Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-21T06:50:53.219Z Has data issue: false hasContentIssue false

DNA metabarcoding and macroremains from coprolites reveal insights into Middle and Late Holocene inhabitants of Bonneville Estates Rockshelter, Nevada

Published online by Cambridge University Press:  19 September 2024

Taryn Johnson*
Affiliation:
Department of Anthropology, Texas A&M University, College Station, USA Chronicle Heritage, Phoenix, Arizona, USA
Bryan Hockett
Affiliation:
Bureau of Land Management, Nevada State Office, Reno, USA Department of Anthropology, University of Nevada, Reno, USA
Anna Linderholm
Affiliation:
Department of Anthropology, Texas A&M University, College Station, USA Centre for Palaeogenetics, Department of Geological Sciences, Stockholm University, Sweden
*
*Author for correspondence ✉ [email protected]

Abstract

The analysis of coprolites provides direct evidence of resources consumed and may be paired with ethnographic data to elucidate the dietary and medicinal use of plants in archaeological communities. This article combines and contrasts the macroscopic analysis and DNA metabarcoding of 10 coprolites from Bonneville Estates Rockshelter, Nevada, USA. While the results from both methods confirm previous understandings of subsistence practices at the site, minimal overlap in identified taxa suggests that each accesses different components of the consumed material. The two methods should therefore be seen as complementary and employed together, where possible.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Antiquity Publications Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albush, C.J. 2010. Prehistoric diet at Bonneville Estates Rockshelter, Nevada. Unpublished Masters dissertation, University of Nevada, Reno.Google Scholar
Betancourt, J.L., Long, A., Donahue, D., Jull, A. & Zabel, T.. 1984. Pre-Columbian age for North American Corispermum L. (Chenopodiaceae) confirmed by accelerator radiocarbon dating. Nature 311: 653–5. https://doi.org/10.1038/311653a0Google Scholar
Chamberlin, R.V. 1911. Memoirs of the American Anthropological Association, volume 11: the ethno-botany of the Gosiute Indians of Utah. Lancaster: New Era Printing Company.Google Scholar
Fry, G.F. 1976. Analysis of prehistoric coprolites from Utah (Anthropological Papers 97). Salt Lake City: University of Utah Press.Google Scholar
Fry, G.F. 1985. Analysis of fecal matter, in Gilbert, R.I. & Mielke, J.H. (ed.) The analysis of prehistoric diets: 127–54. New York: Academic Press.Google Scholar
Goebel, T., Graf, K., Hockett, B.S. & Rhode, D.. 2007. The Paleoindian occupations at Bonneville Estates Rockshelter, Danger Cave, and Smith Creek Cave (Eastern Great Basin, U.S.A.): interpreting their radiocarbon chronologies, in Kornfeld, M., Vasil'ev, S. & Miotti, L. (ed.) On shelter's ledge: histories, theories and methods of rockshelter research: 147–61 (British Archaeological Reports International Series 1655). Oxford: BAR.Google Scholar
Goebel, T., Hockett, B., Rhode, D. & Graf, K.. 2021. Prehistoric human response to climate change in the Bonneville basin, western North America: the Bonneville Estates Rockshelter radiocarbon chronology. Quaternary Science Reviews 260. https://doi.org/10.1016/j.quascirev.2021.106930Google Scholar
Graf, K.E. 2007. Stratigraphy and chronology of the Pleistocene to Holocene transition at Bonneville Estates Rockshelter, eastern Nevada, in Graf, K.E. & Schmitt, D.N. (ed.) Paleoindian or paleoarchaic? Great Basin human ecology at the Pleistocene/Holocene transition: 82104. Salt Lake City: University of Utah Press.Google Scholar
Guiry, E.J. 2012. Dogs as analogs in stable isotope-based human paleodietary reconstructions: a review and considerations for future use. Journal of Archaeological Method and Theory 16: 351–76. https://doi.org/10.1007/s10816-011-9118-zCrossRefGoogle Scholar
Hockett, B. 2005. Middle and Late Holocene hunting in the Great Basin: a critical review of the debate and future prospects. American Antiquity 70: 713–31. https://doi.org/10.2307/40035871Google Scholar
Hockett, B. 2007. Nutritional ecology of Late Pleistocene to Middle Holocene subsistence in the Great Basin: zooarchaeological evidence from Bonneville Estates Rockshelter, in Graf, K.E. & Schmitt, D.N. (ed.) Paleoindian or paleoarchaic? Great Basin human ecology at the Pleistocene/Holocene transition: 204–30. Salt Lake City: University of Utah Press.Google Scholar
Hockett, B. 2015. The zooarchaeology of Bonneville Estates Rockshelter: 13,000 years of Great Basin hunting strategies. Journal of Archaeological Science: Reports 2: 291301. https://doi.org/10.1016/j.jasrep.2015.02.011Google Scholar
Jouy-Avantin, F., Debenath, A., Moigne, A.-M. & Moné, H.. 2003. A standardized method for the description and the study of coprolites. Journal of Archaeological Science 30: 367–72. https://doi.org/10.1006/jasc.2002.0848Google Scholar
Kelley, L., Rose, E., McCullough, B., Martinez, M. & Baudelet, M.. 2020. Non-destructive DNA analysis of single pollen grains. Forensic Chemistry 20. https://doi.org/10.1016/j.forc.2020.100275Google Scholar
Louderback, L.A. & Rhode, D.E.. 2009. 15,000 years of vegetation change in the Bonneville basin: the Blue Lake pollen record. Quaternary Science Reviews 28: 308–26. https://doi.org/10.1016/j.quascirev.2008.09.027Google Scholar
Louderback, L.A., Grayson, D.K. & Llobera, M.. 2010. Middle-Holocene climates and human population densities in the Great Basin, western USA. The Holocene 21: 366–73. https://doi.org/10.1177/0959683610374888Google Scholar
Madsen, D.B & Kirkman, J.E.. 1988. Hunting hoppers. American Antiquity 53: 593604. https://doi.org/10.2307/281220Google Scholar
Madsen, D.B. et al. 2001. Late Quarternary environmental change in the Bonneville basin, western USA. Palaeogeography, Palaeoclimatology, Palaeoecology 167: 243–71. https://doi.org/10.1016/S0031-0182(00)00240-6Google Scholar
McDonough, K., Johnson, T., Goebel, T., Reinhard, K. & Coe, M.. 2023. Paleoparasitology of human Acanthocephalan infection: a review and new case from Bonneville Estates Rockshelter, Nevada, U.S.A. Journal of Parasitology 109: 6575. https://doi.org/10.1645/22-92Google ScholarPubMed
Mozingo, H.N. 1987. Shrubs of the Great Basin: a natural history. Salt Lake City: University of Nevada Press.Google Scholar
Murray, D.C. et al. 2013. Scrapheap challenge: a novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages. Scientific Reports 3. https://doi.org/10.1038/srep03371Google ScholarPubMed
Native Plant Information Network. 2013. Austin, TX: Lady Bird Johnson Wildflower Center at The University of Texas. Available at: http://www.wildflower.org/plants/ (accessed 8 September 2022).Google Scholar
Prudnikow, L., Pannicke, B. & Wünschiers, R.. 2023. A primer on pollen assignment by nanopore-based DNA sequencing. Frontiers in Ecology and Evolution 11. https://doi.org/10.3389/fevo.2023.1112929CrossRefGoogle Scholar
Rhode, D. 2002. Native plants of southern Nevada: an ethnobotany. Salt Lake City: University of Utah Press.Google Scholar
Rhode, D. & Madsen, D.B.. 1995. Late Wisconsin/Early Holocene vegetation in the Bonneville Basin. Quarternary Research 44: 246–56. https://doi.org/10.1006/qres.1995.1069Google Scholar
Schmitt, D.N. & Lupo, K.D.. 2012. The Bonneville Estates Rockshelter rodent fauna and changes in Late Pleistocene–Middle Holocene climates and biogeography in the northern Bonneville Basin, USA. Quaternary Research 78: 95102. https://doi.org/10.1016/j.yqres.2012.02.004Google Scholar
Schmitt, D.N. & Lupo, K.D.. 2016. Changes in Late Quaternary mammalian biogeography in the Bonneville Basin, in Oviatt, C.G. & Shroder, J.F. (ed.) Lake Bonneville: a scientific update (Developments in Earth Surface Processes 20): 352–70. New York: Elsevier.CrossRefGoogle Scholar
Shillito, L.-M., Blong, J.C., Green, E.J. & van Asperen, E.. 2020. The what, how and why of archaeological coprolite analysis. Earth-Science Reviews 207. https://doi.org/10.1016/j.earscirev.2020.103196Google Scholar
Sobolik, K.D. 1988. The importance of pollen concentration values from coprolites: an analysis of southwest Texas samples. Palynology 12: 201–14. https://doi.org/10.1080/01916122.1988.9989344Google Scholar
Steward, J.H. 1938. Basin-plateau Aboriginal sociopolitical groups. Salt Lake City: University of Utah Press.Google Scholar
Sutton, M.Q. 1988. Insects as food: aboriginal entomophagy in the Great Basin. Menlo Park (CA): Ballena.Google Scholar
Szczepanek, K., Myszkowska, D., Worobiec, E., Piotrowicz, K., Ziemianin, M. & Bielec-Bąkowska, Z.. 2017. The long-range transport of Pinaceae pollen: an example in Kraków (southern Poland). Aerobiologia 33: 109–25. https://doi.org/10.1007/s10453-016-9454-2Google ScholarPubMed
Train, P., Henrichs, J. & Archer, W.. 1941. Medicinal uses of plants by Indian tribes of Nevada (Contributions Toward a Flora of Nevada 45). Beltsville (MD): U.S. Department of Agriculture.Google Scholar
Wood, J.R. & Wilmshurst, J.M.. 2016. A protocol for subsampling Late Quaternary coprolites for multi-proxy analysis. Quaternary Science Reviews 138: 15. https://doi.org/10.1016/j.quascirev.2016.02.018Google Scholar
Supplementary material: File

Johnson et al. supplementary material 1

Johnson et al. supplementary material
Download Johnson et al. supplementary material 1(File)
File 404 KB
Supplementary material: File

Johnson et al. supplementary material 2

Johnson et al. supplementary material
Download Johnson et al. supplementary material 2(File)
File 28.1 KB