acquisition of fine motor skills in humans is associated with the modulation of cortical motor outputs [abstract]. Neurology 43(suppl.2):A157. [MH]Google Scholar
Pascual-Leone, A., Grafman, J., Clark, K., Stewart, M., Massaquoi, S., Lou, J.-S. et al. (1993c) Procedural learning in Parkinson‘s disease and cerebellar degeneration. Annals of Neurology 34:594602. [MH]CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Grafman, J. & Hallett, M. (1994) Modulation of cortical motor output maps during development of implicit and explicit knowlege. Science 263:1287–89. [MH]CrossRefGoogle Scholar
Pastor, A. M., de la Cruz, R. R. & Baker, R. (1994) Cerebellar role in adaptation of the goldfish vestibuloocular reflex. Journal of Neurophysiology 72:1383–94. [KH]CrossRefGoogle ScholarPubMed
Paulin, M. G. (1989) A Kaiman filter theory of the cerebellum. In: Dynamic interactions in neural networks: Models and data, ed. Arbib, M. A. & Amari, S.. Springer-Verlag. [aJCH, RCM, rAMS]Google Scholar
Paulin, M. G. (1993) The role of the cerebellum in motor control and perception. Brain, Behavior and Evolution 41:3950. [RCM, MGP]CrossRefGoogle ScholarPubMed
Paulin, M. G., Nelson, M. E. & Bower, J. M. (1989) Dynamics of compensatory eye movement control: An optimal estimation analysis of the vestibulo-occular reflex. International Journal of Neural Systems 1:2329. [JMB]CrossRefGoogle Scholar
Perkel, D. J., Hestrin, S., Sah, P. & Nicoll, R. A. (1990) Excitatory synaptic currents in Purkinje cells. Proceedings of the Royal Society of London 241:116–21. [aDJL]Google ScholarPubMed
Petersen, S. E., Fox, P. T., Posner, M. I., Mintum, M. A. & Raichle, M. E. (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:585–89. [JDS]CrossRefGoogle ScholarPubMed
Petersen, S. E., Fox, P. T., Posner, M. I., Mintum, M. A. & Raichle, M. E. (1989) Positron emission tomographic studies of the processing of single words. Journal of Cognitive Neuroscience 1:153–70. [aWTT]CrossRefGoogle Scholar
Peterson, B. W., Baker, J. F. & Houk, J. C. (1991) A model of adaptive control of vestibuloocular reflex based on properties of cross-axis adaptation. Annals of the New York Academy of Science 627:319–37. [aJCH]CrossRefGoogle Scholar
Peterson, B. W. & Houk, J. C. (1991) A model of cerebellar-brainstem interaction in the adaptive control of the vestibuloocular reflex. Acta Otolaryngology (Stockholm) 481:428–32. [aJCH]CrossRefGoogle Scholar
Peterson, D. A., Peterson, D. C., Archer, S. & Weir, E. K. (1992) The nonspecificity of specific nitric oxide synthase inhibitors. Biochemical and Biophysical Research Communications 187:797801. [aSRV]CrossRefGoogle Scholar
Petralia, R. S. & Wenthold, R. J. (1992) Light and electron immunocytochemcial localization of AMPA-selective glutamate receptors in the rat brain. Journal of Comparative Neurology 318:329–54. [aSRV]CrossRefGoogle Scholar
Porter, C. M., Van Kan, P. L. E., Horn, K. M., Bloedel, J. R. & Gibson, A. R. (1993) Functional divisions of cat rMAO. Society for Neuroscience Abstracts 19:1216. [aJIS]Google Scholar
Porter, N. M., Twyman, R. E., Uhler, M. D. & MacDonald, L. (1990) Cyclic AMP-dependent protein kinase decreases GABAa receptor current in mouse spinal neurons. Neuron 5:789–96. [aMKan]CrossRefGoogle ScholarPubMed
Prablanc, C., Tzavaras, A. & Jeannerod, M. (1975) Adaptation of the two arms to opposite prism displacements. Quarterly Journal of Experimental Psychology 27:667–71. [aWTT]CrossRefGoogle Scholar
Prochazka, A. (1989) Sensorimotor gain control: A basic strategy of motor systems? Progress in Neurobiology 33:281307. [aJCH]CrossRefGoogle ScholarPubMed
Quadroni, R. & Knöpfel, T. (1994) Compartmental model of type A and type B guinea pig medial vestibular neurons. Journal of Neurophysiology 72:1911–24. [KH]CrossRefGoogle ScholarPubMed
Rack, P. M. H. & Westbury, D. R. (1969) The effects of length and stimulus rate on tension in the isometric cat soleus muscle. Journal of Physiology 204:443–60. [aAMS]CrossRefGoogle ScholarPubMed
Rack, P. M. H. & Westbury, D. R. (1974) The short range stiffness of active mammalian muscle and its effect on mechanical properties. Journal of Physiology 240:331–50. [aAMS]CrossRefGoogle ScholarPubMed
Raichle, M. E., Fiez, J. A., Videen, T. O., MacLeod, A. K., Pardo, J. V., Fox, P. T. & Petersen, S. E. (1994) Practice-related changes in human brain functional anatomy during nonmotor learning. Cereberal Cortex 4:826. [aJCH, aWTT]CrossRefGoogle ScholarPubMed
Rao, T. S., Contreras, P. C., Cler, J. A., Emmett, M. R., Mick, S. J., Iyengar, S. & Wood, P. L. (1991) Clozapine attenuates N-methyl-D-aspartate receptor complex-mediated responses in vivo: Tentative evidence for a functional modulation by a noradrenergic mechanism. Neuropliarmacology 30:557–65. [aSRV]CrossRefGoogle ScholarPubMed
Rawson, J. A. & , Tilokskulchai (1981) Suppression of simple spike discharges of cerebellar Purkinje cells by impulses in climbing fibre afferents. Neuroscience Letters 25:125–30. [aJIS]CrossRefGoogle ScholarPubMed
Rawson, J. A. & , Tilokskulchai (1982) Climbing fibre modification of cerebellar Purkinje cell responses to parallel fibre inputs. Brain Research 237:492–97. [aJIS]CrossRefGoogle ScholarPubMed
Rawson, N. R. (1932) The story of the cerebellum. Canadian Medical Association Journal 26:220–25. [aWTT]Google ScholarPubMed
Recasens, M., Sassetti, I., Nourigat, A., Sladeczek, F. & Bockaert, J. (1987) Characterization of subtypes of excitatory amino acid receptors involved in the stimulation of inositol phosphate synthesis in rat-brain synaptoneurosomes. European Journal of Pharmacology 141:8793. [aFC]CrossRefGoogle ScholarPubMed
Reis, D. J., Doba, N. & Nathan, M. A. (1973) Predatory attack, grooming and consummatory behaviors evoked by electrical stimulation of cat cerebellar nuclei. Science 182:845–47. [JDS]CrossRefGoogle ScholarPubMed
Rekate, H. L., Crubb, R. L., Aram, D. M., Hahn, J. F. & Ratcheson, R. A. (1985) Muteness of cerebellar origin. Archives of Neurology 697–98. [aWTT]CrossRefGoogle ScholarPubMed
Richard, E. A., Sampat, P. & Lisman, J. E. (1995) Distinguishing between roles for calcium in Limulus photoreceptor excitation. Cell Calcium 18:330–40. [JCF]CrossRefGoogle ScholarPubMed
Riley, H. A. (1928) Mammalian cerebellum: Comparative study of abor vitae and folial patterns. Archives of Neurology and Psychiatry 20:898:134. [RCM]CrossRefGoogle Scholar
Rispal-Padel, L., Cicirata, F. & Pons, C. (1982) Cerebellar nuclear topography of simple and synergistic movements in the alert baboo. (Papio papio). Experimental Brain Research 47:365–80. [aAMS]CrossRefGoogle Scholar
Roberts, P. (in press) Classification of temporal patterns in dynamic biological networks. Physics Review E. [PDR]Google Scholar
Robertson, L. T. (1984) Topographic features of climbing fiber input in the rostral vermal cortex of the cat cerebellum. Experimental Brain Research 55:445–54. [aJIS]CrossRefGoogle ScholarPubMed
Robertson, L. T. & Laxer, H. D. (1981) Localization of cutaneously elicited climbing fibre responses in lobule V of the monkey cerebellum. Brain Beliavior and Evolution 18:157–68. [aJIS]CrossRefGoogle ScholarPubMed
Robertson, L. T., Laxer, K. D. & Rushmer, D. S. (1982) Organization of climbing fiber input from mechanoreceptors to lobule V vermal cortex of the cat. Experimental Brain Research 46:281–91. [aJIS]CrossRefGoogle ScholarPubMed
Robertson, L. T. & McColIum, G. (1989) Ensembles of climbing fiber tactile receptive fields encode distinct information for various cerebellar regions. In: The olivocerebellar system in motor control: Experimental brain research series 17, ed. Strata, P.. Springer-Verlag. [aJIS]Google Scholar
Robinson, D. A. (1963) A method of measuring eye movement using a scleral search coil in a magnetic field. Transactions on Bio-Medical Electronics BME-10:137–45. [aJIS]Google ScholarPubMed
Robinson, D. A. (1964) The mechanics of human saccadíc eye movement. Journal of Physiology 174:245–64. [HB]CrossRefGoogle ScholarPubMed
Robinson, D. A. (1975) Oculomotor control signals. In: Basic mechanisms of ocular motility and their clinical implications, ed. Lennerstrand, G. & Bach-y-Rita, P.. Pergamon. [aJCH. HB]Google Scholar
Robinson, D. A. (1976) Adaptive gain control of the vestibulo-ocular reflex by the cerebellum. Journal of Neurophysiology 39:954–69. [aJCH, aWTT]CrossRefGoogle Scholar
Robinson, D. A. (1981) Control of eye movments. In: Handbook of physiology: The nervous system: vol. 2. Motor control, part 2, ed. Brooks, V. B.. American Physiological Society. [aAMS]Google Scholar
Robinson, D. A. (1987) Why visuomotor systems don‘t like negative feedback and how they avoid it. In: Vision, brain and cooperative computation, ed. Arbib, M. A.. MIT Press. [aJCH]Google Scholar
Robinson, D. A. (1991) Overview. In: Eye movements, ed. Carpenter, R. H. S.. Macmillan. [PD]Google ScholarPubMed
Robinson, F. R., Fuchs, A. & Straube, A. (1995) Saccadic adaptation deficits after muscimol inactivation of the caudal fastigial nucleus in macaque. Society for Neuroscience Abstracts 1271. [PD]Google Scholar
Robinson, D. A. & Optican, L. M. (1981) Adaptive plasticity in the oculomotor system. In: Lesion induced neuronal plasticity in sensorimotor systems, ed. Flohr, H. & Precht, W.. Springer-Verlag. [aJCH]Google Scholar
Roland, L. (1809) Saggio sopra la vera struttura del cervello dell‘uomo e dgeli animali e sopra le funzioni del sistema nervoso. Sassari: Stampeia da S.S.R.M. Priveligiata. [aWTT]Google Scholar
Roland, L. (1823) Experiences sur les fonctions du systeme nerveux. Journal de Physiologie Experimentale 3:95113. [aWTT]Google Scholar
Roland, P. E. (1987) Metabolie mapping of sensorimotor integration in the human brain. In: Motor areas of the cerebral cortex (Ciba Foundation Symposium 132), ed. Bock, G., O‘Connor, M. & Marsh, J.. Wiley. [aWTT]Google Scholar
Roland, P. E., Eriksson, L., Widen, L. & Stone-Elander, S. (1988) Changes in regional cerebral oxidative metabolism induced by tactile learning and recognition in man. European Journal of Neuwscience 1:317. [aWTT]CrossRefGoogle Scholar
Rolls, E. T. & O‘Mara, S. M. (1993) Neurophysiological and theoretical analysis of how the primate hippocampus functions in memory. In: Brain meclianisms of perception: From neuron to behavior, ed. Ono, T., Squire, L. R., Raichle, M., Perrett, D. & Fukuda, M.. Oxford University Press. [SMO]Google Scholar
Rondot, P., Bathien, N. & Toma, S. (1979) Phytopathology of cerebellar movement. In: Cerebro-cerebellar interactions, ed. Massion, J. & Sasaki, K.. EIsevier/North Holland. [aAMS. JH]Google Scholar
Rosenblatt, F. (1958) The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65:386408. [MD]CrossRefGoogle ScholarPubMed
Rosenmund, C., Legendre, P. & Westbrook, G L. (1992) Expression of NMDA channels on cerebellar Purkinje cells acutely dissociated from newborn rats. Journal of Neurojihysiology 68:1901–5. [aDJL]CrossRefGoogle ScholarPubMed
Ross, C. A., Bredt, D. & Snyder, S. H. (1990) Messenger molecules in the cerebellum. Trends in Neurosciences 13:216–22.CrossRefGoogle ScholarPubMed
Ross, W. N. & Werman, R. (1987) Mapping calcium transients in the dentrites of Purkinje cells from the guinea pig cerebellum in vitro. Journal of Physiology (London) 389:319–36. [aMKan]CrossRefGoogle Scholar
Ross, W. N., Lasser-Ross, N. & Werman, R. (1990) Spatial and temporal analysis of calcium dependent electrical activity in guinea pig Purkinje cells dendrites. Proceedings of the Royal Society of London, Series B: Biological Science 240:173–85. [aMKan]Google ScholarPubMed
Rossignol, S. & Melvill-Jones, G. (1976) Audio-spinal influence in man studied by tlie H-reflex and its possible role on rhythmic movements synchronised to sound Electroenceph. Clinical Neurophysiology 41:8392. [aAMS]CrossRefGoogle Scholar
Rubia, F. J. & Kolb, F. P. (1978) Responses of cerebellar units to a passive movement in the decerebrate cat. Experimental Brain Researcli 31:387401. [aJIS]Google ScholarPubMed
Rumelhart, D. E., Hinton, G. E., McClelland, J. L. (1987) A general framework for parallel distributed processing. In: Parallel Processing, ed. Rumelhart, D. E. & McClelland, J. L.. MIT Press. [rJCH]Google Scholar
Rushmer, D. S., Roberts, W. J. & Augter, G. K. (1976) Climbing fiber responses of cerebellar Purkinje cells to passive movement of the cat forepaw. Brain Research 106:120. [aJIS]CrossRefGoogle ScholarPubMed
Ryding, E., Decety, J., Sjoholm, H., Stengerg, G. & Ingvar, D. H. (1993) Motor imagery activates the cerebellum regionally. A SPECT rCBRF study with 99m Tx-HMPAO. Cognific. Brain Research 1:9499. [aWTT]Google Scholar
Sacktor, T. C., Osten, P., Valsamis, H., Jiang, X., Naik, M. U. & Sublette, E. (1993) Persistent activation of the ∂ isoform of protein kinase C in the maintenance of long-term potentiation. Proceedings of the National Academy of Sciences of the USA 90: 8342–46. [aFC]CrossRefGoogle ScholarPubMed
Sainburg, R. L., Poizner, H. & Ghez, C. (1993) Loss of proprioception produced deficits in interjoint coordination. Journal of Neurophysiology 70:2136–47. [aWTT]CrossRefGoogle ScholarPubMed
Saint-Cyr, J. A. & Courville, J. (1980) Projections from the motor cortex, midbrain, and vestibular nuclei to the inferior olive in the cat: Anatomical organization and functional correlates. In: The inferior olivary nucleus: Anatomy and physiology, ed. Courville, J., de Montigny, J. C. & Lamarre, Y.. Raven. [JDS]Google Scholar
Sakaue, M., Kuno, T. & Tanaka, C. (1988) Novel type of monoclonal antibodies against cyclic GMP and application to immunocytochemistry of the rat brain. Japanese Journal of Piiarmacology 48:4756. [aDJL, aSRV]Google ScholarPubMed
Sakimura, K., Kutsuwada, T., Ito, I., Manabe, T., Takayama, C., Kushiya, E., Yagi, T., Aizawa, S., Inoue, Y., Sugiyama, H. & Mishina, M. (1994) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor &l subunit. Nature 373:151–55. [aMKan]CrossRefGoogle Scholar
Sakurai, M. (1987) Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea pig cerebellar slices. Journal of Physiology (London) 394:463–80. [aJCH, aMKan, aDJL, aJIS]CrossRefGoogle ScholarPubMed
Sakurai, M. (1990) Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. Proceedings of the National Academy of Sciences of the USA 87:3383–85. [aFC, aMKan, aDJL, aJIS]CrossRefGoogle ScholarPubMed
Sandoval, M. E. & Cotman, C. W. (1978) Evaluation of glutamate as a neurotransmitter of cerebellar parallel fibers. Neuroscience 3:199206. [aDJL]CrossRefGoogle ScholarPubMed
Sanes, J. N., Dimitrov, B. & Hallett, M. (1990) Motor learning in patients with cerebellar dysfunction. Brain 113:103–20. [aWTT, MH, DT]CrossRefGoogle ScholarPubMed
Sanes, J. N., Suner, S., Lando, J. F. & Donoghue, J. P. (1988) Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury. Proceedings of the National Academy of Sciences of the USA 85:2003–7. [aJCH]CrossRefGoogle ScholarPubMed
Sarrafizadeh, R. (1994) Sensory triggering of limb motor programs: Neural correlates of decisions for action. In: NPB Technical Report 9. Northwestern University Institute of Neuroscience. [aJCH]Google Scholar
Sarrafizadeh, R., Keifer, J. & Houk, J. C. (1996). Somatosensory and movement-related properties of red nucleus: A single unit study in the turtle. Experimental Brain Research 108:117. [aJCH]CrossRefGoogle ScholarPubMed
Sasaki, K., Bower, J. M. & Llinás, R. (1989) Multiple Purkinje cell recording in rodent cerebellar cortex. Eurojyean Journal of Neuwscience 1:572–86. [aJIS]CrossRefGoogle ScholarPubMed
Sasaki, K. S., Kawaguchi, S., Oka, H., Said, M. & Mizuno, N. (1976) Electrophysiological studies on the cerebellocerebral projections in monkeys. Experimental Brain Research 24:495507. [aWTT]CrossRefGoogle ScholarPubMed
Sato, Y., Miura, A., Fushiki, H. & Kawasaki, T. (1992) Short-term modulation of cerebellar Purkinje cell activity after spontaneous climbing fiber input. Journal of Neurophysiology 68(6):205I–62. [aJIS]CrossRefGoogle ScholarPubMed
Sato, Y., Miura, A., Fushiki, H. & Kawasaki, T. (1993) Barbiturate depresses simple spike activity of cerebellar Purkinje cells after climbing fiber input. Journal of Neurojihysiology 69:1082–90. [aJIS]CrossRefGoogle ScholarPubMed
Satoh, T., Ross, C. A., Villa, A., Supattapone, S., Pozzan, T., Snyder, S. H. & Meldolesi, J. (1990) The inositol 1,4,5-trisphosphate receptor in cerebellar Purkinje cells: Quantitative immunogold labeling reveals concentration in an ER subcompartment. Journal of Cell Biology 111:615–24. [aDJL]CrossRefGoogle Scholar
Saxon, D. W. & Beitz, A. J. (1994) Cerebellar injury induced NOS in Purkinje cells and cerebellar afferent neurons. NeuroReport 5:809–13. [rSRV]CrossRefGoogle ScholarPubMed
Schell, G. R. & Strick, P. L. (1983) The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. Journal of Neuroscience 4:539–60. [aWTT]CrossRefGoogle Scholar
Schieber, M. H. & Thach, W. T. (1985a) Trained slow tracking: 1. Muscular production of wrist movemnt. Journal of Neurophysiology 55:1213–27. [aWTT]CrossRefGoogle Scholar
Schieber, M. H. & Thach, W. T. (1985b) Trained slow tracking: 2. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons. Journal of Neurophysiology 54:1228–70. [aAMS, aWTT]CrossRefGoogle Scholar
Schilling, K., Dickinson, M., Connor, J. A. & Morgan, J. I. (1991) Electrical activity in cerebellar cultures determines Purkinje cell dendritic growth patterns. Neuron 7:891902. [aDJL]CrossRefGoogle ScholarPubMed
Schilling, K., Schmidt, H. H. H. W & Badder, S. L. (1994) Nitric oxide synthase expression reveals compartments of cerebellar granule cells and suggests a role for mossy fibers in their development. Neuroscience 59:893903. [aDJL, TH]CrossRefGoogle ScholarPubMed
Schlichter, D. J., Casnellie, J. E. & Greengard, P. (1978) An endogenous substrate for cGMP-dependent protein kinase in mammalian cerebellum. Nature 273:6162. [aSRV]CrossRefGoogle ScholarPubMed
Schlichter, D. J., Detre, J. A., Aswad, D. W., Chehrazi, B. & Greengard, P. (1980) Localization of cyclic GMP-dependent protein kinase and substrate in mammalian cerebellum. Proceedings of the National Academy of Sciences of the USA 77:5537–41. [aSRV]CrossRefGoogle ScholarPubMed
Schmahmann, J. D. (1991) An emerging concept: The cerebellar contribution to higher function. Arcliives of Neurology 48:1178–87. [aWTT, JDS]CrossRefGoogle ScholarPubMed
Schmahmann, J. D. (1992) An emerging concept: The cerebellar contribution to higher function. Archives of Neurology 49.1230. [JDS]CrossRefGoogle Scholar
Schmahmann, J. D. (1994) The cerebellum in autism: Clinical and anatomic perspectives. In: The neurobiology of autism, ed. Bauman, M. L. & Kemper, T. L.. Johns Hopkins University Press. [JDS]Google Scholar
Schmahmann, J. D. & Pandya, D. N. (1987) Posterior parietal projections to the basis pontis in rhesus monkey: Possible anatomical substrate for the cerebellar modulation of complex behavior? Neurology (suppl. 37):291. [JDS]Google Scholar
Schmahmann, J. D. & Pandya, D. N. (1989) Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. Journal of Comparative Neurology 289:5373. [JDS]CrossRefGoogle Scholar
Schmahmann, J. D. & Pandya, D. N. (1991) Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. Joumal of Comparative Neurology 308:224–48. [JDS]CrossRefGoogle Scholar
Schmahmann, J. D. & Pandya, D. N. (1993) Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. Journal of Comparative Neurology 337:94112. [JDS]CrossRefGoogle Scholar
Schmahmann, J. D. & Pandya, D. N. (1995) Prefrontal cortex projections to the basilar pons: Implications for the cerebellar contribution to higher function. Neuroscience Letters 199:175–78. [JDS]CrossRefGoogle Scholar
Schmaltz, L. W. & Theios, J. (1972) Acquisition and extinction of a classically conditioned response in hippocampectomized rabbit. (Oryctalagous cuniculus). Journal of Comparative Physiology and Psychology 79:328–33. [CW]CrossRefGoogle Scholar
Schmidt, K., Klatt, P. & Mayer, B. (1993) Characterization of endothelial cell amino acid transport systems involved in the actions of nitric oxide synthase inhibitors. Journal of Pliarmacology and Experimental Therapeutics 44:615–21. [aSRV]Google ScholarPubMed
Schmidt, M. J. & Nadi, N. S. (1977) Cyclic nucleotide accumulation in vitro in the cerebellum of ‘nervous’ neurologically mutant mice. Journal of Neurochemistry 29:8790. [arSRV, LK]CrossRefGoogle ScholarPubMed
Schmidt, R. A. (1988) Motor control and learning: A befiavioral emphasis. Human Kinetics. [aJCH, SPS]Google Scholar
Schmidt, R. A. (1991) Motor learning & performance. Human Kinetics. [HB]Google Scholar
Schreurs, B. G. & Alkon, D. L. (1993) Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning. Brain Research 631:235–40. [JCF, aDJL, aJIS. EDS]CrossRefGoogle ScholarPubMed
Schreurs, B. G., Oh, M. M. & Alkon, D. L. (1996) Pairing-specific long-term depression of Purkije cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice. Journal of Neurophysiology 75:1051–60. [rDJL]CrossRefGoogle Scholar
Schulmann, J. A. & Bloom, F. E. (1981) Golgi cells of the cerebellum are inhibited by inferior olive activity. Brain Research 210:350–55. [aJIS]CrossRefGoogle Scholar
Schulz, P. E., Cook, E. P. & Johnston, D. (1994) Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. Journal of Neuroscience 14:5325–37. [LBJ]CrossRefGoogle ScholarPubMed
Schuman, E. & Madison, D. V. (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254:1503–6. [MB]CrossRefGoogle ScholarPubMed
Schwartz, D. W. F. & Tomlinson, R. D. (1977) Neurononal responses to eye muscle stretch in cerebellar lobule VI of the cat. Experimental Brain Research 27:101–11. [PD]Google Scholar
Schweighofer, N. (1995) Computational models of the cerebellum in the adaptive control of movements. PhD dissertation. University of Southern California. [MKaw]Google Scholar
Schweighofer, N. & Arbib, M. A. (submitted) From behavior to second messengers: A multilevel approach to cerebellar learning. [MAA]Google Scholar
Schweighofer, N. & Arbib, M. A. & Dominey, P. F. (in press) A model of adaptive control of saccades. Biohgical Cybernetics. [MAA]Google Scholar
Schweighofer, N., Spoelstra, J., Arbib, M. A. & Kawato, M. (submitted) Role of the cerebellum in reaching quickly and accurately: 2. A detailed model of the intermediate cerebellum. [MKaw]Google Scholar
Scudder, C. S. (1988) A new local feedback model of the saccadic burst generator. Journal of Neurophysiology 59:1455–75. [aJCH]CrossRefGoogle ScholarPubMed
Sears, L. L. & Steinmetz, J. E. (1991) Dorsal accessory inferior olive activity diminishes during acquisition of the rabit classically conditioned eyelid response. Brain Research 545:114–22. [RFT]CrossRefGoogle Scholar
Sears, L. L. & Steinmetz, J. E. (1990) Acquisition of classically conditioned-related activity in the hippocampus is affected by lesions of the cerebellar interpositus nucleus. Behavioral Neuroscience 104:681–92. [CW]CrossRefGoogle ScholarPubMed
Segal, L. A. (1995) Grappling with complexity. Complexity 1:1825. [PDR]CrossRefGoogle Scholar
Seitz, R. J., Roland, P. E., Böhm, C., Greitz, T. & Stone-Elander, S. (1990) Motor learning in man: A positron emission tomography study. NeuroReport 1:5766. [aWTT]CrossRefGoogle Scholar
Selig, D. K., Lee, H. K., Bear, M. F. & Malenka, R. C. (1995) Reexamination of the effects of MCPG on hippocampal LTP, LTD, and depotentiation. Journal of Neurophysiology 74:1075–82. [MB]CrossRefGoogle ScholarPubMed
Sessler, F. M., Mouradian, R. D., Cheng, J. T., Yeh, H. H., Liu, W. & Waterhouse, B. D. (1989) Noradrenergic potentiation of cerebellar Purkinje cell responses to GABA: Evidence for mediation through the b-adrenoceptor-coupled cyclic AMP system. Brain Research 499:2738. [aMKan]CrossRefGoogle ScholarPubMed
Shadmehr, R., Mussa–Ivaldi, F. A. & Bizzi, E. (1993) Postural force fields of the human arm and their role in generating multijoint movements. Journal of Neuroscience 13:4562. [aAMS]CrossRefGoogle ScholarPubMed
Shambes, G. M., Gibson, J. M. & Welker, W. I. (1978) Fractured somatotopy in granular cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behaviour & Evolution 15:94140. [FS, rAMS]CrossRefGoogle Scholar
Shammah-Lagnado, S. J., Negrao, N. & Ricardo, J. A. (1985) Afferent connections of the zona incerta: A horseradish peroxidase study in the rat. Neuroscience 15:109–34. [JDS]CrossRefGoogle ScholarPubMed
Sharp, A. H., McPherson, P. S., Dawson, T. M., Aold, C., Campbell, K. P. & Snyder, S. H. (1993) Differential immunohistochemical localization of inositol 1,4,5-triphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain. Journal of Neuroscience 13:3051–63. [aSRV]CrossRefGoogle ScholarPubMed
Sherman, J. & Schmahmann, J. D. (1995) The spectrum of neuropsychological manifestations in patients with cerebellar pathology. Human Brain Mapping (suppl. 1):361. [JDS]Google Scholar
Sherrington, C. S. (1909) Reciprocal innervation of antagonist muscles. Fourteenth note – on double reciprocal innervation. Proceedings of the Royal Society of London, Series B 81:249–68. [aAMS]Google Scholar
Sherrington, C. S. (1947) The integrative action of the nervous system. Yale University Press. [aAMS]Google Scholar
Shibasald, H., Shima, F. & Kuroiwa, Y. (1978) Clinical studies of the movement-related cortical potential (MP) and the relationship between the dentatorubrothalamic pathway and readiness potential (RP). Journal of Neurology 219.1525. [KW]CrossRefGoogle Scholar
Shibuki, K. (1990) An electrochemical microprobe for detecting nitric oxide release in brain tissue. Neuroscience Research 9:6976. [arSRV, DO]CrossRefGoogle ScholarPubMed
Sherrington, C. S. (1993) Nitric oxide: A multi–functional messenger substance in cerebellar synaptic plasticity. Seminars in the Neuwsciences 5:217–23. [aDJL]Google Scholar
Shibuki, K., Gomi, H., Chen, L., Bao, S., Kim, J. J., Wakatsuki, H., Fujisaid, T., Fujimoto, K., Katoh, A., Ikeda, T., Chen, C., Thompson, R. F. & Itohara, S. (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16:587–99. [rMKan, rDJL]CrossRefGoogle ScholarPubMed
Shibuki, K. & Okada, D. (1991) Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 349:326–28. [aFC, aMKan, aDJL. arSRV, JCH, NAH, DO]CrossRefGoogle ScholarPubMed
Shibuki, K. & Okada, D. (1992) Cerebellar long-term potentiation under suppressed postsynaptic Ca2+ activity. NeuroReport 3:231–34. [aSRV, NAH]CrossRefGoogle ScholarPubMed
Shidara, M., Kawano, K., Comi, H. & Kawato, M. (1993) Inverse dynamics model eye movement control by Purkinje cells in the cerebellum. Nature 365(2):5052. [aJCH, HG, MKaw]CrossRefGoogle ScholarPubMed
Shigemoto, R., Abe, T., Nomura, S., Nakanishi, S. & Hirano, T. (1994) Antibodies inactivating mGluRl metobotropic glutamate receptors block long-term depression in cultured Purkinje cells. Neuron 12:1245–55. [TH. MKan, rSRV]CrossRefGoogle Scholar
Shigemoto, R., Nakanishi, S. & Hirano, T. (1994) Antibodies inactivating mGluRl metabotropic glutamate receptor block long-term depression in cultured Purkinje cells. Neuron 12:1245–55. [aDJL, PC, rDJL]CrossRefGoogle Scholar
Shojaku, H., Barmack, N. H. & Mizukoshi, K. (1991) Influence of vestibular and visual climbing fiber signals on Purkinje cell discharge in the cerebellar nodulus of the rabbit. Acta Otolaryngologica 481:242–46. [aJIS]CrossRefGoogle ScholarPubMed
Shuttleworth, C. W. R., Burns, A. J., Ward, S. M., O‘Brien, W. E. & Sanders, K. M. (1995) Recycling of L-citrulline to sustain nitric oxide-dependent enteric neurotransmission. Neuroscience 68:12951304. [rSRV]CrossRefGoogle ScholarPubMed
Sigei, E., Baur, R. & Malherbe, P. (1991) Activation of protein ldnase C results in down-modulation of different recombinant GABAa-channels. FEBS Letters 291:150–52. [aMKan]Google Scholar
Siggins, G. R., Henriksen, S. J. & Landis, S. C. (1976) Electrophysiology of Purkinje neurons in the weaver mouse: Iontophoresis of neurotransmitters and cyclic nucleotides, and stimulation of die nucleus locus coeruleus. Brain Research 114:5369. [aSRV]CrossRefGoogle Scholar
Siggins, G. R., Hoffer, B. J., Oliver, A. P. & Bloom, F. E. (1971) Activation of a central noradrenergic pathway to cerebellum. Nature 233:481–83. [aDJL]CrossRefGoogle Scholar
Silva, A. J., Stevens, C. F., Tonegawa, S. & Wang, Y. (1992) Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice. Science 257:201–6. aMKanCrossRefGoogle ScholarPubMed
Suva, A. J., Paylor, R., Wehner, J. M. & Tonegawa, S. (1992) Impaired spatial learning in α-calcium-calmodulin kinase II mutant mice. Science 257:206–11. aMKanGoogle Scholar
Simpson, J. I. (1984) The accessory optic system. Annual Review of Neuroscience 7:1341. [aJCH]CrossRefGoogle ScholarPubMed
Simpson, J. I. (1994) Functional and anatomic organization of three-dimensional sye movements in rabbit cerebellar flocculus. Journal of Neurophtjsiology 72:3146. [aWTT]Google Scholar
Simpson, J. I. & Alley, K. E. (1974) Visual climbing fiber input to rabbit vestibulocerebellum: A source of direction-specific information. Brain Research 82:302–8. [aJIS, aWTT]CrossRefGoogle ScholarPubMed
Simpson, J. I., Graf, W. & Leonard, C. (1981) The coordinate system of visual climbing fibers to the flocculus. In: Progress in oculomotor research: Developments in neuroscience, vol. 12, eds. Fuchs, A. & Becker, W.. Elsevier/North-Holland. [arJIS]Google Scholar
Simpson, J. I., Leonard, C. S. & Soodak, R. E. (1988) The accessory optic system of rabbit: 2. Spatial organization of direction selectivity. Journal of Neurophysiology 60:2055–72. [aJIS]CrossRefGoogle ScholarPubMed
Sinkjaer, T., Wu, C. H., Barto, A. & Houk, J. C. (1990) Cerebellum control of endpoint position – a simulation model. IJCNN 90 2:705–10. [aJCH]Google Scholar
Sladeczek, F., Pin, J. P., Recasens, M., Bockaert, J. & Weiss, S. (1985). Glutamate stimulates inositol phosphate formation in striata! neurones. Nature 314:717–19. [aFC]CrossRefGoogle Scholar
Smimova, T., Stinnakre, J. & Mallet, J. (1993) Characterization of a presynaptic glutamate receptor. Science 262:430–33. [aSRV]Google Scholar
Smith, A. M. (1981) The coactivation of antagonist muscles. Canadian Journal of Physiology and Pharmacology 59:733–47. [aAMS]CrossRefGoogle ScholarPubMed
Smith, A. M. & Bourbonnais, D. (1981) Neuronal activity in cerebellar cortex related to control of prehensile force. Journal of Neurophtjsiology 45:286303. [aWTT]CrossRefGoogle ScholarPubMed
Smith, A. M., Frysinger, R. C. & Bourbonnais, D. (1983) Discharge patterns of cerebellar cortical neurons during the co-activation and reciprocal inhibition of forearm muscles. In: Neural coding of motor performance, Exjierimental brain research supplementum 7, edited by Massion, J., Paillard, J., Schultz, W. & Wiesendanger, M.. Springer–Verlag. [aAMS]Google Scholar
Snider, R. S. (1950) Recent contributions to the anatomy and physiology of the cerebellum. Archives of Neurology and Psychiatry 64:196219. [JDS]CrossRefGoogle Scholar
Snider, R. S. (1975) A cerebellar-ceruleus pathway. Brain Research 88:5963. [JDS]CrossRefGoogle ScholarPubMed
Snider, R. S. & Eidred, E. (1952) Cerebro-cerebellar relationships in the monkey. Journal of Neurophtjsiology 15:2740.CrossRefGoogle Scholar
Snider, R. S., Maiti, A. & Snider, S. R. (1976) Cerebellar pathways to ventral midbrain and nigra. Experimental Neurology 53:714–28. [JDS]CrossRefGoogle ScholarPubMed
Snider, R. S. & Stowell, A. (1944) Receiving areas of tactile, auditory, and visual systems in the cerebellum. Journal of Neurophtjsiology 7:331–57. [rWTT]CrossRefGoogle Scholar
Sobera, L. A. & Morad, M. (1991) Modulation of cardiac sodium channels by cAMP receptors on the myocyte surface. Science 253:1286–89. [aSRV]CrossRefGoogle Scholar
Solomon, P. R., Solomon, S. D., Vander Schaaf, E. R. & Perry, H. E. (1983) Altered activity in die hippocampus is more detrimental to conditioning than removal of the structure. Science 220:329–31. [CW]CrossRefGoogle Scholar
Sommer, B., Keinanen, K., Verdoom, T., Wisden, W., Bumashev, N., Herb, A., Kohler, M., Takagi, T., Sakmann, B. & Seeburg, P. H. (1990) Flip and flop: A cell–specific functional switch in glutamate–operated channels of the CNS. Science 249:1580–85. [aFC, aSRV]CrossRefGoogle ScholarPubMed
Sommer, B. & Seeburg, P. H. (1992) Glutamate receptor channels: Novel properties and new clones. Trends in Pluirmacological Sciences 13:291–96. [aFC]CrossRefGoogle ScholarPubMed
Soodak, R. E., Croner, L. J. & Graf, W. (1988) Development of the optoldnetic reference frame of floccular Purkinje cells in rabbit. Society for Neuroscience Abstracts 14:758. [arJIS]Google Scholar
Soodak, R. E. & Simpson, J. I. (1988) The accessory system of rabbit: 1. Basic visual response properties. Journal of Neurophtjsiology 60:2037–54. [aJIS]CrossRefGoogle ScholarPubMed
Sorkin, L. S. (1993) NMDA evokes an L-NAME sensitive spinal release of glutamate and citrulline. NeuroReport 4:479–82. [rSRV]CrossRefGoogle ScholarPubMed
Sotelo, C., Gotow, T. & Wassef, M. (1986) Localization of glutamic-acid-decarboxylase-immunoreactive axon terminals in the inferior olive of the rat, with special emphasis on anatomical relations between GABAergic synapses and dendrodendritic gap junctions. Journal of Comparative Neurology 252:3250. [aJIS]CrossRefGoogle ScholarPubMed
Sotelo, C., Llinás, R. & Baker, R. (1974) Structural study of the inferior olivary nucleus of the cat: Morphological correlates of electrotonic coupling. Journal of Neurophysiology 37:541–59. [aJIS]CrossRefGoogle ScholarPubMed
Southam, E., East, S. J. & Garthwaite, J. (1991) Excitatory amino acid receptors coupled to the nitric oxide-cyclic GMP pathway in rat cerebellum during development. Journal of Neurochemistry 56:2072–81. [aSRV]CrossRefGoogle Scholar
Southam, E. & Garthwaite, J. (1991a) Comparative effects of some nitric oxide donors on cyclic GMP levels in rat cerebellar slices. Neuroscience Letters 130:107–11. [aSRV]CrossRefGoogle ScholarPubMed
Southam, E. & Garthwaite, J. (1991b) Intercellular action of nitric oxide in adult rat cerebellar slices. NeuroReport 2:658–60. [aSRV. LK]CrossRefGoogle ScholarPubMed
Southam, E. & Garthwaite, J. (1991c) Climbing fibers as a source of nitric oxide in the cerebellum. European Journal of Neuroscience 3:379–82. [DO]CrossRefGoogle ScholarPubMed
Southam, E. & Garthwaite, J. (1993) The nitric oxide-cyclic GMP signalling pathway in rat brain. Neuropharmacology 32:1267–77. [aSRV]CrossRefGoogle ScholarPubMed
Southam, E., Morris, R. & Garthwaite, J. (1992) Sources and targets of nitric oxide in rat cerebellum. Neuroscience Letters 137:241—44. [aDJL, aSRV]CrossRefGoogle ScholarPubMed
Sparks, D. L. (1988) Neural cartography: Sensory and motor maps in the superior colliculus. Brain, Behavior a & Evolution 31:4956. [aJCH]CrossRefGoogle ScholarPubMed
Spidalieri, G., Busby, L. & Lamarre, Y. (1983) Fast ballistic arm movements triggered by visual, auditory and somesthetic stimuli in the monkey: 2. Effects of unilateral dentate lesion on discharge of precentrai cortical neurons and reaction time. Journal of Neurophysiology 50.1359–79. [aAMS]CrossRefGoogle Scholar
Squire, L. R. (1992) Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review 99:195231. [SMO]CrossRefGoogle ScholarPubMed
Squire, L. R. & Zola-Morgan, S. (1991) The medial temporal lobe memory system. Science 253:1380–86. [SMO]CrossRefGoogle ScholarPubMed
Stahl, J. S. & Simpson, J. I. (1995) Dynamics of rabbit vestibular nucleus neurons and the influence of the flocculus. Journal of Neumjihysiology 73:13961413. [aJIS]CrossRefGoogle ScholarPubMed
Stamler, J. S., Singel, D. J. & Loscalzo, J. (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:18981902. [DO]CrossRefGoogle ScholarPubMed
Staub, C., Vranesic, I. & Knöpfel, T. (1992) Responses to metabotropic glutamate receptor activation in cerebellar Purkinje cells: Induction of an inward current. European Journal of Neuroscience 4:832–39. [aFC, aDJL]CrossRefGoogle ScholarPubMed
Stein, J. F. & Glickstein, M. (1992) Role of the cerebellum in visual guidance of movement. Physiological Reviews 72:9671017. [arAMS]CrossRefGoogle ScholarPubMed
Stein, R. B. (1991) Reflex modulation during locomotion: Functional significance. In: Adaptability of human gait, ed. Patla, A. E.. Elsevier. [CG]Google Scholar
Steinmetz, J. E. (1990a) Classical nictitaing membrane conditioning in rabbits with varying interstimulus intervals and direct activation of cerebellar mossy fibers as the CS. Behavioral Brain Research 38:97108. [JCF]CrossRefGoogle ScholarPubMed
Steinmetz, J. E. (1990b) Neuronal activity in the rabbit interpositus nucleus during classical NM-conditioning with a pontine-nucleus-stimulation CS. Psychological Science 1:378–82. [JCF]CrossRefGoogle Scholar
Steinmetz, J. E., Lavond, D. G., Ivkovich, I., Logan, C. G. & Thompson, R. F. (1922) Disruption of classical eyelid conditioning after cerebellar lesions: Damage to a memory trace system or a simple performance deficit? Journal of Neuroscience 12:4403–26. [aWTT]CrossRefGoogle Scholar
Steinmetz, J. E., Lavond, D. G. & Thompson, R. F. (1989) Classical conditioning rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse 3(3):225–32. [RFT, CW]CrossRefGoogle ScholarPubMed
Stelzer, A., Slater, N. T. & ten Bruggencate, G. (1987) Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy. Nature 326:698701. [aMKan]CrossRefGoogle Scholar
Stone, L. S. & Lisberger, S. G. (1990) Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys: 2. Complex spikes. Journal of Neurophysiology 63:1262–75. [aJCH, aJIS]CrossRefGoogle ScholarPubMed
Strahlendorf, J. C., Strahlendorf, H. K. & Barnes, C. D. (1979) Modulation of cerebellar neuronal activity by raphé stimulation. Brain Research 169:565–69. [aDJL]CrossRefGoogle ScholarPubMed
Straube, A., Denbel, H., Spuler, A. & Büttner, U. (1995) Different effect of a bilateral deep cerebellar nuclei lesion on externally and internally triggered saccades ín humans. Neuro-Ophthalmology 15:6774.CrossRefGoogle Scholar
Strata, P. (1985) Inferior olive: Functional aspects. In: CerebeUar junctions, ed. Bloedel, J. R., Dichgans, J. & Precht, W.. Springer–Verlag. [aWTT]Google Scholar
Strick, P. L. (1994) Input to the primate frontal eye field from substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Experimental Brain Research 100(1):181–86. [CW]Google Scholar
Sugihara, I., Lang, E. J. & Llinás, R. (1993) Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in die rat cerebellum. Journal of Physiology (London) 470:243–71. [aJIS]CrossRefGoogle Scholar
Sugimori, M. & Llinas, R. R. (1990) Real-time imaging of calcium influx in mammalian cerebellar Purkinje cells in vitro. Proceedings of the National Academy of Sciences of the USA 87:5084–88. [aMKan]CrossRefGoogle ScholarPubMed
Sugiyama, H., Ito, I. & Hirono, C. (1987). A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325:531–33. [aFC]CrossRefGoogle ScholarPubMed
Suko, J., Maurer-Fogy, I., Plank, B., Bertel, O., Wyskovsky, W., Hohenegger, M. & Hellmann, G. (1993) Phosphorylation of serine 2843 in ryandodine receptor-calcium release channel of skeletal muscle by cAMP-, cGMP- and CaM-dependent protein kinase. Blochemica et Biophysica Acta 1175:193206. [aSRV]CrossRefGoogle ScholarPubMed
Sutton, R. S. & Barto, A. G. (1981) Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review 88:135–70. [aJCH, JCH]CrossRefGoogle Scholar
Suzuki, R. (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics 57:169–85. [MKan]Google Scholar
Swain, R. A., Shinkman, P. G., Nordholm, A. F. & Thompson, R. F. (1992) Cerebellar stimulation as an unconditioned stimulus in classical conditioning. Behavioral Neuroscience 106:739–50. [CW]CrossRefGoogle ScholarPubMed
Swinnen, S. P., Dounskaia, N., Verschueren, S., Serrien, D. J. & Daelman, A. (1995) Relative phase destabilization during interlimb coordination: The disruptive role of kinesthetic afferences induced by passive movement. Experimental Brain Research 105: 439–54. [SPS]Google ScholarPubMed
Swinnen, S. P., Walter, C. B., Lee, T. D. & Serrien, D. J. (1993) Acquiring bimanual skills: contrasting forms of information feedback for interlimb decoupling. Journal of Experimental Psycliology: Learning, Memory, b Cognition 19:1328–44. [SPS]Google ScholarPubMed
Swinnen, S. P., Young, D. E., Walter, C. B. & Serrien, D. J. (1991) Control of asymmetrical bimanual movements. Experimental Brain Research 85:163–73. [SPS]CrossRefGoogle ScholarPubMed
Szekely, A. M., Barbaccia, M. L., H., Alho & Costa, E. (1989) In primary cultures of cerebellar granule cells die activation of N-mediyl-D-aspartate-sensitive glutamate receptors induces c-fos mRNA expression. Molecular Pharmacology 35:401–8. [aSRV]Google Scholar
Szentágodiai, J. & Rajkovits, K. (1959) Uber den urspring der kletterfasem des kleinjims. Zeitschrift für Anatomie und Entwicklungsgeschichte 121:130–41. [aJIS]CrossRefGoogle Scholar
Tachibana, H., Argane, K. & Sugita, M. (1995) Event-related potentials in patients with cerebellar degeneration: Electrophysiological evidence for cognitive impairment. Cognitive Brain Research 2:173–80. [JMB]CrossRefGoogle ScholarPubMed
Tank, D. W., Sugimori, M., Connor, J. A. & Llinas, R. R. (1988) Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242:773–77. [aMKan]CrossRefGoogle ScholarPubMed
Takagi, H., H., Taldmizu, de Barry, J., Kudo, Y. & Yoshioka, T. (1992) The expression of presynaptic t-ACPD receptor in rat cerebellum. Biochemical and Biophysical Research Communications 189:1287–95. [aDJL, aSRV]CrossRefGoogle ScholarPubMed
Takemura, A., Inoue, Y., Kawano, K., Shidara, M., Gomi, H. & Kawato, M. (submitted) Characterization of neuronal firing patterns during short-latency ocular following responses by linear time-series regression analysis. [MKaw]Google Scholar
Tan, J., Gerrits, N. M., Nanhoe, R. S., Simpson, J. I. & Voogd, J. (1995a) Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit. A combined axonal tracing and acetylcholinesterase histochemical study. Journal of Comparative Neurology 356:122. [aJIS]CrossRefGoogle Scholar
Tan, J., Simpson, J. I. & Voogd, J. (1995b) Anatomical compartments in the white matter of the rabbit flocculus. Journal of Comparative Neurology 356:2350. [aJIS]CrossRefGoogle ScholarPubMed
Tang, C. M., Shi, Q. Y., Katchman, A. & Lynch, G. (1991) Modulation of the time course of fast EPSPs and glutamate channel kinetics by Aniracetam. Science 254:288–90. [aFC]CrossRefGoogle Scholar
Tanji, J. (1985) Comparison of neural activities in the monkey supplementary and precentrai motor areas. Trends in Neuroscience 18:137. [aWTT]Google Scholar
Tanji, J. & Evarts, E. V. (1976) Anticipatory activity of motor cortex in relation to direction of an intended movement. Journal of Neurophysiology 39:1062–68. [aWTT]CrossRefGoogle ScholarPubMed
Tanji, J. & Shima, K. (1994) Role for supplementary motor area cells in planning several movements ahead. Nature 371:413–16. [MH]CrossRefGoogle ScholarPubMed
Tarkka, I. M., Massaquoi, S. & Hallett, M. (1993) Movement-related cortical potentials in patients widi cerebellar degeneration. Ada Neurologica Scandinavia 88:129–35. [KW]CrossRefGoogle Scholar
Tempia, F., Dieringcr, N. & Strata, P. (1991) Adaptation and habituation of the vestibulo-ocular reflex in intact and inferior olive-lesioned rats. Experimental Brain Research 86:568–78. [aJIS]CrossRefGoogle ScholarPubMed
ter Haar Romeny, B. M., Denier Van Der Gon, J. J., & Gielen, C. C. A. M. (1984) Relation between location of a motor unit in the human biceps brachii and its critical firing levels for different tasks. Experimental Neurology 85:631–50. [aAMS]CrossRefGoogle ScholarPubMed
Terzuolo, C. A., Soechting, J. F. & Palminteri, R. (1973) Studies on the control of some simple motor tasks: 3. Comparison of the EMG pattern during ballistically initiated movements in man and squirrel monkey. Brain Research 62:242–46. [aAMS]CrossRefGoogle ScholarPubMed
Terzuolo, C. A., Soechting, J. F. & Viviani, P. (1973) Studies on the control of some simple motor tasks: 2. On the cerebellar control of movements in relation to the formation of intentional command. Brain Research 58:217–22. [CG]CrossRefGoogle Scholar
Thach, W. T. (1967) Somatosensory receptive fields of single units in die cat cerebellar cortex. Journal of Neurophysiobgy 30:675–96. [aJIS]CrossRefGoogle Scholar
Thach, W. T. (1968) Discharge of Purldnje and cerebellar nuclear neurons during rapidly alternating arm movement in the monkey. Journal of Neurophysiology 31:785–97. [aJIS]CrossRefGoogle ScholarPubMed
Thach, W. T. (1970a) Discharge of cerebellar neurones related to two maintained postures and two prompt movements: 1. Nuclear cell output. Journal of Neurophysiology 35:527–36. [KW, aJIS]CrossRefGoogle Scholar
Thach, W. T. (1970b) Discharge of cerebellar neurons related to two maintained postures and two prompt movements: 2. Purkinje cell output and input. Journal of Neurophysiology 33:537–47. [PFCG]CrossRefGoogle Scholar
Thach, W. T. (1980) Complex spikes, the inferior olive, and natural behavior. In: The inferior olivary necleus, ed. Courville, J.. Raven. [aWTT]Google Scholar
Thach, W. T., Goodkin, H. P. & Keating, J. G. (1991) Inferior olive disease in man prevents learning novel synergies. Society for Neuroscience Abstracts 17:1380. [aWTT]Google Scholar
Thach, W. T., Goodkin, H. P. & Keating, J. G. (1992) The cerebellum and the adaptive coordination of movement. Annual Review of Neuroscience 15:403–42. [aJCH, arAMS. aJIS, arWTT]CrossRefGoogle ScholarPubMed
Thach, W. T., Goodkin, H. P., Keating, J. G. & Martin, T. A. (1992) Prism adaptation in throwing is specific for arm and type of throw. Society for Neuroscience Abstracts 18:516. [aWTT]Google Scholar
Thach, W. T., Lane, S. A., Mink, J. W. & Goodkin, H. P. (1992) Cerebellar output: Multiple maps and modes of control in movement coordination. In: The cerebellum revisited, ed. Llinas, R. & Sotela, C.. Springer-Verlag. [aWTT]Google Scholar
Thach, W. T., Martin, T. A., Keating, J. G., Goodkin, H. P. & Bastian, A. J. (1995) Schematic model of short- and long-term adjustments of eye-hand coordination in throwing. Society for Neuroscience Abstracts. [aWTT]Google Scholar
Thach, W. T., Mink, J. W., Goodkin, H. P. & Keating, J. G. (1993) Combining versus gating motor programs: Differential roles for cerebellum and basal ganglia? In: Role of cerebellum and basal ganglia in voluntary movement, ed. Mano, N., Hamada, I. & DeLong, M. R.. Elsevier. [rWTT]Google Scholar
Thach, W. T. & Montgomery, E. B. (1990) Motor system. In: Neurobiology of disease, ed. Pearlman, A. L. & Collins, R. C.. Oxford University Press. [aWTT]Google Scholar
Thach, W. T., Perry, J. G., Kane, S. A. & Goodkin, H. P. (1993) Cerebellar nuclei: Rapid alternating movement, motor somatotopy and a mechanism for the control of muscle synergy. Revue Neurologique 149:607–28. [aAMS, arWTT]Google Scholar
Thelen, E. & Smith, A. (1994) A dynamic systems approach to the development of cognition and action. MIT Press. [AGF]Google Scholar
Thompson, R. F. (1986) The neurobiology of learning and memory. Science 223:941–47. [aJCH, aJIS. aWTT. CW]CrossRefGoogle Scholar
Thompson, R. F. (1988) The neural analysis of basic associative learning of discrete behavioral responses. Trends in Neurosciences 11:152–55. [EDS, JDS]CrossRefGoogle Scholar
Thompson, R. F. (1990) Neural mechanisms of classical conditioning in mammals. Philosophical Transactions of the Royal Society of London B16170. [aWTT, CW]Google ScholarPubMed
Thompson, R. F. & Krupa, D. J. (1994) Organization of memory traces in the mammalian brain. Annual Review of Neuroscience 108:4456. [DT, RFT]Google Scholar
Timmann, D. & Horak, F. B. (1995b) Prediction and set-dependent postural gain control in cerebellar patients. Society of Neuroscience Abstracts 21:270. [DT]Google Scholar
Timmann, D., Kolb, F. P., Rijntjes, M., Diener, H. C. & Weiller, C. (1995a) Classical conditioning of Uie human flexion reflex: A PET study. European Journal of Neuroscience 8(suppl.):195. [DT]Google Scholar
Timmann, D., Shimansky, Yu., Larson, P. S., Wunderlich, D. A., Stelmach, G. E. & Bloedel, J. R. (1994) Visuomotor learning in cerebellar patients. Society of Neuroscience Abstracts 20:21. [DT]Google Scholar
Tjörnhammar, M.-L., Lazaridis, G. & Bartfai, T. (1986) Efflux of cyclic guanosine 3’,5’-monophosphate from cerebellar slices stimulated by L-glutamate or high K+ or N-’-methyl-N’-nitro-N-nitrosoguanidine. Neuroscience Letters 68:9599. [aSRV]CrossRefGoogle ScholarPubMed
Tootell, R. B. H., Reppas, J. B., Dale, A. M., Look, R. B., Sereno, M. L., Malach, R., Brady, T. J. & Rosen, B. R. (1995) Visual motion aftereffect in human coritical area MT revealed by functional magnetic resonance imaging. Nature 375:139–41. [PVD]CrossRefGoogle Scholar
Topka, H., Massaquoi, S. G., Zeffiro, T. & Hallett, M. (1991) Learning of arm trajectory formation in patients with cerebellar deficits [abstract]. Society for Neuroscience Abstracts 17:1381. [MH]Google Scholar
Topica, H., Valls-Solle, J., Massaquoi, S. G. & Hallett, M. (1993) Deficit in classical conditioning in patients with cerebellar degeneration. Brain H6(pt.4):961–69. [aWTT]CrossRefGoogle Scholar
Toyama, H., Tsukahara, N., Kosaka, K. & Matsunami, K. (1970) Synaptic excitation of red nucleus nerone by fibres from interpositus nucleus. Experimental Brain Research 11(2):187–98. [aWTT]CrossRefGoogle Scholar
Tremblay, J., Gerzer, R. & Hamet, P. (1988) Cyclic GMP in cell function. In: Advances in second messengers and phosjrfioprotein research, vol. 22, ed. Greengard, P. & Robison, G. A.. Raven. [aFC]Google Scholar
Trowbridge, M. H. & Cason, H. (1932) An experimental study of Thorndikes theory of learning. Journal of General Psychology 7:245–60. [HB]CrossRefGoogle Scholar
Tsukahara, N. (1972) The properties of the cerebello-pontine reverberating circuit. Brain Research 40:67. [MAA]CrossRefGoogle ScholarPubMed
Tsukahara, N., Bando, T., Murakami, F., & Oda, Y. (1993) Properties of cerebello-precerebellar reverberating circuits. Brain Research 274:249259. [aJCH]CrossRefGoogle Scholar
Tsukahara, N., Hultbom, H., Murakami, F. & Fujito, Y. (1975) Electrophysiological study of formation of new synapses and collateral sprouting in red nucleus neurons after partial denervation. Journal of Physiology 38:1359–72. [aMKan]Google ScholarPubMed
Tsukahara, N., Korn, H. & Stone, J. (1968) Pontine relay from cerebral cortex to cerebellar cortex and nucleus interpositus. Brain Research 10:448–53. [aJCH]CrossRefGoogle ScholarPubMed
Tusa, R. J. & Ungerleider, L. G. (1988) Fiber pathways of cortical areas mediating smooth pursuit eye movements in monkeys. Annals of Neurology 23:174–83. [JDS]CrossRefGoogle ScholarPubMed
Tyler, A. E. & Hutton, R. S. (1986) Was Sherrington right about co-contractions. Brain Research 370:171–75. [aAMS]CrossRefGoogle ScholarPubMed
Tyrrell, T. & Willshaw, D. J. (1992) Cerebellar cortex: Its simulation and the relevance of Marr's theory. Proceedings of the Royal Society of London, Series B 336:239–57. [arJCH]Google ScholarPubMed
udo, M., Matsukawa, K., Kamei, H., Minoda, K. & Oda, Y. (1981) Simple and complex spike activities of Purkinje cells during locomotion in the cerebellar vermal zones of decerebrate cats. Experimental Brain Research 41:292300. [aAMS]Google ScholarPubMed
Vallebuona, F. & Raiteri, M. (1993) Monitoring of cyclic GMP during cerebellar microdialysis in freely-moving rats as an index of nitric oxide synthase activity. Neuroscience 57:577–85. [aSRV]CrossRefGoogle ScholarPubMed
Van der Steen, J., Simpson, J. I. & Tan, J. (1994) Functional and anatomical organization of three-dimensional eye movements in rabbit cerebellar flocculus. Journal of Neurophysiology 72:3146. [aJIS]CrossRefGoogle ScholarPubMed
Van der Want, J. J. L., Wiklund, L., Guegan, M.. Ruigrok, T. & Voogd, J. (1989) Anterograde tracing of the rat olivocerebellar system with phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. Journal of Comparative Neurology 288:118. [aJIS]CrossRefGoogle ScholarPubMed
Van der Zee, E. A., Palm, I. F., Kronforst, M. A., Maizels, E. T., Shanmugam, M., Hunzicker-Dunn, M. & Disterhoft, J. F. (1995) Trace and delay eycblink conditioning induce alterations in the immunoreactivity for PKCg in the rabbit hippocampus. Society for Neuroscience Abstracts 21:1218. [CW]Google Scholar
van Donkelaar, P., Fisher, C. & Lee, R. G. (1994) Adaptive modification of oculomotor pursuit influences manual tracking responses. NeuroReport 5:2233–36. [PVD]CrossRefGoogle ScholarPubMed
Van Galen, G. P. & De Jong, W. P. (1995) Fitts' law as the outcome of a dynamic noise filtering model of motor control. Human Movement Science 14:539–71. [GPVG]CrossRefGoogle Scholar
Van Galen, G. P. & Schomaker, R. B. (1992) Fitts' law as a low-pass filter effect of muscle stiffness. Human Movement Science 11:1121. [GPVG, rAMS]CrossRefGoogle Scholar
Van Galen, G. P., Van Doom, R. R. A. & Schomaker, R. B. (1990) Effects of motor programming on the power spectrum density function of finger and wrist movements. Journal of Experimental Psychology: Human Percqition and Performance 16:755–65. [GPVG]Google ScholarPubMed
Van Gisbergen, J. A. M., Robinson, D. A. & Gielen, S. (1981) A quantitative analysis of saccadic eye movements by burst neurons. Journal of Neurophysiology 45:417–42. [aJCH]CrossRefGoogle ScholarPubMed
Van Gisbergen, J. A. M., Van Opstal, A. J. & Hoeks, B. (1989) The transformation of the collicular motor map into rapid eye movements: Implications of a nonorthogonal muscle system. In: Neural networks from models to applications, ed. Personnaz, L. & Dreyfus, G.. Paris: I.D.S.E.T. [aJCH]Google Scholar
van Ingen Schenau, C. J., Boots, P. J. M., Snackers, R. J. & van Woensel, W. W. L. M. (1991) The constrained control of force and position by multi-joint movements. Neuwscience 46:197207. [aAMS]Google Scholar
Van Kan, P. L. E., Gibson, A. R. & Houk, J. C. (1993) Movement-related inputs to intermediate cerebellum of the monkey. Journal of Neurophysiology 69:7494. [arJCH]CrossRefGoogle ScholarPubMed
Van Mier, H., Tempel, L., Perlmutter, J. S., Raichle, M. E. & Petersen, S. E. (1995) Generalization of practice-related effects in motor learning using the dominant and nondominant hand measured by PET. Society for Neuwscience Abstracts 21:1441. [rWTT]Google Scholar
van Zuylan, E. J., Gielen, C. C. A. M. & Denier Van Der Gon, J. J. (1988) Coordination and inhomogeneous activation of human arm muscles during isometric torques. Journal of Neurophysiology 60:1523–48. [aAMS]CrossRefGoogle Scholar
Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V. & Snyder, S. H. (1993) Carbon monoxide: A putative neural messenger. Science 259:381–84. [aDJL, aSRV, JMO]CrossRefGoogle ScholarPubMed
Verschueren, S., Swinnen, S. P. & Dom, R. (1995) Interlimb coordination in patients with Parkinson's disease: Learning capabilities and the importance of augmented visual information. In: Studies in perception and action 3, ed. Bardy, G., Bootsma, R. J. & Guiard, Y.. Erlbaum. [SPS]Google Scholar
Viallet, F., Massion, J., Bonnefois-Kyriacou, B., Aurenty, R., Obadia, A. & Khalil, R. (1994) Approche quantative de l'asynergie posturale en pathologie cérébelleuse. Revue Neurologique 150:5560. [aAMS]Google Scholar
Viallet, F., Massion, J., Massarino, R. & Khalil, R. (1987) Performance of a bimanual load-lifting task by Parldnsonian patients. Journal of Neurology, Neurosurgery, and Psychiatry 50:12741283. [aAMS]CrossRefGoogle ScholarPubMed
Viallet, F., Massion, J., Massarino, R. & Khalil, R. (1992) Coordination between posture and movement in a bimanual load lifting task: Putative role of a medial frontal region in the supplementary motor area. Experimental Brain Research 88:674–84. [aAMS]CrossRefGoogle Scholar
Vilensky, J. A. & Van Hoesen, G. W. (1981) Corticopontine projections from the. cingulate cortex in the rhesus monkey. Brain Reseawh 205:391–95. [JDS]CrossRefGoogle ScholarPubMed
Vincent, P., Armstrong, C. M. & Marty, A. (1992) Inhibitory synaptic currents in rat cerebellar Purkinje cells: Modulation by postsynaptic depolarization. Journal of Physiology (London) 456:453–71. [aMKan]CrossRefGoogle ScholarPubMed
Vincent, P. & Marty, A. (1993) Neighboring cerebellar Purldnje cells communicate via retrograde inhibition of common presynaptic intemeurons. Neuron 11:885–93. [aMKan]CrossRefGoogle Scholar
Vincent, S. R. & Hope, B. T. (1992) Neurons that say NO. Trends in Neuroscience 15:108–13. [aSRV]CrossRefGoogle ScholarPubMed
Vincent, S. R. & Kimura, H. (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–84. [aDJL, aSRV]CrossRefGoogle ScholarPubMed
Voneida, T., Christie, D., Boganslo, R. & Chopko, B. (1990) Changes in instrumentally and classically conditioned limb-flexion responses following inferior olivary lesions and olivocerebellar tractotomy in the cat. Journal of Neuroscience 10:3583–93. [RFT]CrossRefGoogle ScholarPubMed
Voogd, J. (1964) The cerebellum of the cat: Structure and fibre connections. Thesis, Van Gorcum, Assen, The Netherlands. [aJIS]Google Scholar
Voogd, J. & Bigare, F. (1980) Topographical distribution of olivary and cortico-nuclear fibers in the cerebellum: A review. In: The inferior olivary nucleus: Anatomy and physiology, eds. Courville, J., de Montigny, C. & Lamarre, Y.. Raven. [aJIS]Google Scholar
Vranesic, I., Batchelor, A., Gahwiler, B. H., Garthwaite, J., Staub, C. & Knopfel, T. (1991) Trans-ACPD-induced Ca2* signals in cerebellar Purldnje cells. NeuroReport 2:759–62. [aFC, aDJL, rSRV]CrossRefGoogle ScholarPubMed
Yklicky, L., Patneau, D. K. & Mayer, M. L. (1991) Modulation of excitatory synaptic transmission by drugs that reduce desensitization at AMPA/kaïnate receptors. Neuron 7:971–84. [aFC]CrossRefGoogle Scholar
Wada, Y. & Kawato, M. (1993) A neural network model for arm trajectory formation using forward and inverse dynamics models. Neural Networks 6:919–32. [MKaw]CrossRefGoogle Scholar
Waespe, W., Cohen, B. & Raphan, T. (1983) Role of the flocculus and paraflocculus in optokinetic nystagmus and visual-vestibular interactions: Effects of lesions. Experimental Brain Research. 50:933. [aJIS]CrossRefGoogle ScholarPubMed
Waespe, W., Cohen, B. & Raphan, T. (1985) Dynamic modification of the vestibulo-ocular reflex by the nodulus and the uvula. Science 228:199202. [aJIS]CrossRefGoogle ScholarPubMed
Walmsley, B., Hodgson, J. A. & Burke, R. E. (1978) The forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. Journal of Neurophysiology 41:1203–16. [aAMS]CrossRefGoogle ScholarPubMed
Walter, C. B. & Swinnen, S. P. (1994) The formation and dissolution of ‘bad habits’ during the acquisition of coordination skills. In: Interlimb coordination: Neural, dynamical, and cognitive constraints, ed. Swinnen, S. P., Heuer, H., Massion, J. & Casaer, P.. Academic Press. [SPS]Google Scholar
Wang, J.-J., Kim, J. H. & Ebner, T. J. (1987) Climbing fiber afferent modulation during a visually guided, multi-joint arm movement in the monkey. Brain Research 410:323–29. [aJIS]CrossRefGoogle ScholarPubMed
Watldns, J. C. (1981) Pharmacology of excitatory amino acid transmitters. In: Advances in biochemical psychopharmacology, vol. 29: Amino acid neurotransmitters, ed. DeFeudis, F. W., , F. W. & Mandel, P.. Raven. [aFC]Google Scholar
Watson, P. J. (1978) Nonmotor functions of the cerebellum. Psychological Bulletin 85:944–67. [JDS]CrossRefGoogle ScholarPubMed
Weeks, D. L., Aubert, M.-P., Feldman, A. G. & Levin, M. F. (in press) One-trial adaptation of movement to changes in load. Journal of Neurophysiology. [AGF]Google Scholar
Weinberger, D., Kleinman, J., Luchins, D., Bigelow, L. & Wyatt, R. (1980) Cerebellar pathology in schizophrenia. A controlled post-mortem study. American Journal of Psychiatry 137:359–61. [aWTT]Google Scholar
Weiner, M. J., , Hallet, & Funkenstein, H. H. (1983) Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology 33:766–72. [aWTT]CrossRefGoogle ScholarPubMed
Weiner, N. (1948) Cybernetics: Control and Communication in the animai and in the Machine. John Wiley.Google Scholar
Weiss, C., Houk, J. C. & Gibson, A. R. (1990) Inhibition of sensory responses of cat inferior olive neurons produced by stimulation of red nucleus. Journal of Neurophysiology 64:1170–85. [CW]CrossRefGoogle ScholarPubMed
Weiss, C., Disterhoft, J. F., Gibson, A. R. & Houk, J. C. (1993) Receptive fields of single cells from the face zone of the cat rostral dorsal accessory olive. Brain Research 605:207–13. [aJCH, CW]CrossRefGoogle ScholarPubMed
Weiss, C., Houk, J. C., & Gibson, A. R. (1990) Inhibiton of sensory responses of cat inferior olive neurons produced by stimulation of re. nucleus. Journal of Neurophysiology 64:1170–85. [aJCH]CrossRefGoogle Scholar
Weiss, C., Kronforst-Collins, M. A. & Disterhoft, J. F. (1996) Activity of hippocampal pyramidal neurons during trace eyeblink conditioning. Hippocampus 6(2). [CW]Google ScholarPubMed
Weisskopf, M. C., Castillo, P. E., Zalutsky, R. A. & Nicoli, R. A. (1994) Mediation of hippocampal mossy fiber long-term potentiation by cyclic-am. Science 265:1878–82. [MB, rDJL]CrossRefGoogle Scholar
Welsh, J. P., Lang, E. J., Sugihara, I. & Llinas, R.. (1995) Dynamic organization of motor control within the olivocerebellar system. Nature 374:453–57. [RCM. EDS]CrossRefGoogle ScholarPubMed
Welsh, J. P. & Harvey, J. A. (1989) Cerebellar lesions and the nictitating membrane reflex: Performance deficits of the conditioned and unconditioned response. Journal of Neuroscience 9:299311. [aJIS, aWTT, CW]CrossRefGoogle ScholarPubMed
Welsh, J. P., Lang, E. J. & Llinás, R. (1993) The microstructure of coherence in the olivocerebellar system during rhythmic movement in normal and deafierented rats. Society of Neuroscience Abstracts 19: 529.9. [aJIS]Google Scholar
Welsh, J. P., Lang, E. J., Sugihara, I. & Llinás, R. (1992) Rhythmic olivocerebellar control of skilled tongue movement in relation to patterned hypoglossal nerve activity. Society of Neuroscience Abstracts 18:178.7. [aJIS]Google Scholar
Welsh, J. P., Lang, E. J., Sugihara, I. & Llinás, R. (1995) Dynamic organization of motor control within the olivocerebellar system. Nature 374:453–57. [aJIS, RCM, SPS]CrossRefGoogle ScholarPubMed
Welsh, J. P. & Harvey, J. A. (1989) Cerebellar lesions and the nictitating membrane reflex: Performance deficits of the conditioned and unconditioned response. Journal of Neuroscience 9:299311.CrossRefGoogle ScholarPubMed
Wenthold, R. J., Yokotami, N., Doi, K. & Wada, K. (1992) Immunochemical characterization of the non-NMDA receptor using subunit-specific antibodies. Journal of Biological Chemistry 267:501–7. [aFC]CrossRefGoogle ScholarPubMed
Werhahn, K. J., Meyer, B. U., Rothwell, J. C., Thompson, P. D., Day, B. L. & Marsden, C. D. (1993) Reduction of motor cortex excitability by transcranial magnetic stimulation over the human cerebellum. Journal of Physiology (London) 459:149. [rJCH]Google Scholar
Wessel, K., Tegenthoff, M., Vorgerd, M., Otto, V., Nitschke, M. & Malin, J. P. (1996) Enhancement of inhibitory mechanisms in the mortor cortex of patients with cerebellar degeneration: A study with transcranial magnetic brain stimulation. Electroencphalography and Clinical Neurophysiology 101:273–81. [KW]CrossRefGoogle Scholar
Wessel, K., Verleger, R., Nazarenus, D., Vieregge, P. & Kömpf, D. (1994) Movement-related cortical potentials preceding sequential and goal-directed finger and arm movements in patients widi cerebellar atrophy. Electroencephalography and Clinical Neurophyslology 92:331—41. [KW]CrossRefGoogle Scholar
Wessel, K., Zeffiro, T., Lou, J. S.. Toro, C. & Hallett, M. (1995) Regional cerebral blood flow during a self-paced sequential finger opposition task in patients with cerebellar degeneration. Brain 118:379–93. [KW]CrossRefGoogle ScholarPubMed
Wetts, R. & Herrup, K. (1982a) Interaction of granule, Purkinje and inferior olivary neurons in Lurcher chimeric mice: 2. Granule cell death. Brain Research 250:358–62. [aAMS]CrossRefGoogle ScholarPubMed
Wetts, R. & Herrup, K. (1982b) Interaction of granule, Purkinje and inferior olivary neurons in Lurcher chimaeric mice: 1. Qualitative studies. Journal of Embryology and Experimental Morphology 68:8798. [aAMS]Google Scholar
Wetts, R., Kalaska, J. F. & Smith, A. M. (1985) Cerebellar nuclear cell activity during antagonist cocontraction and reciprocal inhibition of forearm musdes. Journal of Neurophysiology 54:231–44. [aAMS, aWTT]CrossRefGoogle Scholar
Whiting, P., McKeman, R. M. & Iverson, L. L. (1990) Another mechanism for creating diversity in γaminobutyrate type A receptors: RNA splicing directs expression of two forms of γ2 subunit, one of which contains a protein kinase C phosphorylation site. Proceedings of the National Academy of Sciences of the USA 87:9966–70. [aMKan]CrossRefGoogle Scholar
Wiener, S. I. & Berthoz, A. (1993) Vestibular contributions during navigation. In: Multisensory control of movement, ed. Berthoz, A.. Oxford University Press. [SMO]Google Scholar
Williams, J. H., Errington, M. L., Lynch, M. A. & Bliss, T. V. (1989) Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341:739–42. [MB]CrossRefGoogle ScholarPubMed
Williams, J. H., Li, Y.-G., Nayak, A., Errington, M. L., Murphy, K. P. S. J. & Bliss, T. V. P. (1993) The suppression of long-term potentiation in rat hippocampus by inhibitors of nitric oxide synthase is temperature and age dependent. Neuron 11:877–84. [aDJL]CrossRefGoogle ScholarPubMed
Windhorst, U., Burke, R. E., Dieringer, N., Evinger, C., Feldman, A. G., Hasan, Z. et al. (1991) What are the ouput units of motor behavior and how are they controlled?. In: Motor control: Concepts and issues, ed. Humphrey, D. R. & Freund, H.-J.. Wiley. [aAMS]Google Scholar
Wing, A. M. Turton, A. & Fraser, C. (1986) Grasp size and accuracy of approach in reaching. Journal of Motor Behavior 18:245–60. [PH]CrossRefGoogle ScholarPubMed
Wood, P. L. (1991) Pharmacology of the second messenger, cyclic guanosine 3',5'-monophosphate, in the cerebellum. Pharmacological Reviews 43:125. [aSRV]Google ScholarPubMed
Wood, P. L., Emmett, M. R. & Wood, J. A. (1994) Involvement of granule, basket and stellate neurons but not Purkinje or Golgi cells in cerebellar cGMP incease. in vivo. Life Sciences 54:615–20. [arSRV, LK]CrossRefGoogle Scholar
Wood, P. L., Emmett, M. R., Rao, T. S., Cler, J., Mick, S. & Iyengar, S. (1990) Inhibition of nitric oxide synthase blocks N-methyl-D-aspartate-, quisqualate-, kainate-, harmaline-, and pentylenetetrazole-dependent increases in cerebellar cyclic GMP in vivo. Journal of Neurochemlstry 55:346–48. [aSRV]CrossRefGoogle ScholarPubMed
Wood, P. L., Richard, J. W., Pilapil, C. & Nair, N. P. V. (1982) Antagonists of excitatory amino acids and cyclic guanosine monophosphate in cerebellum. Neurophamrmacobgy 21:1235–38. [aSRV]CrossRefGoogle ScholarPubMed
Wood, P. L., Ryan, R. & Li, M. (1992) NMDA-, but not kainate- or quisqualate-dependent increases in cerebellar cGMP are dependent upon monoaminergic innervation. Life Sciences 51:267–70. [aSRV]CrossRefGoogle ScholarPubMed
Wood, J. & Garthwaite, J. (1994) Models of the diflusional spread of nitric oxide: Implications for neural nitric oxide signalling and its pharmacological properties. Neuropharmacology 33:1235–44. [DO]CrossRefGoogle ScholarPubMed
Woodward, D. J., Hoffer, B. J., Siggins, G. R. & Bloom, F. E. (1971) The ontogenic development of synaptic junctions. Synaptic activation and responsiveness to neurotransmitter substances in rat cerebellar Purkinje cells. Brain Research 34:7397. [LK]CrossRefGoogle Scholar
Wooten, G. F. & Collins, R. C. (1981) Metabolic effects of unilateral lesions of the substantia nigra. Journal of Neuroscience 1:285–91. [aWTT]CrossRefGoogle ScholarPubMed
Wu, G. Y. & Brosnan, J. T. (1992) Macrophages can convert citrulline into arginine. Biochemical Journal 281:4548. [LK]CrossRefGoogle ScholarPubMed
Wylie, D. R. & Frost, B. J. (1993) Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation: 2. The 3-dimensional reference frame of rotation neurons in the flocculus. Journal of Neurophysiology 70:2647–59. [arJIS]CrossRefGoogle ScholarPubMed
Wylie, D. R. & Frost, B. J. (in press) The pigeon optokinetic system: Visual input in extraocular muscle coordinates. Visual Neuroscience. [rJIS]Google Scholar
Wylie, D. R., De Zeeuw, C. I., DiGiorgi, P. L. & Simpson, J. I. (1994) Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. Journal of Comparative Neurology 349:448–63. [aJIS]CrossRefGoogle Scholar
Wylie, D. R., De Zeeuw, C. I. & Simpson, J. I. (1995) Temporal relations of the complex spike activity of Purkinje cell pairs in the vestibulocerebellum of rabbits. The Journal of Neuroscience 15:2875–87. [aJIS]CrossRefGoogle ScholarPubMed
Xiao, P., Bahr, B. A., Staubli, U., Vanderklish, P. W. & Lynch, G. (1991) Evidence that matrix recognition contributes to stabilization but not induction of LTP. Neuroreport 2:461–64. [MB]CrossRefGoogle Scholar
Yamamoto, C., Yamashita, H. & Chujo, T. (1978) Inhibitory action of glutamic acid on cerebellar intemeurons. Nature (London) 262:786–87. [aJIS]CrossRefGoogle Scholar
Yamamoto, M. (1979) Vestibulo-ocular reflex pathways of rabbits and their representation in the cerebellar flocculus. Progress in Brain Research 50:451–57. [aJIS]CrossRefGoogle ScholarPubMed
Yamamoto, T., Yoshida, K., Yoshikawa, H., Kishimoto, Y. & Oka, H. (1992) The medial dorsal nucleus is one of the thalamic relays of the cerebellocerebral responses to the frontal association cortex in the monkey: Horseradish peroxidase and fluorescent dye double staining study. Brain Research 579:315–20. [aWTT]CrossRefGoogle Scholar
Yan, X. X., Jen, L. S. & Carey, L. J. (1993) Parasagittal patches in the granular layer of the developing and adult rat cerebellum as demonstrated by NADPH-diaphorase histochemistry. NeuroReport 4:1227–30. [aSRV]CrossRefGoogle ScholarPubMed
Yanagihara, D., Kondo, I. & Yoshida, T. (1994) Nitric oxide-mediated cerebellar synaptic plasticity plays an important role in adaptive interlimb coordination during perturbed locomotion. Japanese Journal of Physiology 55(suppl. 1):S222. [aMKan]Google Scholar
Yao, X., Segal, A. S., Welling, P., Zhang, X., McNicholas, C. M., Engel, D., Boulpaep, E. L. & Desir, G. V. (1995) Primary structure and functional expression of a cGMP-gated potassium channel. Proceedings of the National Academy of Sciences of the USA 92:11711–15. [rSRV]CrossRefGoogle ScholarPubMed
Yeo, C. H., Hardiman, M. J. & Glickstein, M. (1984) Discrete lesions of the cerebellar cortex abolish classically conditioned nictitating membrane response of the rabbit. Behavior Brain Research 13:261–66. [aWTT]CrossRefGoogle ScholarPubMed
Yeo, C. H., Hardiman, M. J. & Glickstein, M. (1986) Classical conditioning of the nictitating membrane response of the rabbit: 4. Lesions of the inferior olive. Experimental Brain Research 63:8192. [RFT]CrossRefGoogle Scholar
Yeo, C. H., Hardiman, M. J. & Glickstein, M. (1985) Classical conditioning of the nictitating membrane response of the rabbit: I. Lesions of the cerebellar nuclei. Experimental Brain Research 60:8798. [CW]CrossRefGoogle ScholarPubMed
Yi, S.-J., Snell, L. D. & Johnson, K. M. (1988) Linkage between phencyclidine (PCP) and N-methyl-D-aspartate (NMDA) receptors in the cerebellum. Brain Research 445:147–51. [aSRV]CrossRefGoogle ScholarPubMed
Yoshikami, D. & Okun, L. M. (1984) Staining of living presynaptic nerve terminals with selective fluorescent dyes. Nature 310:5356. [aDJL]CrossRefGoogle ScholarPubMed
Young, L. R. (1977) Pursuit eye movements: What is being pursued? In: Control of gaze by brain stem neurons, ed. Baker, R. & Berthoz, A.. [aJCH]Google Scholar
Yuen, G. L., Hockberger, P. E. & Houk, J. C. (1995) Bistability in cerebellar Purkinje cell dendrites modelled with high-threshold calcium and delayed-rectifier potassium channels. Biological Cybernetics 73:375–88. [arJCH, KH, EDS]CrossRefGoogle ScholarPubMed
Yuzaki, M. & Mikoshiba, K. (1992) Pharmacological and immunocytochemical characterization of metabotropic glutamate receptors in cultured Purkinje cells. Journal of Neuroscience 12:4253–63. [aDJL]CrossRefGoogle ScholarPubMed
Zanchetti, A. & Zoccolini, A. (1954) Autonomie hypothalamic outbursts elicited by cerebellar stimulation. Journal of Ncurophysiology 17:473–83. [JDS]Google Scholar
Zanone, P. G. & Kelso, J. A. S. (1992) Evolution of behavioral attractors with learning: nonequilibrium phase transitions. Journal of Experimental Psychology: Human Perception and Performance 18:403–21. [SPS]Google ScholarPubMed
Zeffiro, T. A., Blaxton, T. A., Gabrieli, J. D. E., Bookheimer, S. Y., Carrillo, M. C., Benion, E., Disterhoft, J. F. & Theodore, W. H. (1993) Regional cerebral blood flow changes during classical eyeblink conditioning in man. Society for Neurosciencc Abstracts 19:1078. [CW]Google Scholar
Zhang, J. & Snyder, S. H. (1992) Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proceedings of the National Academy of Sciences of the USA 89:9382–85. [aSRV]CrossRefGoogle ScholarPubMed
Zhang, N., Walberg, F., Laake, J. H., Meldrum, B. S. & Ottersen, O. P. (1990) Aspartate-like and glutamate-like immunoreactivities in the inferior olive and climbing fibre system: A light microscopic and semiquantitative electron microscopic study in rat and baboo. (Papio anubis). Neuroscience 38:6180. [aFC, aDJL]CrossRefGoogle Scholar
Zhuang, P., Toro, C., Grafman, J., Manganotti, P., Leocani, L., Deiber, M.-P. et al. (1995) Functional topography during procedural learning studied with event-related desynchronization mapping (preliminary finding) [abstract]. Society for Neuroscience Abstracts 21:1927. [MH]Google Scholar
Zhuo, M., Hu, Y., Schultz, C., Kandel, E. R. & Hawkins, R. D. (1994) Role of guanylyl cyclase and cGMP-dependent protein ldnase in long-term potentiation. Nature 368:635–39. [MB]CrossRefGoogle Scholar
Zipser, D. & Andersen, R. E. (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:679–84. [aJCH]CrossRefGoogle ScholarPubMed
Zohary, G., Celebrini, S., Britten, K. H. & Newsome, W. T. (1994) Neuronal plasticity that underlies improvement in perceptual performance. Science 263:1289–91. [PVD]CrossRefGoogle ScholarPubMed
Zomlefer, M. R., Zajac, F. E. & Levine, W. S. (1977) Kinematics and muscular activity of cats during maximum height jumps. Brain Research 126:563–66. [aAMS]CrossRefGoogle ScholarPubMed
Zwiller, J., Ghandour, M. S., Revel, M. O. & Basset, P. (1981) Immunohisto-chemical localization of guanylate cyclase in rat cerebellum. Neuroscience Letters 23:3136. [aDJL, LK, rSRV]Google Scholar