Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T07:18:01.320Z Has data issue: false hasContentIssue false

Cetacean brain evolution

Published online by Cambridge University Press:  04 February 2010

S. H. Ridgway
Affiliation:
Naval Ocean Systems Center, San Diego, Calif. 92152
F. G. Wood
Affiliation:
Naval Ocean Systems Center, San Diego, Calif. 92152

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbie, A. (1940) Cortical lamination in the Monotremata. Journal of Comparative Neurology 72: 429–67.Google Scholar
Abbie, A. (1942) Cortical lamination in a polyprotodont marsupial, Perameles nasuta. Journal of Comparative Neurology 76: 509–36.Google Scholar
Allman, J. (1982) Reconstructing the evolution of the brain in primates through the use of comparative neurophysiological and neuroanatomical data. In: Primate brain evolution, ed. Armstrong, E. & Falk, D.. Plenum.Google Scholar
Anderson, S. & Jones, J. K. (1967) Recent mammals of the world. Ronald Press.Google Scholar
Ariens Kappers, C. U., Huber, G. & Crosby, E. C. (1936) The comparative anatomy of the nervous system of vertebrates, including man (Reprinted 1960). Hafner.Google Scholar
Armstrong, E., Zilles, K., Schlaug, G. & Schleicher, A. (1986) Comparative aspects of the primate posterior cingulate cortex. Journal of Comparative Neurology 253: 539–48.CrossRefGoogle ScholarPubMed
Aronson, L. R. (1981) Evolution of telencephalic function in lower vertebrates. In: Brain mechanisms of behavior in lower vertebrates, ed. Laming, P.. Cambridge University Press.Google Scholar
Aronson, L. R. (1984) Levels of integration and organization: A reevaluation of the evolutionary scale. In: Behavioral evolution and integrative levels, ed. Greenberg, G. & Tobach, E.. Erlbaum.Google Scholar
Aronson, L. R., Tobach, E., Rosenblatt, J. S. & Lehrman, D. S. (1970) Development and evolution of behavior. W. H. Freeman.Google Scholar
Aronson, L. R., Tobach, E., Rosenblatt, J. S. & Lehrman, D. S. (1972) Selected writings of T. C. Schneirla. W. H. Freeman.Google Scholar
Atz, J. W. (1970) The application of the idea of homology to behavior. In: Development and evolution of behavior: Essays in memory of T. C. Schneirla, ed. Aronson, L. R., Tobach, E., Lehrman, D. S. & Rosenblatt, J. S.. W. H. Freeman.Google Scholar
Baker, J., Peterson, S. E., Newsome, W. T. & Allman, J. M. (1981) Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): A quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas. Journal of Neurophysiology 45: 397416.CrossRefGoogle ScholarPubMed
Barnes, L. G., Domning, D. P. & Ray, C. E. (1985) Status of studies on fossil marine mammals. Marine Mammal Science 1: 1553.Google Scholar
Barnes, L. G. & Mitchell, E. (1978) Cetacea. In: Evolution of African mammals, ed. Maglio, V. J. & Cooke, H. B. S.. Harvard University Press.Google Scholar
Bauchot, R. (1978) Encephalization in vertebrates. Brain, Behavior and Evolution 15: 118.CrossRefGoogle ScholarPubMed
Bauchot, R. & Stephan, H. (1968) Etudes des modifications encéphaliques observées chez les insectivores adaptes à la recherche de nourriture en milieu aquatique. Mammalia 32: 228–75.CrossRefGoogle Scholar
Beauregard, D. H. (1883) Recherches sur l'encéphale des Balaenides. Journal d'Anatomie Physiologique 19: 481516.Google Scholar
Benevento, L. A. & Rezak, M. (1976) The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): An autoradiographic study. Brain Research 108: 124.CrossRefGoogle ScholarPubMed
Blinkov, S. M. & Glezer, I. I. (1968) The human brain in figures and tables. A quantitative handbook. (Leningrad: Izolatelstvo Medicina) Basic Books and Plenum.Google Scholar
Bonin, G. von (1938) The cerebral cortex of the cebus monkey. Journal of Comparative Neurology 69(2): 181227.CrossRefGoogle Scholar
Bonin, G. von (1939) Studies of the size of the cells in the cerebral cortex. III. The striate area of man, orang and cebus. Journal of Comparative Neurology 70: 395412.Google Scholar
Braak, H. (1980) Architectonics of the human telencephalon. Springer.Google Scholar
Breathnach, A. S. (1953) The olfactory tubercle, prepyriform cortex and precommisural region of the porpoise (Phocaena phocoena). Journal of Anatomy, London 87: 96113.Google Scholar
Breathnach, A. S. (1960) The cetacean central nervous system. Biological Reviews 35: 187230.Google Scholar
Brockhaus, H. (1940) Die Cyto- und Myeloarchitektonik des Cortex claustralis und des Claustrum beim Menschen. Journal für Psychologie und Neurologie 40: 249348.Google Scholar
Brodmann, K. (1906) Beitrage zur histologische Lokalization de Groszhirnrinde. Funfte Mitteilung: Uber der allgemeinen Bauplan des Cortex pallii bei den Mammaliern und Zwei homologe Rindenfelder im besonderen. Zugleich ein Beitrag zur Furchenlehre. Journal für Psychologic und Neurologie 6:(Suppl.) 275400.Google Scholar
Brodmann, K. (1909) Vergleichende Lokalizationslehre der Crosshirnrinde. Barth.Google Scholar
Bugbee, N. M. & Goldman-Rakic, P. S. (1983) Columnar organization of cortico-cortical projection in squirrel and rhesus monkeys: Similarity of column width in species differing in cortical volume. Journal of Comparative Neurology 220: 335–64.Google Scholar
Campbell, A. W. (1905) Histological studies on the localization of cerebral function. Cambridge University Press.Google Scholar
Campbell, C. B. G. (1976) What animals should we compare? In: Evolution, brain, and behavior: Persistent problems, ed. Masterton, R. B., Hodos, W. & Jerison, H.. Erlbaum.Google Scholar
Campbell, C. B. G., Jane, J. A. & Yashon, D. (1967) The retinal projections of the tree shrew and hedgehog. Brain Research 5: 406–18.Google Scholar
Carlson, M. (1985) The significance of single or multiple cortical areas for tactile discrimination in primates. In: Hand function and the neocortex, ed. Goodwin, A. W. & Darian-Smith, I.. Springer.Google Scholar
Carlson, M., Heurta, M. F., Cusick, C. G. & Kaas, J. H. (1986) Studies on the evolution of multiple somatosensory representations in primates: The organization of anterior parietal cortex in the New World Callitrichid, Saguinus. Journal of Comparative Neurology 46: 409–26.Google Scholar
Carlson, M. & Nystrom, P. (1986) Significance of topography in primary somatic sensory cortex (SI) for tactile discrimination capacity in Old and New World primates. Society for Neuroscience Abstracts 12: 386.2.Google Scholar
Carlson, M. & Welt, C. (1981) Somatic sensory cortex (SmI) in prosimian primates. In: Cortical sensory organization, ed. Woolsey, C. N.. Humana Press.Google Scholar
Clark, W. E. L., ed. (1959) The antecedents of man. Quadrangle Books.Google Scholar
Clemo, H. R. & Stein, B. E. (1982) Somatosensory cortex: A “new” somatotopic representation. Brain Research 235: 162–68.Google Scholar
Clemo, H. R. & Stein, B. E. (1986) Effects of cooling somatosensory cortex on response properties of tactile cells in the superior colliculus. Journal of Neurophysiology 55: 1352–68.Google Scholar
Cousteau, J. & Diole, P. (1975) Dolphins. Doubleday.Google Scholar
Diamond, I. T. (1979) The subdivisions of neocortex: A proposal to revise the traditional view of sensory, motor, and association areas. In: Progress in psychobiology and physiological psychology, vol. 8, ed. Sprague, J. M. & Epstein, A. N.. Academic Press.Google Scholar
Diamond, I. T. & Hall, W. C. (1969) Evolution of neocortex. Science 164: 251–62.Google Scholar
Dillon, L. S. (1973) Evolution: Concepts and consequences. C. V. Mosby.Google Scholar
Dubois, E. (1914) Die gesetmassigen Beziehungen von Gehirnmasse zur Korpergrosse. Zeitschrift für Morphologie und Anthropologie 18: 323–50.Google Scholar
Ebbesson, S. O. E. (1980a) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell and Tissue Research 213: 179212.Google Scholar
Ebbesson, S. O. E. ed. (1980b) Comparative neurology of the telencephalon. Plenum.Google Scholar
Ebbesson, S. O. E. (1984) Evolution and ontogeny of neural circuits. Behavioral and Brain Sciences 7: 321–66.CrossRefGoogle Scholar
Ebner, F. (1969) A comparison of primitive forebrain organization in metatherian and eutherian mammals. Annals of the New York Academy of Sciences 167: 241–57.CrossRefGoogle Scholar
Economo, C. von & Koskinas, G. N. (1925) Die Cytoarchitektonik der Hirnrinde des envachsenen Menschen. Springer.Google Scholar
Edinger, L. (1909) Einführung in die Lehre vom Bau und den Verrichtungen des Nervensystems. Verlag F.C.W.Vogel.Google Scholar
Edinger, T. (1955) Hearing and smell in cetacean history. Monatsfshrift fuer Psychiatrie und Neurologie 129: 3758.Google Scholar
Edinger, L. (1975) Paleoneurology 1804–1966. In: Advances in anatomy, embryology and cell biology, ed. Brodal, A., Hild, W., Limborgh, J. van, Ortman, R., Schiebler, T. H., Töndúry, G. & Wolff, E.. Springer.Google Scholar
Eisenberg, J. F. (1981) The mammalian radiations. University of Chicago Press.Google Scholar
Eisenberg, J. F. & Golani, I. (1977) Communication in Metatheria. In: How animals communicate, ed. Sebeok, T.. Indiana University Press.Google Scholar
Eisenberg, J. F. & Wilson, D. (1978) Relative brain size and feeding strategies in the Chiroptera. Evolution 32: 740–51.Google Scholar
Elliot Smith, G. (1910) Some problems relating to the evolution of the brain. Lancet 1: 16; 147–55; 221–27.CrossRefGoogle Scholar
Falk, D. (1980) Hominid brain evolution: The approach from paleoneurology. Yearbook of Physical Anthropology 23: 93107.Google Scholar
Filimonoff, I. N. (1949) Comparative anatomy of the mammalian cerebral cortex. Medicina.Google Scholar
Filimonoff, I. N. (1965) On so-called rhinencephalon in dolphin. Journal für Hirnforschung 8:123.Google Scholar
Filimonoff, I. N. (1967) Homologies of cerebral formations in mammals and reptiles. Journal für Hirnforschung 7: 229–51.Google Scholar
Flechsig, P. (1920) Anatomie des menschlichen Cehirns und Ruckenmarks auf myelogenetischer Crundlage, vol. 1. Verlag.Google Scholar
Flechsig, P. (1927) Meine myelogenetische Hirnlehre. Springer.Google Scholar
Fox, J. H. & Wilczynski, W. (1986) Allometry of major CNS divisions: Towards a reevaluation of somatic brain-body scaling. Brain, Behavior and Evolution 28: 157–69.CrossRefGoogle ScholarPubMed
Frahm, H. D., Stephan, H. & Stephan, M. (1982) Comparison of brain structure volumes in Insectivora and Primates. I: Neocortex. Journal für Hirnforschung 23: 375–89.Google ScholarPubMed
Garey, L. J. & Leuba, G. (1986) A quantitative study of neuronal and glial numerical density in the visual cortex of the bottlenose dolphin: Evidence for a specialized subarea and changes with age. Journal of Comparative Neurology 247: 491–96.Google Scholar
Garey, L. J., Winkelmann, E. & Brauer, K. (1985) Golgi and Nissl studies of the visual cortex of the bottlenose dolphin. Journal of Comparative Neurology 240: 305–21.Google Scholar
Gaskin, D. E. (1982) The ecology of whales and dolphins. Heinemann.Google Scholar
Gegenbaur, C. (1898) Vergleichende Anatomie der Wirbeltiere Erster Band. Verlag Engelmann.Google Scholar
Gerebtzoff, M. A. & Goffart, M. (1966) Cytoarchitectonic study of the isocortex in the sloth (Choloepus hoffmani Peters). Journal of Comparative Neurology 126: 523–34.Google Scholar
Geschwind, N. (1965) Disconnexion syndromes in animals and man. Brain 88: 237–94.Google Scholar
Gibson, K. R. (1981) Comparative neuro-ontogeny: Its implications for the development of human intelligence. In: Infancy and epistemology, ed. Butterworth, G.. Harvester Press.Google Scholar
Gibson, K. R. (1986) Cognition, brain size and the extraction of embedded food resources. In: Primate ontogeny, cognitive and social behavior, ed. Else, J. G. & Lee, P. C.. Cambridge University Press.Google Scholar
Gibson, K. R. (in press) Brain size and the evolution of language. In: Language origins, ed. Landsberg, M.. Mouton Press.Google Scholar
Gilbert, C. D. & Wiesel, T. N. (1983) Clustered intrinsic connections in the cat visual cortex. Journal of Neuroscience 3: 1116–33.CrossRefGoogle ScholarPubMed
Gingerich, P. D., Wells, N. A., Russell, D. & Shah, S. M. I. (1983) Origin of whales in epicontinental remnant seas: New evidence from the early Eocene of Pakistan. Science 220: 403–6.CrossRefGoogle ScholarPubMed
Glezer, I. I., Jacobs, M. S. & Morgane, P. J. (1985) The so-called “initial” type of neocortex in relation to cetacean brain organization. In: Abstracts of the 15th annual meeting of the Society for Neuroscience 11: 1308.Google Scholar
Glezer, I. I., Jacobs, M. S. & Morgane, P. J. (1987) Ultrastructure of the blood-brain barrier in the dolphin (Stenella coeruleoalba). Brain Research 414: 205–18.Google Scholar
Glezer, I. I. & Morgane, P. J. (1988) Ultrastructural features of synapses in the neocortex of the lateral gyrus (visual area) of the dolphin (Stenella coeruleoalba). Neuroscience, in press.Google Scholar
Golani, I. (1976) Mechanisms of motor homeostasis in mammalian display. In: Perspectives in ethology, vol. 2, ed. Klopfer, P. & Bateson, P. P. G..Google Scholar
Goldman, P. S. & Nauta, W. J. H. (1977) Columnar distribution of eorticocortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Research 122: 393413.Google Scholar
Goldman-Rakic, P. S. & Schwartz, M. L. (1982) Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates. Science 216: 755–57.Google Scholar
Goodman, M. (1975) Protein sequence and immunological specificity. In: Phylogeny of the primates. A multidisciplinary approach, ed. Luckett, W. P. & Szalay, F. S.. Plenum.Google Scholar
Gould, S. J. (1977) Ontogeny and phytogeny. Belknap Press/Harvard University Press.Google Scholar
Gould, S. J. & Eldredge, N. (1977) Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology 3: 115–51.Google Scholar
Greenberg, G. & Tobach, E. (1984) Behavioral evolution and integrative levels. Erlbaum.Google Scholar
Griffiths, M. (1978) The biology of monotremes. Academic Press.Google Scholar
Hall, W. C. & Diamond, I. T. (1968) Organization and function of the visual cortex in the hedgehog (Parts 1 & 2). Brain Behavior and Evolution 1: 181243.Google Scholar
Harvey, P. & Clutton-Brock, T. H. (1985) Life history variables in primates. Evolution 39: 559–81.CrossRefGoogle ScholarPubMed
Haug, H. (1970) Der makroskopische Aufbau des Grosshirns. Qualitative und quantitative Untersuchungen an den Gehimen des Menschen, der Delphinoideae und des Elefanten. Ergebn. Anat. Entwicklungsgesch. 43: 770.Google Scholar
Haug, H. (1987) Brain sizes, surfaces and neuronal sizes of the cortex cerebri. A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupialia, insectivores, and one elephant). American Journal of Anatomy 180: 126–42.CrossRefGoogle Scholar
Herman, L. M., Richards, D. G. & Wolz, J. P. (1984) Comprehension of sentences by bottlenosed dolphins. Cognition 6: 129219.Google Scholar
Herman, L. M. & Tavolga, W. (1980) The communication systems of cetaceans. In: Cetacean behavior: Mechanisms and functions, ed. Herman, L.. John Wiley.Google Scholar
Herrick, C. J. (1920) A sketch of the origin of the cerebral hemispheres. Journal of Comparative Neurology 32: 429–54.Google Scholar
Herrick, C. J. (1924) An introduction to neurology. W. B. Saunders.Google Scholar
Hodos, W. & Campbell, C. B. G. (1969) Scala naturae: Why there is no theory in comparative psychology. Psychological Reviews 76: 337–50.Google Scholar
Hofman, M. A., Lean, A. C. & Uylings, H. B. M. (1986) Bivariate linear models in neurobiology: Problems of concept and methodology. Journal of Neuroscience Methods 18: 103–14.Google Scholar
Hubel, D. H. & Wiesel, T. N. (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160: 106–54.Google Scholar
Hubel, D. H. & Wiesel, T. N. (1965) Receptive fields, and functional architecture in two non-striate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28: 229–89.Google Scholar
Hubel, D. H. & Wiesel, T. N. (1974) Sequence regularity and geometry of orientation columns in the monkey striate cortex. Journal of Comparative Neurology 158: 421–50.Google ScholarPubMed
Humphrey, T. (1966) The development of the human hippocampal formation correlated with some aspects of its phylogenetic history. In: The evolution of the forebrain, ed. Hassler, R. & Stephan, H.. Thieme Verlag.Google Scholar
Hyman, L. H. (1962) Comparative vertebrate anatomy. University of Chicago Press.Google Scholar
Innocenti, G. M. (1984) On evolution by loss of exuberancy. Behavioral and Brain Sciences 7: 340–41.Google Scholar
Innocenti, G. M. (in press) Loss of axonal projections in the development of the mammalian brain. In: The making of the nervous system, ed. Parnavelas, J., Stern, C. D. & Stirling, R. V.. Oxford University Press.Google Scholar
Jacob, C. (1911) Vom Tierhirn zum Menschenhirn. Lehmann-Verlag.Google Scholar
Jacobs, M. S., Galaburda, A. M., McFarland, W. L. & Morgane, P. J. (1984) The insular formations of the dolphin brain. Quantitative cytoarchitectonic studies of the insular component of the limbic lobe. Journal of Comparative Neurology 225: 396432.Google Scholar
Jacobs, M. S., McFarland, W. L. & Morgane, J. P. (1979) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (rhinencephalon): 2. The arehicortex. Brain Research Bulletin 4 (Suppl. q): 1108.Google Scholar
Jacobs, M. S., Morgane, P. J. & McFarland, W. L. (1971) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (rhinencephalon): I. The paleocortex. Journal of Comparative Neurology 141: 205–72.Google Scholar
Jakob, H. (1979) Die Picksche Krankheit. Springer.Google Scholar
Jansen, J. & Jansen, J. K. S. (1969) The nervous system of cetacea. In: The biology of marine mammals, ed. Andersen, H. T.. Academic Press.Google Scholar
Jerison, H. (1963) Interpreting the evolution of the brain. Human Biology 35: 263–91.Google Scholar
Jerison, H. (1973) Evolution of the brain and intelligence. Academic Press.Google Scholar
Jerison, H. (1975) Fossil evidence of the evolution ot the human brain. Annual Review of Anthropology 4: 2758.Google Scholar
Jerison, H. (1976) Principles of the evolution of the brain and behavior. In: Evolution, brain and behavior: Persistent problems, ed. Masterton, R. B., Hodes, W. & Jerison, H.. Wiley.Google Scholar
Jerison, H. (1978) Brain and intelligence in whales. In: Whales and whaling, vol. 2. Australian Government Publications Service.Google Scholar
Jerison, H. (1979) The evolution of diversity in brain size. In: Development and evolution, ed. Hahn, M., Jensen, C. & Dudek, B..Google Scholar
Jerison, H. (1982) Allometry, brain size, cortical surface, and convolutcdness. In: Primate brain evolution: Methods and concepts, ed. Armstrong, E. & Falk, D.. Plenum.Google Scholar
Johnson, J. I. (1977) The central nervous system of marsupials. In: The biology of marsupials, ed. Hunsaker, D.. Academic Press.Google Scholar
Johnson, J. I. (1980) Morphological correlates of specialized elaborations in somatic sensory neocortex. In: Comparative neurology of the telencephalon, ed. Ebbesson, S. O. E.. Plenum Press.Google Scholar
Johnston, J. B. (1911) The telencephalon of selachians. Journal of Comparative Neurology 21: 1113.Google Scholar
Jolicoeur, P., Pirlot, P., Baron, G. & Stephan, H. (1984) Brain structure and correlation patterns in Insectivora, Chiroptera, and Primates. Systematic Zoology 33: 1429.CrossRefGoogle Scholar
Kaas, J. H. (1980) A comparative survey of visual cortex organization in mammals. In: Comparative neurology of the telencephalon, ed. Ebbesson, S. O. E.. Plenum.Google Scholar
Kaas, J. H. (1987a) The organization of the neocortex in mammals: Implications for theories of brain function. Annual Review of Psychology 38: 129–51.Google Scholar
Kaas, J. H. (1987b) The organization and evolution of neocortex. In: Higher brain functions, ed. Wise, S. P.. Wiley.Google Scholar
Kaas, J. H., Hall, W. C. & Diamond, I. T. (1970) Cortical visual areas I and II in the hedgehog: Relation between evoked potential maps and architectonic subdivisions. Journal of Neurophysiology 33: 595615.Google Scholar
Kahle, W. (1969) Die Entwicklung der menschlichen Crosshirn hemisphare. Springer.Google Scholar
Kato, N., Kawaguchi, S. & Miyata, H. (1984) Geniculocortical projection to layer I of area 17 in kittens: Orthograde and retrograde HRP studies. Journal of Comparative Neurology 225: 441–47.Google Scholar
Kato, N., Kawaguchi, S. & Miyata, H. (1986) Postnatal development of afferent projections to the lateral suprasylvian visual area in the cat: An HRP study. Journal of Comparative Neurology 225: 543–54.Google Scholar
Katz, M. J., Lasek, R. J. & Silver, J. (1983) Ontophyletics of the nervous system: Development of the corpus callosum and evolution of axon tracts. Proceedings of the National Academy of Sciences USA 80: 5936–40.Google Scholar
Kellog, W. N. (1961) Porpoises and sonar. University of Chicago Press.Google Scholar
Kesarev, V. S. (1970) Brain structure in dolphin and man. Ideen des exakten Wissens 7: 391–98.Google Scholar
Kesarev, V. S. (1971) The inferior brain of the dolphin. Soviet Science Review 1: 5258.Google Scholar
Kesarev, V. S. (1975) Homologization of the cerebral neocortex in cetaceans. Arkhiv Anatomii, Cistologii i Embriologii 68: 513.Google Scholar
Kesarev, V. S. & Malofeeva, L. I. (1969) Structural organization of the dolphin motor cortex. Journal of Neuroscience (translation) 12: 3339.Google Scholar
Kesarev, V. S. & Malofeeva, L. I. (1970) Structural organization of the dolphin motor cortex. Arkhiv Anatomii, Gistologii i Embriologii 56: 4855.Google Scholar
Kesarev, V. S., Malofeeva, L. I. & Trikova, O. V. (1977) Structural organization of the cerebral neocortex in cetaceans. Arkhiv Anatomii, Gistologii i Embriologii 73: 2330.Google Scholar
Kipling, R. (1910) Just-so Stories. The works of' Rudyard Kipling, vol. 20. Scribner's.Google Scholar
Kirsch, J. A. W. & Johnson, J. I. (1983) Phylogeny through brain traits: Trees generated by neural characters. Brain, Behavior and Evolution 22: 6069.Google Scholar
Kirsch, J. A. W., Johnson, J. I. & Switzer, R. C. (1983) Phylogeny through brain traits: The mammalian family tree. Brain, Behavior and Evolution 22: 7074.CrossRefGoogle ScholarPubMed
Klüver, H. (1933) Behavioral mechanisms in monkeys. University of Chicago Press.Google Scholar
Koehler, O. (1952) Vom unbenannten Denken Zoologischer Anzeiger. Suppl. 16: 202–11.Google Scholar
Kononova, E. P. (1962) The frontal region of the brain. Medicina.Google Scholar
Kostovic, I. & Rakic, P. (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. Journal of Neurocytology 9: 219–42.Google Scholar
Kotchetkova, V. I. (1960) L'Evolution des regions specifiquement humaines de I'écorce cérébrale chez les Hominidés. Proceedings, Sixth International Congress of Anthropological and Ethnological Sciences, Paris 1: 623–30.Google Scholar
Kruger, L. (1959) The thalamus of the dolphin (Tursiops truncatus) in comparison with other mammals. Journal of Comparative Neurology 111: 133–94.Google Scholar
Krushinsky, L. V. (1988) Experimental studies of elementary reasoning (2nd edition). English edition edited posthumously by Semiokhina, A. F. & Tobach, E.. New Delhi: Amerind Publishing.Google Scholar
Kükenthal, W. & Ziehen, T. (1889) Das Centralnervensystem der Cetaceen. Gustav Fischer.Google Scholar
Ladygina, T. F., Mass, A. M. & Supin, A. Y. (1978) Multiple sensory projections in the dolphin cerebral cortex. Zh. Vssh. Nerv. Deiat. 28: 1047–54.Google Scholar
Ladygina, T. F. & Supin, A. Y. (1974) Evolution of cortical areas of the brain in terrestrial and aquatic mammals. In: Morphology, physiology and acoustics of marine mammals. Nauka.Google Scholar
Laemle, L., Benhamida, C. & Purpura, D. P. (1972) Laminar distribution of geniculo-cortical afferents in visual cortex of the postnatal kitten. Brain Research 41: 2537.CrossRefGoogle ScholarPubMed
Lang, T. G. & Smith, H. A. P. (1965) Communication between dolphins in separate tanks by way of an electronic acoustic link. Science 150: 1839–44.Google Scholar
Langworthy, O. R. (1931) Factors determining the differentiation of the cerebral cortex in sea-living mammals (the Cetacea). Brain 54: 225–36.Google Scholar
Langworthy, O. R. (1932) A description of the central nervous system of the porpoise (Tursiops truncatus). Journal of Comparative Neurology 54: 437–99.Google Scholar
Lashley, K. S. & Clark, G. (1946) The cytoarchitecture of the cerebral cortex of Ateles: A critical examination of architectonic studies. Journal of Comparative Neurology 85: 223305.Google Scholar
Laursen, L. & Bekoff, M. (1978) Loxodonta africana. Mammalian Species 92: 18.Google Scholar
Le Gros Clark, W. E. (1932) The brain of the Insectivora. Proceedings of the Zoological Society (London) 102: 9751013.Google Scholar
Le Gros Clark, W. E. (1934) Early forerunners of man. Bailliere, Tyndall & Cox.Google Scholar
Le Gros Clark, W. E. (1965) The fossil evidence for human evolution. University of Chicago Press.Google Scholar
Lende, R. A. (1969) A comparative approach to the neocortex: Localization in monotremes, marsupials, and insectivores. Annals of the New York Academy of Science 167: 262–76.Google Scholar
Lilly, J. C. (1967) The mind of the dolphin. Doubleday.Google Scholar
Lorente de Nó, R. (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. Journal of Psychology and Neurology 46: 113–77.Google Scholar
Lorente de Nó, R. (1949) The structure of the cerebral cortex. In: Physiology of the nervous system, 3rd edition, ed. Fulton, J. F.. Oxford University Press.Google Scholar
Luria, A. R. (1980) Higher cortical functions in man. Basic Books.Google Scholar
Luskin, M. B. & Shatz, C. J. (1984) Spatio-temporal relations between cells of layers 4 & 6 and their geniculocortical afferent input during development. Society for Neurosdence Abstracts 10: 1079.Google Scholar
Luskin, M. B. & Shatz, C. J. (1985) Studies of the earliest generated cells of the cat's visual cortex: Cogeneration of subplate and marginal zones. Journal of Neuroscience 5: 1062–75.Google Scholar
MacLean, D. (1978) Why brain research on lizards? In: Behavior and neurobiology of lizards, ed. Greenberg, N. & MacLean, P. D.. U.S. Department of Health, Education & Welfare, National Institute of Mental Health.Google Scholar
MacLean, P. D. (1978) The evolution of three mentalities. In: Human evolution, ed. Washburn, S. L. & , E. R.McCown.Google Scholar
Martin, R. D. (1973) Comparative anatomy and primate systematics. Symposia of the Zoological Society of London 33: 301–37.Google Scholar
Maunsell, J. H. R. & Newsome, W. T. (1987) Visual processing in monkey extrastriate cortex. Annual Review of Neurosdence 10: 363401.Google Scholar
Mayr, E. (1966) Animal species and evolution. Harvard University Press.Google Scholar
McFarland, W. L., Morgane, P. J. & Jacobs, M. S. (1969) Ventricular system of the brain of the dolphin, Tursiops truncatus, with comparative anatomical observations and relations to brain specializations. Journal of Comparative Neurology 135: 275368.Google Scholar
McKenna, M. C. (1975) Toward a phylogenetic classification of the Mammalia. In: Phylogeny of the primates. A multidisciplinary approach, ed. Luckett, W. P. & Szalay, F. S.. Plenum.Google Scholar
Meulders, M., Gybels, J., Bergmans, J., Gerebtzoff, M. A. & Goffart, M. (1966) Sensory projections of somatic, auditory and visual origin to the cerebral cortex of the sloth (Choloepus hoffmani Peters). Journal of Comparative Neurology 126: 535–46.Google Scholar
Miyamoto, M. & Goodman, M. (1986) Biomolecular systematics of eutherian mammals: Phylogenetic patterns and classification. Systematic Zoology 35: 230–40.Google Scholar
Monastra, G. (1986) De la physique à la biologie: Les nouveaux paradigmes. Nouvelle Ecole, Editions du Labyrinthe 43: 7383.Google Scholar
Monod, J. (1970) Le hasard et la nécessité. Edition du Seuil.Google Scholar
Moody, P. A. (1962) Introduction to evolution. Harper & Row.Google Scholar
Morgane, P. J., Glezer, I. I. & Jacobs, M. S. (in press) The lateral gyrus (visual cortex) of the dolphin: An image analysis study. Journal of Comparative Neurology.Google Scholar
Morgane, P. J., Glezer, I. I. & Jacobs, M. S. (1988) Comparative and evolutionary anatomy of visual cortex of the dolphin. In: Cerebral cortex, vol. 8 Evolution and comparative anatomy of cerebral cortex, Jones, E. G. & Peters, A. (eds.) Plenum Press, in press.Google Scholar
Morgane, P. J. & Jacobs, M. S. (1972) The comparative anatomy of the cetacean nervous system. In: Functional anatomy of marine mammals, ed. Harrison, R. J.. Academic Press.Google Scholar
Morgane, P. J., Jacobs, M. S. & Galaburda, A. M. (1985) Conservative features of neocortical evolution in the dolphin brain. Brain Behavior and Evolution 26: 176–84.Google Scholar
Morgane, P. J., Jacobs, M. S. & Galaburda, A. M. (1986a) Evolutionary aspects of cortical organization in the dolphin brain. In: Research on dolphins, ed. Bryden, M. & Harrison, R. J.. Oxford University Press.Google Scholar
Morgane, P. J., Jacobs, M. S. & Galaburda, A. M. (1986b) Evolutionary morphology of the dolphin brain. In: Dolphin cognition & behavior: A comparative approach, ed. Sehusterman, R., Wood, F. & Thomas, J.. Erlbaum.Google Scholar
Morgane, P. J., Jacobs, M. S. & McFarland, W. L. (1980) Anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Surface configuration of the telencephalon of the bottlenose dolphin with comparative anatomical observations in four other cetacean species. Brain Research Bulletin 5: (Suppl. 3): 1107.Google Scholar
Morgane, P. J., Jacobs, M. S. & McFarland, W. L. (1982) The limbic lobe of the dolphin brain: A quantitative cytoarchitectonic study. Journal für Hirnforschung 23: 465552.Google Scholar
Mountcastle, V. B. (1957) Modality and topographic properties of single neurons of the cat's somatic sensory cortex. Journal of Neurophysiology 20: 408–34.Google Scholar
Mountcastle, V. B. (1975) The view from within: Pathways to the study of perception. Johns Hopkins Medical Journal 136: 109–31.Google Scholar
Mountcastle, V. B. (1978) An organizing principle for cerebral function: The unit module and the distributed system. In: The mindful brain, ed. Edelmann, G. M. & Mountcastle, V. P.. M.I.T. Press.Google Scholar
Mucke, L., Norita, M., Benedek, G. & Creutzfeldt, O. (1982) Physiologic and anatomic investigation of a visual cortical area situated in the ventral bank of the anterior ectosylvian sulcus of the cat. Experimental Brain Research 46: 111.Google Scholar
Napier, J. & Napier, P. (1967) A handbook of the living primates. Academic Press.Google Scholar
Neafsey, E. J., Hurley-Gius, K. M. & Arvanitis, D. (1986) The topographical organization of neurons in the rat medial frontal, insular and olfactory cortex projecting to the solitary nucleus, olfactory bulb, periaqueductal gray and superior colliculus. Brain Research 377: 261–70.Google Scholar
Needham, J. (1937) Integrative levels: A reevaluation of the idea of progress. Clarendon Press.Google Scholar
Nelson, J. E. & Stephan, H. (1982) Encephalisation in Australian marsupials. In: Carnivorous marsupials, vol. 2, ed. Archer, M.. Royal Zoological Society of New South Wales.Google Scholar
Nieuwenhuys, R. (1985) Chemoarchitecture of the brain. Springer-Verlag.Google Scholar
Northcutt, R. G. (1981) Evolution of the telencephalon in nonmammals. Annual Review of Neuroscience 4: 301–50.Google Scholar
Northcutt, R. G. (1984) Evolution of the vertebrate central nervous system: Patterns and processes. American Zoologist 24: 701–16.Google Scholar
Northcutt, R. G. (1986) Brain phylogeny: Speculations on patterns and cause. In: Comparative neurobiology: Modes of communication in the nervous system, ed. Cohen, M. J. & Strumwasser, F.. John Wiley.Google Scholar
Norris, K. S. (ed.) (1966) Whales, dolphins and porpoises. University of California Press.Google Scholar
Novikoff, A. B. (1945) The concept of integrative levels and biology. Science 101: 209–15.Google Scholar
Ogasawara, K., McHaffie, J. G. & Stein, B. E. (1984) Two visual corticotectal systems in cat. Journal of Neurophysiology 52: 1228–45.Google Scholar
Ohno, S. (1970) Evolution by gene duplication. Springer-Verlag.Google Scholar
Olson, C. R. & Graybiel, A. M. A. (1981) A visual area in the anterior ectosylvian sulcus of the cat. Society for Neuroscience Abstracts 7: 831.Google Scholar
Palmer, L. A., Rosenquist, A. C. & Tusa, R. J. (1978) The retinotopic organization of lateral suprasylvian visual areas in the cat. Journal of Comparative Neurology 177: 237–56.Google Scholar
Pandya, D. N., Seltzer, B. & Barbas, H. (1988) Input-output organization of the primate cerebral cortex. In: Neurosciences, ed. Steklis, H. D. & Erwin, J.. Alan R. Liss.Google Scholar
Parker, S. T. & Gibson, K. R. (1977) Object manipulation, tool use and sensorimotor intelligence as feeding adaptations in Cebus monkeys and great apes. Journal of Human Evolution 6: 623–41.Google Scholar
Parker, S. T. & Gibson, K. R. (1979) A developmental model for the evolution of language and intelligence in early hominids. Behavioral and Brain Sciences 2: 367408.Google Scholar
Passingham, R. E. (1975) Changes in the size and organization of the brain in man and his ancestors. Brain, Behavior and Evolution 11: 7390.Google Scholar
Passingham, R. E. (1975) The brain and intelligence. Brain, Behavior and Evolution 11: 115.Google Scholar
Passingham, R. E. (1985) Rates of brain development in mammals including man. Brain, Behavior and Evolution 26: 167–75.Google Scholar
Passingham, R. E. & Ettingler, G. (1974) A comparison of cortical functions in man and the other primates. International Review of Neurobiology 16: 233–99.Google Scholar
Pettigrew, J. D. (1986) Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231: 1304–6.Google Scholar
Pilbeam, D. & Gould, S. J. (1974) Size and scaling in human evolution. Science 186: 892901.Google Scholar
Pirlot, P. (1986) Understanding of Texa by comparing brains. Perspectives in Biology and Medicine 29: 499509.Google Scholar
Pirlot, P. (1987) Contemporary brain morphology in ecological and ethological perspectives. Journal für Uirnforschung 28: 145211.Google Scholar
Pirlot, P. & Jolicoeur, P. (1982) Correlations between major brain regions in Chiroptera. Brain, Behavior and Evolution 20: 172–81.Google Scholar
Poliakov, G. I. (1953) On the fine structural characteristics of the human cerebral cortex and on interneuronal functional interaction. Arh. Anat. Gistol. Embriol. 30(5): 4860. In Russian.Google Scholar
Poliakov, G. I. (1955) On structural mechanisms of interneuronal connections in human cerebral cortex. Arh. Anat. Gistol. Embriol. 32(2): 1519.Google Scholar
Poliakov, G. I. (1958) Some characteristics of neuronal structure complexity in the cerebral cortex of man, monkey and other mammals. Soviet Anthropology 2: 6985.Google Scholar
Poliakov, G. I. (1958a) Some special features of the increasing complexity of the neuronal structure of the cerebral cortex in man, monkeys and other mammals. Soviet Anthropology 4: 6979.Google Scholar
Poliakov, G. I. (1964) Development of cortical systems in vertebrate evolution. Journal für Hirnforschung 7: 253–73.Google Scholar
Popper, K. R. & Eccles, J. C. (1981) The self and its brain. Springer International.Google Scholar
Preobrasjenskaja, N. S., Kesarev, W. S., Stankevitsch, I. A. & Minaewa, V. M. (1973) Morphologische Gesetzmassigkeiten der Evolution des Grosshirns. Zeitschrift für Mikroskopische und Anatomische Forschung 87: 490504.Google Scholar
Pribram, K. H. (1971) What makes man human. American Museum of Natural History.Google Scholar
Radinsky, L. B. (1975) Primate brain evolution. American Scientist 63: 656–63.Google Scholar
Ramón y Cajal, S. (19091911) Histologie du système nerveux de l'homme et des veriébrés, vol. 1 & 2. Norbert Maloine.Google Scholar
Ramón-Moliner, E. (1962) An attempt at classifying nerve cells on the basis of their dendritic patterns. Journal of Comparative Neurology 119: 211–27.Google Scholar
Ramón-Moliner, E. & Nauta, W. J. H. (1966) The isodendritic core of the brain stem. Journal of Comparative Neurology 126: 311–36.Google Scholar
Rehkämper, G. (1981) Vergleichende Architektonik des Neocortex der Insectivora. Zeitschrift für Zoologische Systematik und Evolutionsforschung 19: 233–63.Google Scholar
Rehkämper, G., Stephan, H. & Poduschka, W. (1986) The brain of Ceogale aurita Milne-Edwards and Grandidier 1872. Journal für Hirnforschung 27: 391–99.Google Scholar
Reid, R. G. B. (1985) Evolutionary theory: The unfinished synthesis. Cornell University Press.Google Scholar
Ridgway, S. H. & Brownson, R. H. (1984) Relative brain sizes and cortical surface areas in odontocetes. Acta Zoologica Fennica 172: 149–52.Google Scholar
Riese, W. (1925) Formprobleme des Gehirns. II. Über die Hirnrinde der Wale. Journal für Psychologie und Neurologic 31: 275–80.Google Scholar
Riese, W. (1927) Konvergenzerscheinungen am Gehirn, nebst Bemerkungen zu der Arbeit von Rose: 'Der Grundplan der Cortextektonik beim Delphin. Journal für Psychologie und Neurologie 33: 8496.Google Scholar
Robinson, J. (1987) Demography and group structure in wedge-capped capuchin monkeys (Cebus olivaceus). Manuscript.Google Scholar
Rockel, A. J., Hiorns, R. W. & Powell, T. P. S. (1980) The basic uniformity in structure in neocortex. Brain 103: 221–44.Google Scholar
Roland, R. E. (1984) Metabolic measurements of the working frontal cortex in man. Trends in Neuroscience 7: 430–35.Google Scholar
Romer, A. S. (1966) Vertebrate paleontology. University of Chicago Press.Google Scholar
Rose, M. (1926) Der Grundplan der Cortextektonik beim Delphin. Journal für Psychologie und Neurologie 32: 161–69.Google Scholar
Rose, M. (1935) Anatomie des Grosshims. In: Handbuch der neurologie, ed. Bumke, O. & Foerster, O.. Springer Verlag.Google Scholar
Rosenkilde, C. F. (1979) Functional heterogeneity of the prefrontal cortex in the monkey: A review. Behavioral Neural Biology 25: 301–45.Google Scholar
Rumelhart, D. E. & McClelland, J. L. (1986) PDP models and general issues in cognitive science. In: Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1: Foundations, ed. Rumelhart, D. E. & McClelland, J. L.. MIT Press.Google Scholar
Sanides, D. & Sanides, F. (1974) A comparative Golgi study of the neocortex in insectivores and rodents. Zeitschrift für Mikroskopische und Anatomische Forschung 88:957–77.Google Scholar
Sanides, F. (1969) Comparative architectonics of the neocortex of mammals and their evolutionary interpretation. Annals of the New York Academy of Sciences 167: 404–23.Google Scholar
Sanides, F. (1970) Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In: Advances in primatology, ed. Noback, C. R. & Montagna, W.. Appleton-Century-Crofts.Google Scholar
Sanides, F. (1971) Evolutionary aspects of the primate neocortex. Proceedings of the 3rd International Congress on Primatology (Zurich) 1:92–8.Google Scholar
Sanides, F. (1972) Representation in the cerebral cortex and its areal lamination patterns. In: The structure and function of nervous tissue, ed. Bourne, G. H.. Academic Press.Google Scholar
Sanides, F. (1975) Comparative neurology of the temporal lobe in primates including man with reference to speech. Brain and Language 2: 396419.Google Scholar
Sanides, F. & Sanides, D. (1972) The “extraverted neurons” of the mammalian cerebral cortex. Zeitschrift für Anatomie und Entwiklunggeschichte 136:272–93.Google Scholar
Saraiva, P. E. S. & Magalhaes-Castro, B. (1975) Sensory and motor representation in the cerebral cortex of the three-toed sloth (Bradypus tridactylus). Brain Research 90:181–93.Google Scholar
Savage, R. J. G. (1976) Review of Early Sirenia. Systematic Zoologist 25:344–51.Google Scholar
Sawaguchi, T. & Kubota, K. (1986) A hypothesis on the primate neocortex evolution: Column-multiplication hypothesis. International Journal of Neuroscience 30:5764.Google Scholar
Schoch, R. M. (1986) Phylogeny: Reconstruction in paleontology. Van Nostrand Reinhold.Google Scholar
Schultz, A. H. (1969) The life of primates. Universe Books.Google Scholar
Severtsov, A. (1939) Morphological principles of evolution. Nauka.Google Scholar
Shellshear, J. L. (1929) A study of the arteries of the brain of the spiny anteater (Echidna aculeata) to illustrate the principles of arterial distribution. Philosophical Transactions of the Royal Society of London (Series B). 218:136.Google Scholar
Shkol'nik-Yarros, E. G. (1971) Neurons and interneuronal connections of the central visual system (translated by Haigh, B.). Plenum.Google Scholar
Shoshani, J. (1986) Mammalian phylogeny: Comparison of morphological and molecular results. Molecular Biology & Evolution 3:222–42.Google Scholar
Shoshani, J. & Eisenberg, J. F. (1982) Elephas maximus. Mammalian Species 182:1–8.Google Scholar
Shoshani, J. et al. (1982) On the dissection of a female Asian elephant (Elephas maximus maximus Linnaeus, 1758) and data from other elephants. Elephant 2(1):393.Google Scholar
Shyan, M. R. & Herman, L. M. (1987) Determinants of recognition of gestural signs in an artificial language by Atlantic bottlenosed dolphins (Tursiops truncatus) and humans (Homo sapiens). Journal of Comparative Psychology 101:112–25.Google Scholar
Simpson, G. G. (1945) The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History 85:1350.Google Scholar
Simpson, G. G. (1949) The meaning of evolution. Yale University Press.Google Scholar
Simpson, G. G. (1953) The major features of evolution. Columbia University Press.Google Scholar
Sokolov, V. Y., Ladygina, T. F. & Supin, A. Y. (1972) Localization of sensory zones in the dolphin's cerebral cortex. Dokladi Akademii Nauk, USSR Ser. Biol. 200:490–93.Google Scholar
Somogyi, P. (1977) A specific axo-axonal interneuron in the visual cortex of the rat. Brain Research 136:345–50.Google Scholar
Somogyi, P. (1978) The study of Golgi stained cells and of experimental degeneration under the electron microscope: A direct method for the identification in the visual cortex of three successive links in a neuron chain. Neuroscience 3:167–80.Google Scholar
Somogyi, P., Hodgson, A. J. & Smith, A. D. (1979) An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material. Neuroscience 4:1805–52.Google Scholar
Spatz, H. (1937) Uber die Bedeutung der basalen Rinde auf Grund von Beobachtungen bei Pickscher Krankheit und bei gedeckten Hirnverletzungen. Zeitschrift für die gesamte Neurologie und Psychiatrie 158:202–32.Google Scholar
Spemann, H. (1936) Experimented Beiträge zu einer Therorie der Entwicklung. Springer-Verlag.Google Scholar
Sperry, R. W. (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proceedings of the Natural Academy of Science 50:703–10.Google Scholar
Spemann, H. (1983) Science and moral priority. Basil Blackwell.Google Scholar
Stark, D. (1978) Vergleichende Anatomie der Wiurbeltiere, auf evolutionsbiologischer Grundlage. Band 1. Springer.Google Scholar
Stein, B. E. & Gaither, N. S. (1981) Sensory representation in reptilian optic tectum: Some comparisons with mammals. Journal of Comparative Neurology 202:6987.Google Scholar
Stein, B. E. & Gaither, N. S. (1983) Receptive-field properties in reptilian optic tectum: Some comparisons with mammals. Journal of Neurophysiology 50:102–24.Google Scholar
Stephan, H. (1967) Zur Entwiklungshohe der Insektivoren nach Merkmalen des Gehirns und die Definition der “Basalen Insectivoren.” Zoologische Anxeiger 179:177–99.Google Scholar
Stein, B. E. & Gaither, N. S. (1969) Quantitative investigations on visual structures in primate brains. In: Proceedings of the 2nd International Congress of Primatology 3:3242.Google Scholar
Stein, B. E. & Gaither, N. S. (1972) Evolution of primate brains: A comparative anatomical investigation. In: Functional and evolutionary biology of primates, ed. Tuttle, R.. Aldine-Atherton.Google Scholar
Stein, B. E. & Gaither, N. S. (1975) Allocortex. In: Handbuch der mikroskopischen Anatomie des Menschen (VI/9), ed. Bargmann, W.. Springer.Google Scholar
Stephan, H. & Andy, O. J. (1969) Quantitative comparative neuroanatomy of primates: An attempt at a phylogenetic interpretation. Annals of the New York Academy of Sciences 167:370–87.Google Scholar
Stephan, H., Bauchot, R. & Andy, O. J. (1970a) The allocortex in primates. In: The primate brain: Advances in primatology, vol. 1, ed. Noback, C. & Montagna, W.. Appleton-Century-Crofts.Google Scholar
Stephan, H., Bauchot, R. & Andy, O. J. (1970b) Data on the size of the brain and of various brain parts in insectivores and primates. In: The primate brain: Advances in primatology, vol. 1, ed. Noback, C. & Montagna, W.. Appleton-Century-Crofts.Google Scholar
Stephan, H., Frahm, H. & Baron, G. von (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia primatologica 35:129.Google Scholar
Stephan, H., Frahm, H. & Baron, G. von (1987) Brains of vespertilionids. I. Subfamily characteristics. Zeitschrifi für Zoologische Systematik und Evolutionsforschung 25:67–80.Google Scholar
Stephan, H., Frahm, H. D., Stephan, M. & Baron, G. von (1987) Brains of vespertilionids. Il. Vespertilioninae with special reference to Tylonycteris. Zeitschrifi für Zoologische Systematik und Evolutionsforschung 25:147–57.Google Scholar
Stephan, H., Nelson, J. E. & Frahm, H. D. (1981) Brain size comparison in chiroptera. Zeitschrifi für Zoologische Systematik und Evolutionsforschung 19:195222.Google Scholar
Supin, A. Y., Mukhametov, L. M., Ladygina, T. F., Popov, V. V., Mass, A. M. & Poliakova, I. G. (1978) Neurophysiologic characteristics of the cerebral cortex in dolphins. In: Electrophysiological study of the dolphin brain. Nauka.Google Scholar
Swanson, L. W. (1981) A direct projection from Ammon's horn to prefrontal cortex in the rat. Brain Research 217:150–54.Google Scholar
Szentágothai, J. (1973) Synaptology of the visual cortex. In: Handbook of sensory physiology; central processing of visual information; Part B, Visual centers in the brain, ed.Jung, R.. Springer.Google Scholar
Szentágothai, J. (1974) A structural overview. In: Conceptual models of neural organization, ed. Szentagothai, J. & Arbib, M.. Neuroscience Research Program Bulletin 12:354410.Google Scholar
Szentágothai, J. (1975) The “module concept” in cerebral cortex architecture. Brain Research 95:475–96.Google Scholar
Terreberry, R. R. & Neafsey, E. J. (1983) Rat medial frontal cortex: A visceral motor area with a direct projection to the solitary nucleus. Brain Research 278:245–59.Google Scholar
Tobach, E. (1987) Integrative levels in the comparative psychology of cognition, language and consciousness. In: Cognition, language and consciousness. 2nd T. C. Schneirla Conference, ed. Greenberg, G. & Tobach, E.. Erlbaum.Google Scholar
Ulinski, P. S. (1986) Neurobiology of the therapsid-mammal transition. In: The ecology and biology of mammal-like reptiles, ed. Hotton, N., MacLean, P. D., Roth, J. J. & Roth, E.. Smithsonian Institution Press.Google Scholar
Valverde, F. (1971) Short axon neuronal subsystems in the visual cortex of the monkey. International Journal of Neuroscience 1:181–97.Google Scholar
Valverde, F. (1983) A comparative approach to neocortical organization based on the study of the brain of the hedgehog. In: Ramon y Cajal's contribution to the neurosciences, ed. Grisiola, S., Guerri, C., Samson, F., Norton, S. & Reinoso-Suarez, F.. Elsevier.Google Scholar
Valverde, F. (1986) Intrinsic neocortical organization: Some comparative aspects. Neuroscience 18:123.Google Scholar
Valverde, F., De Carlos, J. A., López-Mascaraque, L. & Donate-Oliver, F. (1986) Neocortical layers I & II of the hedgehog (Erinaceus europaeus). II. Thalamocortical connections. Anatomy and Embryology 175:167–79.Google Scholar
Valverde, F. & Facal-Valverde, M. V. (1986) Neocortical layers I and II of the hedgehog (Erinaceus europaeus). Anatomy and Embryology 173:413–30.Google Scholar
Valverde, F. & Facal-Valverde, M. V. (1987) Transitory population of cells in the temporal cortex of kittens. Developmental Brain Research 32:283–88.Google Scholar
Valverde, F. & López-Mascaraque, L. (1981) Neocortical endeavor: Basic neuronal organization in the cortex of the hedgehog. Eleventh International Congress of Anatomy, Glial and Neuronal Cell Biology. Alan R. Liss.Google Scholar
Van der Kooy, D., McGinty, J. F., Koda, L. Y., Gerfen, C. R. & Bloom, F. E. (1982) Visceral cortex: A direct connection from prefrontal cortex to the solitary nucleus in rat. Neurosdence Letters 33:123–27.Google Scholar
Van der Loos, H. & Welker, E. (1985) Development and plasticity of somatosensory brain maps. In: Development, organization and processing in somatosensory pathways. Alan R. Liss.Google Scholar
Van Valen, L. (1966) Deltatheridia, a new order of mammals. Bulletin of the American Museum of Natural History 132:1126.Google Scholar
Vaughn, T. A. (1972) Mammalogy. W. B. Saunders.Google Scholar
Visalberghi, E. & Antinucci, F. (1986) Tool use in the exploitation of food resources in Cebus apella. In: Primate ecology and conservation, vol. 2, ed. Else, J. C. & Lee, P. C.. Cambridge University Press.Google Scholar
Vogt, C. & Vogt, O. (1919) Allgemeinere Ergebnisse unserer Hirnforschung. Journal of Psychological Neurology 25:279461.Google Scholar
Walker, E. P. (1968) Mammals of the world, 2nd ed.Johns Hopkins Press.Google Scholar
Walsh, T. M. & Ebner, F. F. (1970) The cytoarchitecture of somatic sensory-motor cortex in the opossum (Didelphis marsupialis virginiana), a Golgi study. Journal of Anatomy 107:118.Google Scholar
Warren, S. & Carlson, M. (1986) Topography of primary somatic sensory cortex (SI) in Old World primates, Cercopithecus and Miopithecus. Society for Neurosdence Abstracts 12:386.1Google Scholar
Welker, W., Johnson, J. I. & Reep, R. L. (1986) Morphology and cytoarchitecture of the brains of Florida manatees (Trichechus manatus). Society for Neuroscience Abstracts 12:110.Google Scholar
Werner, L., Hedlich, A. & Winkelmann, E. (1985) Neuronentypen im visuellen Kortex der Ratte, identifiziert in Nissl- und deimpragnierten Golgi-Praparaten. Journal für Hirnforschung 26:173–86.Google Scholar
Werner, L., Wilke, A., Blodner, R., Winkelmann, E. & Brauer, K. (1982) Topographical distribution of neuronal types in the albino rat's area 17. A qualitative and quantitative Nissl study. Zeitschrifi für Mikroskopisch-Anatomische Forschung 96:433–53.Google Scholar
West-Eberhard, M. J. (1986) Alternative adaptations, speciations and phylogeny (a review). Proceedings of the National Academy of Sciences USA 83:1388–92.Google Scholar
Westergaard, G. C. & Fragaszy, D. (1987) The manufacture and use of tools by capuchin monkeys (Cebus apella). Journal of Comparative Psychology 101:159–68.Google Scholar
Wirz, K. (1950) Studien ueber die Cerebralisation: Zur quantitative Bestimmung der Rangordnung bei Saeugetieren. Acta Anatomica 9:134–96.Google Scholar
Wise, S. P. (1985) The primate premotor cortex: Past, present, and preparatory. Annual Review of Neuroscience 8:119.Google Scholar
Wong-Riley, M. T. (1979) Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys. Brain Research 162:201–17.Google Scholar
Wood, F. G. & Evans, W. E. (1980) Adaptiveness and ecology of echolocation in toothed whales. In: Animal sonar systems, ed. Busnel, R. & Fish, J.. Plenum.Google Scholar
Woolsey, C. N. (1981) Cortical sensory organization: Multiple somatic areas. Humana Press.Google Scholar
Woolsey, T. A. & Van der Loos, H. (1970) The structural organization of layer IV in the somatosensory region (SI) of the mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Research 17:205–42.Google Scholar
Wursig, B. & Wursig, M. (1979) Behavior and ecology of the bottlenose dolphin (Tursiops truncatus) in the South Atlantic. Fishery Bulletin 77:399412.Google Scholar
Yablokov, A. V. (1965) Convergence or parallelism in the evolution of cetaceans. International Geology Review 7:1461–68.Google Scholar
Zeki, S. M. (1978) The third visual complex of rhesus monkey prestriate cortex. Journal of Psychology 277:245–72.Google Scholar
Zilles, K., Armstrong, E., Schlaug, G. & Schleicher, A. (1986) Quantitative cytoarchitectonics of the posterior cingulate cortex in primates. Journal of Comparative Neurology 253:514–24.Google Scholar
Zilles, K., Stephan, H. & Schleicher, A. (1982) Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species. In: Primate brain evolution: Methods and concepts, ed. Armstrong, E. & Falk, D.. Plenum.Google Scholar
Zvorykin, V. P. (1971) Quantitative and cytoarchitectonic characteristics of the systems of truncal auditory and visual formations in the bat, dolphin and man, and biological significance of the analyzers. Arkhiv Anatomii, Gistologii i Embriologii 60:5062.Google Scholar
Zvorykin, V. P. (1977) Principles of structural organization of the cetacean neocortex. Arkhiv Anatomii, Gistologii i Embriologii 72:522.Google Scholar
Zvorykin, V. P. (1980) The new criteria for solving the origin problem of Cetacea and Pinnipedia. Zoologitcheskii Zhournal 50:598608.Google Scholar