No CrossRef data available.
Article contents
“Grandmother networks” and computational economy
Published online by Cambridge University Press: 04 February 2010
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 1986
References
Abeles, M. (1982) Local cortical circuits: An electrophysiological study. Springer-Verlag. [taDHB]CrossRefGoogle Scholar
Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. (1985) A learning algorithm for Boltzmann machines. Cognitive Science 9:147–69. [rDHB, MSL]Google Scholar
Allman, J. M., Baker, J. F., Newsome, W. T. & Petersen, S. E. (1981) Visual topography and function: Cortical-visual areas in the owl monkey. In: Multiple visual areas, vol. 2, Cortical sensory organization, ed. Woolsey, C. N.. Humana Press. [taDHB]Google Scholar
Allman, J., Miezin, F. & McGuinnis, E. (1985) Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience 8:407–30. [CDG]CrossRefGoogle ScholarPubMed
Andersen, R. A., Essick, G. K. & Siegel, R. M. (1985a) Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Submitted. [RAA]Google Scholar
Andersen, R. A., Essick, G. K. & Siegel, R. M. (1985b) The encoding of spatial location by posterior parietal neurons. Science. In press. [RAA, rDHB]CrossRefGoogle Scholar
Andersen, R. A., Siegel, R. M., Essick, G. K. & Asanuma, C. (1985) Subdivision of the inferior parietal lobule and dorsal prelunate gyrus of macaque by connectional and functional criteria. Investigative Ophthalmology (Suppl.) 26:266. [RAA]Google Scholar
Anderson, J. A. (1983) Cognitive and psychological computation with neural models. IEEE Transactions on Systems, Man, and Cybernetics 13:799–815. [TJS]Google Scholar
Ballard, D. H. (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13:111–22. [taDHB]CrossRefGoogle Scholar
Ballard, D. H. (1984a) Parameter networks: Towards a theory of low-level vision. Artificial Inteuigence 22:235–67. [tarDHB]CrossRefGoogle Scholar
Ballard, D. H. (1984b) Task frames in robot manipulation. Proceedings of the National Conference on Artificial Intelligence,Austin, Tex. [rDHB]Google Scholar
Ballard, D. H. & Hayes, P. J. (1984) Parallel logical inference. Presented at the 7th Annual Conference of the Cognitive Science Society,Boulder, Colo. [tarDHB, JAB]Google Scholar
Ballard, D. H., Hinton, G. E. & Sejnowski, T. J. (1983) Parallel visual computation. Nature 306:21–26. [tarDHB]CrossRefGoogle ScholarPubMed
Ballard, D. H. & Kimball, O. A. (1983) Rigid body motion from depth and optical flow. Computer Graphics, and Image Processing 22:95–115. [taDHB]Google Scholar
Ballard, D. H. & Sabbah, D. (1983) Viewer independent shape recognitions. IEEE Transactions on Pattern Analysis and Machine Intelligence 5:653–60. [taDHB]CrossRefGoogle Scholar
Ballard, D. H. & Tanaka, H. (1985) Transformational form perception in 3D: Constraints, algorithms, implementation. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, ed. Joshi, A.. Morgan Kaufman. [tarDHB]Google Scholar
Bandyopadhyay, A. (1985) Constraints on the computation of rigid motion parameters from retinal displacements. Tech. Rept. 168, Computer Science Dept, University of Rochester. [taDHB]Google Scholar
Barbus, H. & Mesulam, M.-M. (1981) Organization of afferent input to subdivisions of area 8 in the rhesus monkey. Journal of Comparative Neurology 206:407–31. [RAA]CrossRefGoogle Scholar
Barlow, H. B. (1972) Single units and sensation: A neuron doctrine for perceptual psychology? Perception 1:371–94. [taDHB, AJP]CrossRefGoogle ScholarPubMed
Barlow, H. B. (1981) Critical limiting factors in the design of the eye and visual cortex. Proceedings of the Royal Society of London, Series B 212:1–34. [taDHB]Google ScholarPubMed
Barlow, H. B. & Levick, R. W. (1965) The mechanism of directional selectivity in the rabbit's retina. Journal of Physiology 173:477–504. [CK]CrossRefGoogle Scholar
Barnden, J. A. (1984) On short-term information processing in connectionist theories. Cognition and Brain Theory 7:25–59. [JAB]Google Scholar
Barnden, J. A. (1985) Diagrammatic short-term information processing by neural mechanisms. Cognition and Brain Theory 7:285–328. [rDHB, JAB]Google Scholar
Barto, A. G., Sutton, R. S. & Anderson, C. W. (1982) Adaptive neuron-like elements that can solve difficult learning control problems. Dept. of Computer & Information Science Tech. Rept. 32–21, University of Massachusetts. [taDHB]Google Scholar
Beck, J. M. (1979) Simplicial sets and the foundations of analysis. In: Applications of sheaves, ed. Fourman, M. P. et al. Springer-Verlag. [WCH]Google Scholar
Becker, W. & Jurgens, R. (1979) An analysis of the saecadic system by means of double step stimuli. Vision Research 19:967–83. [RAA]CrossRefGoogle ScholarPubMed
Bergen, J. R. & Julesz, B. (1983) Parallel versus serial processing in rapid pattern discrimination. Nature 303:696–98. [MSL]CrossRefGoogle ScholarPubMed
Blasdel, C. G., Fitzpatrick, D. & Lund, J. S. (1983) Organization and intracortical connectivity of layer IV in macaque striate cortex. In: Proceedings of the 13th Annual Meeting. Society for Neuroscience. [taDHB]Google Scholar
Brady, M. (1982) Computational approaches to image understanding. Computing Surveys 14:3–71. [taDHB]CrossRefGoogle Scholar
Brodmann, K. (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Cruna des Zellenbaues. J. A. Barth. [taDHB]Google Scholar
Bruce, C., Desimone, R. & Cross, C. G. (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology 46:369–84. [taDHB]CrossRefGoogle Scholar
Bruce, C. J. & Goldberg, M. E. (1985) Primate frontal eye fields. 1. Single neurons discharging before saccades. Journal of Neurophysiology 53:603–35. [RAA]CrossRefGoogle Scholar
Burton, H. & Robinson, C. J. (1981) Organization of the SII parietal cortex: Multiple somatic sensory representations within and near the second somatic sensory area of cynomolgus monkeys. In: Multiple somatic areas, vol. 1, Cortical Sensory Organization, ed. Woolsey, C. N.. Humana Press. [taDHB]Google Scholar
Canon, S. C., Robinson, D. A. & Shamma, S. (1983) A proposed neural network for the integrator of the oculomotor system. Biological Cybernetics 49:127–36. [TJS]CrossRefGoogle Scholar
Churchland, P. M. (1985a) Cognitive neurobiology: A computational hypothesis for laminar cortex. Biology and Philosophy 1. In press. [PMC, JF]CrossRefGoogle Scholar
Churchland, P. M. (1985b) Phase-space representation and coordinate transformation: A computational hypothesis for laminar and cerebellar cortex. Submitted. [rDHB]Google Scholar
Cohen, M. A. & Grossberg, S. (1983) Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics 13:815–25. [TJS]Google Scholar
Cohen, M. A. & Grossberg, S. (1984a) Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance. Perception and Psychophysics 36:428–56. [SG]CrossRefGoogle ScholarPubMed
Cohen, M. A. & Grossberg, S. (1984b) Some global properties of binocular resonances: Disparity matching, filling-in, and figure-ground synthesis. In: Figural synthesis, ed. Dodwell, P. & Caelli, T.. Erlbaum. [SG]Google Scholar
Colonnier, M. (1964) The tangential organization of the visual cortex. Journal of Anatomy (London) 98:327–44. [WCH]Google ScholarPubMed
Constantine-Paton, M. & Law, M. I. (1978) Eye-specific termination bands in tecta of three-eyed frogs. Science 202:639–41. [SG]CrossRefGoogle ScholarPubMed
Cottrell, G. W. (1985) A connectionist approach to word sense disambiguation. Ph.D. dissertation, University of Rochester. [rDHB]Google Scholar
Cowey, A. (1981) Why are there so many visual areas? In: The organization of the cerebral cortex, ed. Schmitt, F. O., Worden, F. G., Adelman, G. & Dennis, S. G.. MIT Press. [taDHB]Google Scholar
Crick, F. (1984) The function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America 81:4586–90. [tarDHB, CK]CrossRefGoogle ScholarPubMed
Crick, F. H. C. & Asanuma, C. (1986) Certain aspects of the anatomy and physiology of the cerebral cortex, in: Parallel distributed processing: Explorations in the microstructure of cognition, ed. McClelland, J. & Rumelhart, D.. MIT Press. In press. [TJS]Google Scholar
Curcio, C. A. & Harting, J. K. (1978) Organization of pulvinar afferents to area 18 in the squirrel monkey: Evidence for stripes. Brain Research 143:155–61. [taDHB]CrossRefGoogle ScholarPubMed
Cynader, M. S., Matsubara, J. & Swindale, N. V. (1983) Surface organization of functional and topographic maps in cat visual cortex. In: Proceedings of the 13th Annual Meeting. Society for Neuroscience. [taDHB]Google Scholar
Daw, N. W. (1973) Neurophysiology of color vision. Physiological Review 53:571–611. [WCH]CrossRefGoogle ScholarPubMed
Desimone, R., Schein, S. J., Moran, J. & Ungerleider, L. G. (1985) Contour, color, and shape analysis beyond the striate cortex. Vision Research 25:441–52. [SG]CrossRefGoogle ScholarPubMed
De Valois, K. K. (1977) Spatial frequency adaptation can enhance contrast sensitivity. Vision Research 17:1057–65. [taDHB]CrossRefGoogle ScholarPubMed
De Valois, R. L., Yund, E. W. & Hepler, N. (1982) The orientation and direction selectivity of cells in macaque visual cortex. Vision Research 22:531–44. [SG]CrossRefGoogle ScholarPubMed
DeYoe, E. A. & Van Essen, D. C. (1985) Neurons projecting to MT and V4 from macaque V2 are segregated into discrete stripe-like patches. Neuroscience Abstracts 10:934. [CDG]Google Scholar
Didday, R. L. (1976) A model of visuomotor mechanisms in the frog optic tectum. Mathematical Biosciences 30:169–80. [taDHB, MSL]CrossRefGoogle Scholar
Dimond, S. J., Scammell, R. E., Brouwers, E. Y. M. & Weeks, R. (1977) Functions of the centre section (trunk) of the corpus callosum in man. Brain 100:543–62. [taDHB]CrossRefGoogle ScholarPubMed
Dodson, C. T. J. (1980) Categories, bundles, and spacetime topology. Shiva Publishing. [WCH]Google Scholar
Dow, B. M. & Bauer, R. (1983) Retinotopy and orientation columns in the monkey: A new model. In: Proceedings of the 13th Annual Meeting. Society for Neuroscience. [taDHB]Google Scholar
Dykes, R. W., Sur, M., Merzenich, M. M., Kaas, J. H. & Nelson, R. J. (1981) Regional segregation of neurons responding to quickly adapting, slowly adapting, deep and pacinian receptors within thalamic ventroposterior lateral and ventroposterior inferior nuclei in the squirrel monkey (Saimiri sciureus). Neuroscience 6:1687–92. [MS]CrossRefGoogle ScholarPubMed
Eccles, J. C. (1957) The physiology of nerve cells. Johns Hopkins University Press. [taDHB]Google Scholar
Edelman, G. M. (1981) Group selection as the basis for higher brain function. In: Organization of the cerebral cortex, ed. Schmitt, F. O., Worden, F. G., Adelman, G. & Dennis, S. G.. MIT Press. [LHF]Google Scholar
Edelman, G. M. (1984) Modulation of cell adhesion during induction, histogenesis, and perinatal development of the nervous system. Annual Review of Neuroscience 7:339–77. [LHF]CrossRefGoogle ScholarPubMed
Edelman, G. M. & Finkel, L. H. (1984) Neuronal group selection in the cerebral cortex. In: Dynamic aspects of neocortical function, ed. Edelman, G. M., Gall, W. E. & Cowan, W. M.. Wiley. [LHF]Google Scholar
Edelman, G. M. & Mountcastle, V. B. (1978) The mindful brain: Cortical organization and the group-selective theory of higher brain function. MIT Press. [rDHB]Google Scholar
Edelman, C. M. & Reeke, G. N. (1982) Selective networks capable of representative transformations, limited generalizations, and associative memory. Proceedings of the National Academy of Sciences of the United States of America 79:2091–95. [rDHB, LHF]CrossRefGoogle ScholarPubMed
Feldman, J. A. (1981a) Memory and change in connection networks. Tech. Rept. 96, Computer Science Dept., University of Rochester. [tarDHB]Google Scholar
Feldman, J. A. (1981b) A connectionist model of visual memory. In: Parallel models of associative memory, ed. Hinton, G. E. & Anderson, J. A.. Erlbaum. [DM]Google Scholar
Feldman, J. A. (1982) Dynamic connections in neural networks. Biological Cybernetics 46:27–39. [rDHB]CrossRefGoogle ScholarPubMed
Feldman, J. A. (1985) Four frames suffice: A provisional model of vision and space. Behavioral and Brain Sciences 8:265–313. [taDB, SG]CrossRefGoogle Scholar
Feldman, J. A. & Ballard, D. H. (1982) Connectionist models and their properties. Cognitive Science 6:205–54. [tarDHB]CrossRefGoogle Scholar
Ferster, D. (1981) A comparison of the binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. Journal of Physiology 311:623–55. [CDG]CrossRefGoogle ScholarPubMed
Finkel, L. H. & Edelman, G. M. (1985) Interaction of synaptic modification rules within populations of neurons. Proceedings of the National Academy of Sciences of the United States of America 82:1291–95. [LHF]CrossRefGoogle ScholarPubMed
Fleet, D. J., Hallett, P. E. & Jepson, A. D. (1985) Spatiotemporal inseparability in early visual processing. Biological Cybernetics. In press. [JKT]CrossRefGoogle Scholar
Fleet, D. J. & Jepson, A. D. (1984). A cascaded filter approach to the construction of velocity selective mechanisms. RBCV-TR-84–6, Dept Computer Science, University of Toronto. [IKT]Google Scholar
Freuder, E. C. (1978) Synthesizing constraint extension. Communications of the ACM 21:958–65. [taDHB]CrossRefGoogle Scholar
Freyd, P. (1976) Properties invariant within equivalence types of categories. In: Algebra, topology, and category theory, ed. Heller, A. & Tierney, M.. Academic Press. [WCH]Google Scholar
Fuchs, A. F., Kaneko, C. R. S. & Scudder, C. A. (1985) Brainstem control of saccadic eye movements. Annual Review of Neuroscience 8:307–37. [RAA]CrossRefGoogle ScholarPubMed
Geman, S. & Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 6:721–84. [taDHB]CrossRefGoogle ScholarPubMed
Georgopoulos, A. P., Kalaska, J. F., Crutcher, M. D., Caminiti, R. & Massey, J. T. (1984) The representation of movement direction in the motor cortex. Single cell and population studies. In: Dynamic aspects of neorcortical function, ed. Edelman, G. M., Gall, W. E. & Cowan, W. M.. Wiley. [LHF]Google Scholar
Cerstein, G. L., Bloom, M. J., Espinosa, I. E., Evanczuk, S. & Turner, M. R. (1983) Design of a laboratory for multineuron studies. IEEE Transactions on Systems, Man, and Cybernetics 13:668–76. [DM]Google Scholar
Gilbert, C. D. (1983) Microcircuitry of the visual cortex. Annual Review of Neuroscience 6:217–47. [taDHB]CrossRefGoogle ScholarPubMed
Gilbert, C. D. & Wiesel, T. N. (1979) Morphology and intracortical projections of functionally characterized neurons in the cat visual cortex. Nature 280:120–25. [LHF]CrossRefGoogle ScholarPubMed
Gilbert, C. D. & Wiesel, T. N. (1981) Laminar specialization and intracortical connections in cat primary visual cortex. In: The organization of the cerebral cortex, ed. Schmitt, F. O., Worden, F. G., Adelman, G. & Dennis, S. G.. MIT Press. [WCH]Google Scholar
Gilbert, C. D. & Wiesel, T. N. (1983) Clustered intrinsic connections in cat visual cortex. Journal of Neurosciences 3:1116–33. [taDHB]CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. & Schwartz, M. L. (1982) Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates. Science 216:755–57. [taDHB]CrossRefGoogle ScholarPubMed
Golgi, C. (1879) Di una nuova reazione apparentemente nera della cellule nervose cerebrali ottenuta col bichloruro di mercurio. Arch. Sci. Med. 3:1–7. [taDHB]Google Scholar
Gross, C. G., Bruce, C. J., Desimone, R., Fleming, J. & Gattass, R. (1981) Cortical visual areas of the temporal lobe: Three areas in the macaque. In: Multiple visual areas, vol. 2, Cortical sensory organization, ed. Woolsey, C. N.. Humana Press. [taDHB]Google Scholar
Gross, C. G., Rocha-Miranda, C. E. & Bender, D. B. (1972) Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology 35:96–111. [DM]CrossRefGoogle ScholarPubMed
Grossberg, S. (1984) Outline of a theory of brightness, color, and form perception. In: Trends in mathematical psychology, ed. Degreef, E. & van Buggenhaut, J.. North-Holland. [SG]Google Scholar
Grossberg, S. (1985) Four frames do not suffice. Behavioral and Brain Sciences 8:294–95. [SG]CrossRefGoogle Scholar
Grossberg, S. & Kuperstein, M. (1985) Adaptive neural dynamics of sensory-motor control: Ballistic eye movements. North-Holland. [SG]Google Scholar
Grossberg, S. & Mingolla, E. (1985a) Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading. Psychological Review 92:173–211. [rDHB, SG]CrossRefGoogle ScholarPubMed
Grossberg, S. & Mingolla, E. (1985b) Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations. Submitted. [SG]CrossRefGoogle Scholar
Hallet, P. E. & Lightstone, A. D. (1976) Saccadic eye movements toward stimuli triggered by prior saccades. Vision Research 16:99–106. [RAA]CrossRefGoogle Scholar
Harth, E. (1976) Visual perception: A dynamic theory. Biological Cybernetics 22:169–80. [EH]CrossRefGoogle ScholarPubMed
Harth, E. & Tzanakou, E. (1974) Alopex: A stochastic method for determining visual receptive fields. Vision Research 14:1475–82. [EH]CrossRefGoogle ScholarPubMed
Harth, E. & Unnikrishnan, K. P. (1985) Brainstem control of sensory information: A mechanism for perception. International Journal of Psychophysiology. In press. [EH]CrossRefGoogle Scholar
Hildreth, C. (1984) Computational of the velocity field. Proceedings of the Royal Society of London, Series B 221:189–220. [CK]Google ScholarPubMed
Hinton, G. E. (1981) Shape representation in parallel systems. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, ed. Drina, A.. IJCAI. [tarDHB]Google Scholar
Hinton, G. E. & Sejnowski, T. J. (1983) Optimal perceptual inference. In: Proceedings IEEE Computer Vision and Pattern Recognition Conference,IEEE. [taDHB, EH, TJS]Google Scholar
Hinton, G. E., Sejnowski, T. J. & Ackley, D. H. (1984) Boltzmann machines: Constraint satisfaction networks that learn. Tech. Rept. 84–119, Computer Science Dept., Carnegie-Mellon University. [taDHB]Google Scholar
Hirsch, M. W., Pugh, C. C., & Shub, M. (1977) Invariant manifolds. Springer-Verlag. [WCH]CrossRefGoogle Scholar
Hoffman, W. C. (1970) Higher visual perception as prolongation of the basic Lie transformation group. Mathematical Biosciences 6:437–71. [WCH]CrossRefGoogle Scholar
Hoffman, W. C. (1977) An informal historical description (with bibliography) of the “L.T.G./N.P.” Cahiers de Psychologie 20:139–50. [WCH]Google Scholar
Hoffman, W. C. (1978) The Lie transformation group approach to visual neuropsychology. In: Formal theories of visual perception, ed. Leeuwenberg, E. & Buffart, H.. Halsted Press. [WCH]Google Scholar
Hoffman, W. C. (1980) Subjective geometry and geometric psychology. Mathematical Modelling 1:349–67. [WCH]CrossRefGoogle Scholar
Hoffman, W. C. (1984) Figural synthesis by vectorfields: Geometric neuropsychology. In: Figural synthesis, ed. Dodwell, P. C. & Caelli, T.. Erlbaum. [WCH]Google Scholar
Hoffman, W. C. (1985) Some reasons why algebraic topology is important in neuropsychology: Perceptual and cognitive systems as fibrations. International Journal of Man-Machine Studies. In press. [WCH]CrossRefGoogle Scholar
Hogan, N. (1984) An organizing principle for a class of voluntary movements. Journal of Neuroscience 4:2745–54. [rDHB]CrossRefGoogle ScholarPubMed
Hogg, T. & Huberman, B. A. (1984) Understanding biological computation: Reliable learning and recognition. Proceedings of the National Academy of Sciences of the United States of America 81:6871–75. [TJS]CrossRefGoogle ScholarPubMed
Hollerbach, J. M. (1981) An oscillation theory of handwriting. Biological Cybernetics 39:139–56. [rDHB]CrossRefGoogle Scholar
Holmes, P. J. & Marsden, J. E. (1980) Dynamical systems and invariant manifolds. In: New approaches to nonlinear problems in dynamics, ed. Holmes, P. J.. SIAM. [WCH]Google Scholar
Hong, T. H. & Rosenfeld, A. (1984) Compact region extraction using pixel linking in a pyramid. IEEE Transactions on Pattern Analysis and Machine Intelligence 6:222–29. [DM]CrossRefGoogle Scholar
Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79:2554–58. [tarDHB, EH, TJS]CrossRefGoogle ScholarPubMed
Hopfield, J. J. & Tank, D. W. (1985) Neural computation in optimization problems. Biological Cybernetics. In press. [rDHB, CK, TJS]CrossRefGoogle Scholar
Horn, B. K. P. (1974) Determining lightness from an image. Computer Graphics and Image Processing 3:111–299. [rDHB, CK]CrossRefGoogle Scholar
Horn, B. K. P. & Schunck, B. G. (1981) Determining optical flow. Artificial Intelligence 17:185–204. [taDHB]CrossRefGoogle Scholar
Hough, P. U. C. (1962) Methods and means for recognizing complex patterns. U.S. patent 3,069,654. [MSL]Google Scholar
Hrechanyk, L. M. & Ballard, D. H. (1983) Viewframes: A connectionist model of form perception. In: Proceedings of the Defense Advanced Research Projects Agency Image Understanding Workshop, ed. Baumann, L. S.. Science Applications International. [taDHB]Google Scholar
Hubel, D. H. & Livingstone, M. S. (1985) Complex-unoriented cells in a subregion of primate area 18. Nature 315:325–27. [CDG]CrossRefGoogle Scholar
Hubel, D. H. & Wiesel, T. N. (1959) Receptive fields of single neurons in the cat's striate cortex. Journal of Physiology 148:574–91. [CK]CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160:106–54. [taDHB]CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1963) Shape and arrangement of columns in cat's striate cortex. Journal of Physiology (London) 165:559–68. [taDHB]CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1974) Sequence regularity and geometry of orientation columns in the monkey striate cortex. Journal of Comparative Neurology 158:267–93. [CDG]CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1974) Uniformity of monkey striate cortex: A parallel relationship between field size, scatter and magnification factor. Journal of Comparative Neurology 158:295–302. [MS]CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1977) Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London, Series B 198:1–59. [MS]Google ScholarPubMed
Hubel, D. H., Wiesel, T. N. & Stryker, M. P. (1978) Anatomical demonstration of orientation columns in macaque monkey. Journal of Comparative Neurology 177:36–79. [taDHB]Google ScholarPubMed
Hummel, R. & Zucker, S. (1983) On the foundations of relaxation labeling processes. IEEE Transactions on Pattern Analysis and Machine Intelligence 5:267–87. [taDHB, MSL]CrossRefGoogle ScholarPubMed
Jahnsen, H. & Llinas, R. (1984) Electrophysiological properties of guinea-pig thalamic neurones: An in vitro study. Journal of Physiology 349:205–26. [CK]CrossRefGoogle ScholarPubMed
Juliano, S. L., Favorov, O. & Whitsel, B. L. (1983) Reproducibility of 2DC patterns in monkey SI and their relationship to single unit mapping data. In: Proceedings of the 13th Annual Meeting. Society for Neuroscience. [taDHB]Google Scholar
Just, M. A. & Carpenter, P. A. (1985) Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychological Review 92:137–72. [rDHB]CrossRefGoogle ScholarPubMed
Kaas, J. H., Nelson, R. J., Sur, M. & Merzenich, M. M. (1981) Organization of somatosensory cortex in primates. In: The organization of the cerebral cortex, ed. Schmitt, F. O., Worden, F. G., Adelman, G. & Dennis, S. G.. MIT Press. [taDHB]Google Scholar
Kawano, K., Mitsuyoshi, S. & Yamashita, M. (1984) Response properties of neurons in posterior parietal cortex of monkey during visual-vestibular stimulation. 1. Visual tracking neurons. Journal of Neurophysiology 51:340–51. [RAA]CrossRefGoogle Scholar
Kemperman, J. (1982) Recovering multidimensional punctate data from projections. Mathematics Dept., University of Rochester. [taDHB]Google Scholar
King, W. M., Lisberger, S. G. & Fuchs, A. F. (1976) Responses of fibers in medial longitudinal fasciculus (mlf) in alert monkeys during horizontal and vertical conjugate eye movements evoked by vestibular or visual stimuli. Journal of Neurophysiology 39:1135–49. [rDHB]CrossRefGoogle ScholarPubMed
Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983) Optimization by simulated annealing. Science 220:671–80. [taDHB, EH]CrossRefGoogle ScholarPubMed
Koch, C., Poggio, T. & Torre, V. (1982) Retinal ganglion cells: A functional interpretation of dendritic morphology. Philosophical Transactions of the Royal Society of London 298:227–64. [rDHB, CK]Google ScholarPubMed
Landry, P. & Deschenes, M. (1981) Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat. Journal of Comparative Neurology 199:345–371. [LHF]CrossRefGoogle Scholar
Landy, M. (1981) The formation of cell assemblies: A neural network simulation. Ph.D. dissertation, University of Michigan. [MSL]Google Scholar
Law, M. I. & Constantine-Paton, M. (1980) Right and left eye bands in frogs with unilateral tectal ablations. Proceedings of the National Academy of Sciences of the United States of America 77:2314–18. [SG]CrossRefGoogle ScholarPubMed
Lawton, D. T. (1983) Processing restricted sensor motion. In: Proceedings of the Defense Advanced Research Projects Agency Image Understanding Workshop, ed. Bauman, L. S.. Science Applications International. [taDHB]Google Scholar
Lee, D. N. & Reddish, P. E. (1981) Plummeting gannets: A paradigm of ecological optics. Nature 293:293–94. [taDHB]CrossRefGoogle Scholar
Livingstone, M. S. & Hubel, D. H. (1984) Anatomy and physiology of a color system in the primary visual cortex. Journal of Neurosciences 4:305–56. [taDHB]Google Scholar
Lund, J. S. (1981) Intrinsic organization of the primate visual cortex, area 17, as seen in Golgi preparations. In: The organization of the cerebral cortex, ed. Schmitt, F. O., Worden, F. G., Adelman, G. & Dennis, S. G.. MIT Press. [taDHB]Google Scholar
Lynch, J. C. (1980) The functional organization of posterior parietal association cortex. Behavioral and Brain Sciences 3:485–534. [SG]CrossRefGoogle Scholar
Lynch, J. C. & Graybiel, A. M. (1983) Comparison of afferents traced to the superior colliculus from the frontal eye fields and from two sub-regions of area 7 of the rhesus monkey. Neuroscience Abstracts 9:750. [RAA]Google Scholar
Lynch, J. C., Mountcastle, V. B., Talbot, W. H. & Yin, T. C. T. (1977) Parietal lobe mechanisms for directed visual attention. Journal of Neurophysiology 40:362–89. [RAA]CrossRefGoogle ScholarPubMed
McClelland, J. L. (1985) Putting knowledge in its place: A scheme for programming parallel processing structures on the fly. Cognitive Science 9:113–46. [rDHB, JAB]CrossRefGoogle Scholar
McClelland, J. L. & Rumelhart, D. E. (1981) An interactive activation model of context effects in perception. Psychological Review 88:375–407. [taDHB]CrossRefGoogle Scholar
McCulloch, W. S. & Pitts, W. (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5:115–37. [taDHB]CrossRefGoogle Scholar
Maloney, L. (1984) A computational model of color constancy. Ph.D. dissertation, Stanford University. [taDHB]Google Scholar
Marr, D. (1978) Representing visual information. In: Computer vision systems, ed. Hanson, A. R. & Riseman, E. M.. Academic Press. [taDHB]Google Scholar
Marr, D. & Poggio, T. (1976) From understanding computation to understanding neural circuitry. Neuroscience Research Progress Bulletin 15:470–88. [taDHB, EH]Google Scholar
Maunsell, J. H. R. & Van Essen, D. C. (1982) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience Research 3:2563–86. [taDHB]CrossRefGoogle Scholar
Maunsell, J. H. R. & Van Essen, D. C. (1983a) Functional properties of neurons in middle temporal visual area (MT) of macaque monkey. 1. Selectivity for stimulus direction, velocity, and orientation. Journal of Neurophysiology 49:1127–47. [rDHB]CrossRefGoogle Scholar
Maunsell, J. H. R. & Van Essen, D. C. (1983b) Functional properties of neurons in -middle temporal visual area (MT) of macaque monkey. 2. Binocular interactions and the sensitivity to binocular disparity. Journal of Neurophysiology 49:1148–67. [rDHB]CrossRefGoogle ScholarPubMed
Mays, L. E. & Sparks, D. L. (1980) Dissociation of visual and saccade-related responses in superior colliculus neurons. journal of Neurophysiology 43:207–32. [RAA]CrossRefGoogle ScholarPubMed
Merzenich, M. M. & Kaas, J. H. (1980) Principles of organization of sensory-perceptual systems in mammals. Progress in Psychobiology and Physiological Psychology 9:1–42. [MS]Google Scholar
Merzenich, M. M., Kaas, J. H., Wall, J., Sur, M. & Felleman, D. J. (1983) Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neurosciences 8:33–55. [rDHB, MS]CrossRefGoogle ScholarPubMed
Merzenich, M. M., Kaas, J. H., Wall, J. T., Sur, M., Nelson, R. J. & Felleman, D. J. (1984) Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience 10:639–65. [LHF]CrossRefGoogle Scholar
Merzenich, M. M., Nelson, R. J., Stryker, M. P., Cynader, M. S., Schoppmann, A. & Zook, J. M. (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. Journal of Comparative Neurology 224:591–605. [rDHB, MS]CrossRefGoogle ScholarPubMed
Miller, J. P., Rail, W. & Rinzel, J. (1985) Synaptic amplification by active membrane in dendritic spines. Brain Research 325:325–30. [rDHB]CrossRefGoogle ScholarPubMed
Milner, P. M. (1957) The cell assembly: Mark II. Psychological Review 64:242–52. [MSL]CrossRefGoogle ScholarPubMed
Mishkin, M., Ungerleider, L. G. & Macko, K. A. (1983) Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences 6:414–17. [taDHB]CrossRefGoogle Scholar
Mitchison, G. & Crick, F. (1982) Long axons within the striate cortex: Their distribution, orientation, and patterns of connection. Proceedings of the National Academy of Sciences of the United States of America 79:3661–65. [taDHB]CrossRefGoogle ScholarPubMed
Montero, V. M. (1981) Topography of the cortico-cortical connections from the striate cortex in the cat. Brain, Behavior and Evolution 18:194–218. [taDHB]Google ScholarPubMed
Motter, B. C. & Mountcastle, V. B. (1981) The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: Foveal sparing and opponent vector organization. Journal of Neuroscience 1:3–26. [SG]CrossRefGoogle ScholarPubMed
Mountcastle, V. B. (1978) An organizing principle for cerebral function: The unit module and the distributed system. In: The mindful brain, ed. Edelman, G. M. & Mountcastle, V. B.. MIT Press. [taDHB, MS]Google Scholar
Mountcastle, V. B., Anderson, R. A. & Motter, B. C. (1981) The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. Journal of Neuroscience 1:1218–35. [SG]CrossRefGoogle ScholarPubMed
Mountcastle, V. B., Lynch, J. C., Georgopoulos, A. & Sakata, H. (1975) Posterior parietal association cortex of the monkey: Command function for operations within extrapersonal space. Journal of Neurophysiology 38:871–907. [RAA]CrossRefGoogle ScholarPubMed
Movshon, J. A. (1983) Analysis of visual motion. In: Proceedings of the Conference on Vision, Brain, and Cooperative Computation, ed. Arbib, M. & Hanson, A.. MIT Press. [taDHB]Google Scholar
Movshon, J. A., Adelson, E. H., Gizzi, M. S. & Newsome, W. T. (1985) The analysis of moving visual patterns. In: Pattern recognition mechanisms, ed. Chagas, C., Gattas, R. & Gross, C. G.. Pontifica Academia Scientiarum. [CDG]Google Scholar
Nakayama, K. (1985) Motion psychophysics. Presentation at Cold Spring Harbor Neuroscience Course. [rDHB]Google Scholar
Ogren, M. P., McKay, R., Schiller, P. H., Maunsell, J. H. R. & Hockfield, S. (1985) Two antibodies specific for subpopulations of neurons in the monkey and cat visual pathways (abstract). Presented at Annual Spring Meeting, Association for Research in Vision and Ophthalmology, Sarasola, Fla. [rDHB]Google Scholar
Olberg, R. M. (1981a) Object and self-movement detectors in the ventral nerve cord of the dragonfly. Journal of Comparative Physiology 141:327–34. [taDHB]CrossRefGoogle Scholar
Olberg, R. M. (1981b) Parallel encoding of direction of wind, head, abdomen, and visual pattern movement by single interneurons in the dragonfly. Journal of Comparative Physiology 142:27–41. [taDHB]CrossRefGoogle Scholar
O'Rourke, J. (1981) Dynamically quantized spaces for focusing the Hough transform. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, ed. Drina, A.. IJCAI. [taDHB]Google Scholar
Pasternak, T., Merigan, W. H. & Movshon, J. A. (1981) Motion mechanisms in strobe-reared cats: Psychophysical and electrophysical measures. Acta Psychologica 48:321–32. [taDHB]CrossRefGoogle ScholarPubMed
Pellionisz, A. (1984) Tensorial aspects of the multi-dimensional approach to the vestibule-oculomotor reflex. In Reviews in oculomotor research, ed. Berthoz, A. & Melvill-Jones, E.. Elsevier. [PMC]Google Scholar
Pellionisz, A. & Llinas, R. (1979) Brain modelling by tensor network theory and computer simulation. The cerebellum: Distributed processor for predictive coordination. Neuroscience 4:323–48. [PMC]CrossRefGoogle ScholarPubMed
Pellionisz, A. & Llinas, R. (1982) Space-time representation in the brain: The cerebellum as a predictive space—time metric tensor. Neuroscience 7:2949–70. [PMC, JF]CrossRefGoogle ScholarPubMed
Pentland, A. P. (1984) Shading into texture. Proceedings of the National Conference on Artificial intelligence.William Kaufman. [taDHB]Google Scholar
Pentland, A. P. (1985) Perceptual organization and the representation of natural form. Tech. Note 357, SRI International. [rDHB]CrossRefGoogle Scholar
Perkel, D. H. & Perkel, D. J. (1985) Dendritic spines: Role of active membrane in modulating synaptic efficacy. Brain Research 325:331–35. [rDHB]CrossRefGoogle ScholarPubMed
Phillips, C. G., Zeki, S. & Barlow, H. B. (1984) Localization of function in the cerebral cortex. Brain 107:328–61. [MS]CrossRefGoogle ScholarPubMed
Pitts, W. & McCulloch, W. S. (1947) How we know universali: The perception of auditory and visual forms. Bulletin of Mathematical Biophysics 9:127–47. [WCH]CrossRefGoogle Scholar
Plaut, D. C. (1984) Visual recognition of simple objects by a connection network. Tech. Rept. 143, Computer Science Dept., University of Rochester. [rDHB]Google Scholar
Poggio, G. F. & Fisher, B. (1977) Binocular interactions and depth sensitivity of striate and prestriate cortical neurons of the behaving rhesus monkey. Journal of Physiology 40:1392–1405. [CDG]Google ScholarPubMed
Poggio, T. & Koch, C. (1985) Ill-posed problems in early vision: From computational theory to analog networks. Proceedings of the Royal Society of London, Series B. [rDHB, CK]Google Scholar
Poggio, T., Nishihara, H. K. & Nielsen, K. R. K. (1982) Zero-crossings and spatiotemporal interpolation in vision: Aliasing and electrical coupling between sensors. Memo 675, Artificial Intelligence Lab., MIT. [taDHB]Google Scholar
Prager, J. M. (1980) Extracting and labeling boundary segments in natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 2:16–27. [taDHB]CrossRefGoogle ScholarPubMed
Prazdny, K. (1981) A simple method for recovering relative depth map in the case of a translating sensor. Proceedings of the 7th International Joint Conference on Artificial Intelligence, ed. Drina, A.. ICJAI. [taDHB]Google Scholar
Rakic, P. (1974) Intrinsic and extrinsic factors influencing the shape of neurons and their assembly into neuronal circuits. In: Frontiers in neurology and ncuroscicnce research, ed. Seeman, P. & Brown, G. M.. University of Toronto Press. [taDHB]Google Scholar
Rakic, P. (1975) Local circuit neurons. Neuroscicnces Research Program Bulletin 13:299–313. [JAB, LHF]Google ScholarPubMed
Rakic, P. (1981) Developmental events leading to laminar and areal organization of the neocortex. In: The organization of the cerebral cortex, ed. Schmitt, F. O., Worden, F. G., Adelman, G. & Dennis, S. G.. MIT Press. [taDHB]Google Scholar
Ramón y Cajal, S. (1911) Histologie du systeme nerveux de l'homme et des vertebres. Maloine. [taDHB]Google Scholar
Ratliff, F. & Hartline, H. K. (1956) Inhibitory interactions in the eye of Limulus (abstract). Federation Proceedings 15. [MSL]Google Scholar
Ratliff, F., ed. (1974) Studies on excitation and inhibition in the retina. Rockefeller University Press. [TJS]Google Scholar
Regan, D. & Beverley, K. I. (1985) Postadaptation orientation discrimination. Journal of the Optical Society of America A2:147–55. [MSL]CrossRefGoogle Scholar
Robinson, D. A. (1975) Oculomotor control signals. In: Basic mechanisms of ocular motility and their clinical implications, ed. Lennerstrand, G. & Bach-y-Rita, P.. Pergamon. [RAA]Google Scholar
Robinson, D. A. (1978) The functional behavior of the peripheral oculomotor apparatus: A review. In: Disorders of ocular motility: Neurophysiological and clinical aspects, ed. Kommerell, G.. J. F. Bergman. [taDHB]Google Scholar
Robinson, D. L., Goldberg, M. E. & Stanton, G. B. (1978) Parietal association cortex in the primate: Sensory mechanisms and behavioral modulations. Journal of Neurophysiology 41:910–32. [RAA]CrossRefGoogle ScholarPubMed
Rock, I. (1980) Difficulties with a direct theory of perception. Behavioral and Brain Sciences 3:398–99. [WCH]CrossRefGoogle Scholar
Rockland, K. S. & Lund, J. S. (1982) Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 215:1532–34. [taDHB]CrossRefGoogle ScholarPubMed
Rosenblatt, F. (1958) The perception: A probabilistic model for information storage and organization in the brain. Psychological Review 65:386–407. [taDHB]CrossRefGoogle ScholarPubMed
Rosenfeld, A., Hummel, R. A. & Zucker, S. W. (1976) Scene labelling by relaxation operations. IEEE Transactions on Systems, Man, and Cybernetics 6:420–33. [taDHB]Google Scholar
Rumelhart, D. E. & Zipser, D. (1985) Feature discovery by competitive learning. Cognitive Science 9:75–112. [rDHB]Google Scholar
Sabbah, D. (1981) Design of a highly parallel visual recognition system. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, ed. Drina, A.. IJCAI. [taDHB]Google Scholar
Sabbah, D. (1982) A connectionist approach to visual recognition. Ph.D. dissertation, University of Rochester. [taDHB]Google Scholar
Sagi, D. & Julesz, B. (1985) “Where” and “what” in vision. Science 228:1217–19. [rDHB]CrossRefGoogle Scholar
Sakata, H., Shibutani, H. & Kawano, K. (1980) Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. Journal of Neurophysiology 43:1654–72. [taDHB]CrossRefGoogle ScholarPubMed
Sakata, H., Shibutani, H. & Kawano, K. (1983) Functional properties of visual tracking neurons in posterior parietal association cortex of the monkey. Journal of Neurophysiology 49:1364–80. [RAA, rDHB]CrossRefGoogle ScholarPubMed
Sakitt, B. & Barlow, H. (1982) A model for the economical encoding of the visual image in cerebral cortex. Biological Cybernetics 43:97–108. [taDHB]CrossRefGoogle Scholar
Schiller, P. H., True, S. D. & Conway, J. H. (1980) Deficits in eye movements following frontal eye-field and superior colliculus ablations. Journal of Neurophysiology 44:1175–89. [RAA]CrossRefGoogle ScholarPubMed
Schmitt, F. O., Dev, P. & Smith, B. H. (1976) Electrotonic processing of information by brain cells. Science 193:114–20. [JAB]CrossRefGoogle ScholarPubMed
Schwartz, E. L. (1980) Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding. Vision Research 20:645–69. [MSL]CrossRefGoogle ScholarPubMed
Scott, P. D. (1979) Conditional control transfer mechanisms in the neocortex: 1. The basic model. Journal of Theoretical Biology 81:423–52. [MSL]CrossRefGoogle ScholarPubMed
Sejnowski, T. J. (1976) On global properties of neuronal interaction. Biological Cybernetics 22:85–95. [TJS]CrossRefGoogle ScholarPubMed
Sejnowski, T. J. (1986) What is the style of computation in cerebral cortex? In: Parallel distributed processing: Explorations in the microstructure of cognition, ed. J. McClelland & D. Rumelhart. In press. [TJS]Google Scholar
Shastri, L. (1985) Evidential reasoning in connectionist networks. Ph.D. dissertation, University of Rochester. [rDHB]Google Scholar
Shastri, L. & Feldman, J. A. (1985) Evidential reasoning in semantic networks: A formal theory. Presented at the 9th International Joint Conference on Artificial Intelligence,Los Angeles. [rDHB]Google Scholar
Shaw, G. L., Harth, E. & Scheibel, A. B. (1982) Cooperativity in brain function: Assemblies of approximately 30 neurons. Experimental Neurology 77:324–58. [taDHB]CrossRefGoogle ScholarPubMed
Shaw, G., Renaldi, P. & Pearson, J. (1983) Experimental Neurology 79:293–98. [taDHB]CrossRefGoogle Scholar
Shaw, G. L., Silverman, D. J. & Pearson, J. C. (1985) Model of cortical organization embodying a basis for a theory of information processing and memory recall. Proceedings of the National Academy of Sciences of the United States of America 82:2364–68. [rDHB]CrossRefGoogle ScholarPubMed
Shepard, R. N. (1984) Ecological constraints on internal representation: Resonant kinematics of perceiving, imagining, thinking, and dreaming. Psychological Review 91:417–47. [rDHB, JCB]CrossRefGoogle ScholarPubMed
Shepard, R. N. & Chipman, S. (1970) Second-order isomorphism of internal representations: Shapes of states. Cognifiue Psychology 1:1–17. [WCH]CrossRefGoogle Scholar
Shepard, R. N. & Metzler, J. (1971) Mental rotation of three-dimensional objects. Science 171:701–3. [MSL]CrossRefGoogle Scholar
Shepherd, G. M. (1974) The synoptic organization of the brain. Oxford University Press. [WCH]Google Scholar
Shepherd, G. M., Brayton, R. K., Miller, J. P., Segev, I., Rinzel, J. & Rall, W. (1985) Signal enhancement in distal cortical dehdrites by means of interactions between active dendritic spines. Proceedings of the National Academy of Sciences of the United States of America 82:2192–95. [tarDHB, TJS]CrossRefGoogle ScholarPubMed
Shipp, S. & Zeki, S. (1985) Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature 315:322–25. [CDG]CrossRefGoogle ScholarPubMed
Siegel, R. M., Andersen, R. A., Essick, G. K. & Asanuma, C. (1985) The functional and anatomical subdivision of the inferior parietal labule. Society for Neuroscience Abstracts. In press. [RAA]Google Scholar
Singer, W. (1981) Topographic organization of orientation columns in the cat visual cortex: A deoxyglucose study. Experimental Brain Research 44:431–36. [taDHB]CrossRefGoogle ScholarPubMed
Sparks, D. (1983) The role of the primate superior colliculus in sensorimotor integration. In: Proceedings of the Conference on Vision, Brain, and Cooperative Computation, ed. Arbib, M. & Hanson, A.. MIT Press. [taDHB]Google Scholar
Stone, J., Dreher, B. & Leventhal, A. (1979) Hierarchical and parallel mechanisms in the organization of the visual cortex. Brain Research Reviews 1:345–94. [taDHB]CrossRefGoogle Scholar
Sullins, J. (1985) Value cell encoding schemes. Tech. Kept., Computer Science Dept., University of Rochester. Forthcoming. [rDHB]Google Scholar
Sur, M., Merzenich, M. M. & Kaas, J. H. (1980) Magnification, receptive field area and “hypercolumn” size in areas 3b and 1 of somatosensory cortex in owl monkeys. Journal of Neurophysiology 44:295–311. [MS]CrossRefGoogle ScholarPubMed
Sur, M., Wall, J. T. & Kaas, J. H. (1981) Modular segregation of functional cell classes within postcentral somatosensory cortex primates. Science 212:1059–61. [MS]CrossRefGoogle Scholar
Szentagothai, J. (1978a) The local neuronal apparatus of the cerebral cortex. In: Cerebral correlates of conscious experience, ed. Buser, P. A. & Roguel-Buser, A.. North-Holland. [taDHB]Google Scholar
Szentagothai, J. (1978b) Specificity versus (quasi-) randomness in cortical connectivity. In: Achitectonics of the cerebral cortex, ed. Brazier, M. A. B. & Peutsch, H.. International Brain Research Organization Mon. Series, vol. 3. Raven Press. [taDHB]Google Scholar
Terzopoulos, D. (1984) Multilevel reconstruction of visual surfaces: Variational principles and finite element representations. In: Multiresolution image processing and analysis, ed. Rosenfeld, A.. Springer-Verlag. [rDHB, CK]Google Scholar
Thathachar, M. A. L. & Sastry, P. S. (1984) Some probabilistic algorithms for the consistent labeling problem. Report EE/63, Indian Institute of Science, Bangalore. [MSL]Google Scholar
Tootell, R. B. H., Silverman, M. S., De Valois, R. L. & Jacobs, G. H. (1983) Functional organization of the second cortical visual area (V2) in the primate. Science 220:737–39. [taDHB]CrossRefGoogle Scholar
Treisman, A. M. & Gelade, G. (1980) A feature-integration theory of attention. Cognitive Psychology 12:97–136. [tarDHB, SG, MSL]CrossRefGoogle ScholarPubMed
Tsotsos, J. K. (1985) Representational axes and temporal cooperative processes. In: Vision, brain and cooperative computation, ed. Arbib, M. & Hanson, A.. MIT Press. [rDHB, JKT]Google Scholar
Tusa, R. J. & Palmer, L. A. (1980) Retinotopic organization of areas 20 and 21 in the cat. Journal of Comparative Neurology 193:147–64. [taDHB]CrossRefGoogle ScholarPubMed
Tusa, R. J., Rosenquist, A. C. & Palmer, L. A. (1979) Retinotopic organization of areas 18 and 19 in the cat. Journal of Comparative Neurology 185:657–78. [taDHB]CrossRefGoogle Scholar
Tzanakou, E., Michalak, R. & Harth, E. (1979) The Alopex process: Visual receptive fields by response feedback. Biological Cybernetics 35:161–74. [rDHB, EH]CrossRefGoogle ScholarPubMed
Ullman, S. (1979) Relaxation and constrained optimization by local processes. Computer Graphics and Image Processing 10:115–25. [taDHB]CrossRefGoogle Scholar
Ullman, S. & Hildreth, E. (1983) The measurement of visual motion. In: Physical and biological processing of images, ed. Braddick, O. J. & Sleigh, A. C.. Springer-Verlag. [taDHB]Google Scholar
Van Essen, D. C. (1985) Functional organization of primate visual cortex. In The cerebrel cortex, vol. 3, Plenum Press. [rDHB]Google Scholar
Van Essen, D. C. (1979) Visual areas of the mammalian cerebral cortex. Annual Review of Neuroscience 2:227–63. [MS]CrossRefGoogle ScholarPubMed
Van Essen, D. C. & Maunsell, J. H. R. (1983) Hierarchical organization and functional streams in the visual cortex. Trends in Neurosciences 6:370–75. [taDHB]CrossRefGoogle Scholar
Van Essen, D. C., Maunsell, J. H. R. & Bixby, J. L. (1981) The middle temporal visual area in the macaque: Myloarchitecture, connections, functional properties and topographic organization. Journal of Comparative Neurology 199:293–326. [RAA]CrossRefGoogle ScholarPubMed
Van Essen, D. C., Newsome, W. T. & Bixby, J. L. (1982) The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. Journal of Neuroscience 2:265–83. [taDHB]CrossRefGoogle ScholarPubMed
Van Essen, D. C., Newsome, W. T., Maunsell, J. H. R. & Bixby, J. L. (1985) The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections. In preparation. [rDHB]CrossRefGoogle Scholar
von der Malsburg, C. (1981) Internal Rept. 81–2, Dept. of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Fed. Rep. Germany. [taDHB]Google Scholar
von der Malsburg, C. & Willshaw, D. J. (1977) How to label nerve cells so that they can interconnect in an ordered fashion. Proceedings of the National Academy of Sciences of the United States of America 74:5176–78. [taDHB]CrossRefGoogle Scholar
Weller, R. E. & Kaas, J. H. (1981) Cortical and subcortical connections of the visual cortex in primates. In: Multiple visual areas, vol. 2, Cortical sensory organization, vol. 2, ed. Woolsey, C. N., Humana Press. [taDHB]Google Scholar
Willshaw, D. J. & von der Malsburg, C. (1979) A marker induction mechanism for the establishment of ordered neural mappings: Its application to the retinotectal problem. Philosophical Transactions of the Royal Society of London 287:203–43. [SG]Google Scholar
Wilson, H. R. & Cowan, J. D. (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal 12:1–24. [TJS]CrossRefGoogle ScholarPubMed
Woolsey, C. N., ed. (1981) Multiple somatic areas, vol. 1, Cortical sensory organization. Humana Press. [taDHB]Google Scholar
Wurtz, R. H. & Newsome, W. T. (1985) Divergent signals encoded by neurons in extrastriate areas MT and MST during smooth pursuit eye movements. Society for Neuroscience Abstracts. In press. [RAA]Google Scholar
Yin, T. C. T. & Mountcastle, V. B. (1977) Visual input to the visuomotor mechanisms of the monkey's parietal lobe. Science 197:1381–83. [RAA, SG]CrossRefGoogle Scholar
Zeki, S. M. (1978) Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. Journal of Physiology 277:273–90. [taDHB]CrossRefGoogle ScholarPubMed
Zeki, S. M. (1983) Colour coding in the cerebral cortex: The responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength romposition. Neuroscience 9:767–81. [CDG]CrossRefGoogle Scholar