Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T04:22:52.601Z Has data issue: false hasContentIssue false

Status and short-term environmental changes of lakes in the area of Devil's Bay, Vega Island, Antarctic Peninsula

Published online by Cambridge University Press:  16 October 2020

Jan Kavan*
Affiliation:
Department of Geography, Faculty of Science, Masaryk University, Kotlářská 2, 611 37Brno, Czech Republic
Linda Nedbalová
Affiliation:
Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
Daniel Nývlt
Affiliation:
Department of Geography, Faculty of Science, Masaryk University, Kotlářská 2, 611 37Brno, Czech Republic
Tomáš Čejka
Affiliation:
Department of Geography, Faculty of Science, Masaryk University, Kotlářská 2, 611 37Brno, Czech Republic Department of Climate Change Impacts on Agroecosystems, Global Change Research Institute (CzechGlobe), Academy of Sciences of the Czech Republic, Bělidla 986/4, 603 00Brno, Czech Republic
Juan Manuel Lirio
Affiliation:
Instituto Antárctico Argentino, 25 de Mayo 1143, San Martín, Buenos Aires, B1650HMK, Argentina

Abstract

Climate change affects various components of the polar environment, including lacustrine systems in many regions of the Antarctic Peninsula. However, the recent status of these life-preserving habitats remains poorly known. We performed field geomorphological mapping and limnological characterization of lakes distributed across Devil's Bay in the northern area of Vega Island, James Ross Archipelago, and described some significant changes in their physical and chemical properties during the 2013 summer season. Fifty lakes were described in the area, even though the area is relatively small (~12 km2). Six major lake types were distinguished based on their geomorphological settings and their origins, and their hydrochemical properties were compared with the neighbouring lake districts. The geomorphic characteristics of the lakes range from stable lakes on till plains (21 out of 50 lakes), to kettle lakes on fresh moraines with an unstable shoreline, to very dynamic ice-contact lakes with fluctuating water levels and inundated areas. The ice-contact lake dynamics were observed using ‘Lake Payer’ as an example. At the interface between hydrology and geosciences, this study provides new and original data from a yet largely unexplored region and emphasizes the importance of cross-disciplinary research in polar sciences.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrožová, K., Láska, K., Hrbáček, F., Kavan, J. & Ondruch, J. 2019. Air temperature and lapse rate variation in the ice-free and glaciated areas of northern James Ross Island, Antarctic Peninsula, during 2013–2016. International Journal of Climatology, 39, 10.1002/joc.5832.CrossRefGoogle Scholar
Benn, D.I., Warren, C.R. & Mottram, R.H. 2007. Calving processes and the dynamics of calving glaciers. Earth-Science Reviews, 82, 10.1016/j.earscirev.2007.02.002.CrossRefGoogle Scholar
Bomblies, A., McKnight, D.M. & Andrews, E.D. 2001. Retrospective simulation of lake-level rise in Lake Bonney based on recent 21-yr record: indication of recent climate change in the McMurdo Dry Valleys, Antarctica. Journal of Paleolimnology, 25, 10.1023/A:1011131419261.CrossRefGoogle Scholar
Borghini, F., Colacevich, A., Loiselle, S. A. & Bargagli, R. 2013. Short-term dynamics of physico-chemical and biological features in a shallow, evaporative Antarctic lake. Polar Biology, 36, 10.1007/s00300-013-1336-2.CrossRefGoogle Scholar
Bulínová, M., Kohler, T.J., Kavan, J., Van De Vijver, B., Nývlt, D., Nedbalová, L., et al. 2020. Comparison of diatom paleo-assemblages with adjacent limno-terrestrial communities on Vega Island, Antarctic Peninsula. Water, 12, 10.3390/w12051340.CrossRefGoogle Scholar
Carrivick, J.L. & Tweed, S.F. 2013. Proglacial lakes: character, behaviour and geological importance. Quaternary Science Reviews, 78, 10.1016/j.quascirev.2013.07.028.CrossRefGoogle Scholar
Castendyk, D.N., Obryk, M.K., Leidman, S.Z., Gooseff, M. & Hawes, I. 2016. Lake Vanda: a sentinel for climate change in the McMurdo Sound region of Antarctica. Global and Planetary Change, 144, 10.1016/j.gloplacha.2016.06.007.CrossRefGoogle Scholar
Čejka, T., Nývlt, D., Kopalová, K., Bulínová, M., Kavan, J., Lirio, J.M., et al. 2020. Timing of the neoglacial onset on the north-eastern Antarctic Peninsula based on lacustrine archive from Lake Anónima, Vega Island. Global and Planetary Change, 184, 10.1016/j.gloplacha.2019.103050.CrossRefGoogle Scholar
Chaparro, M.A.E., Chaparro, M.A.E., Córdoba, F.E., Lecomte, K.A., Gargiulo, J.D., Barrios, A.M., et al. 2017. Sedimentary analysis and magnetic properties of Lake Anónima, Vega Island. Antarctic Science, 29, 10.1017/S0954102017000116.CrossRefGoogle Scholar
Chernos, M., Koppes, M. & Moore, R.D. 2016. Ablation from calving and surface melt at lake-terminating Bridge Glacier, British Columbia, 1984–2013. The Cryosphere, 10, 10.5194/tc-10-87-2016.CrossRefGoogle Scholar
Doran, P.T., McKay, C.P., Fountain, A.G., Nylen, T., McKnight, D.M., Jaros, C. & Barrett, J.E. 2008. Hydrologic response to extreme warm and cold summers in the McMurdo Dry Valleys, East Antarctica. Antarctic Science, 20, 10.1017/S0954102008001272.CrossRefGoogle Scholar
Drushel, H.V. 1977. Determination of nitrogen in petroleum fractions by combustion with chemiluminescent detection of nitric oxide. Analytical Chemistry, 49, 932939.CrossRefGoogle Scholar
Engel, Z., Láska, K., Nývlt, D. & Stachoň, Z. 2018. Surface mass balance of small glaciers on James Ross Island, north-eastern Antarctic Peninsula, during 2009–2015. Journal of Glaciology, 64, 10.1017/jog.2018.17.CrossRefGoogle Scholar
Foreman, C.M., Wolf, C.F. & Priscu, J.C. 2004. Impact of episodic warming events on the physical, chemical and biological relationships of lakes in the McMurdo Dry Valleys, Antarctica. Aquatic Geochemistry, 10, 239268.CrossRefGoogle Scholar
Gonzales, S. & Fortuny, D. 2018. How robust are the temperature trends on the Antarctic Peninsula? Antarctic Science, 30, 10.1017/S0954102018000251.Google Scholar
Heywood, R.B. 1977. A limnological survey of the Ablation Point area, Alexander Island, Antarctica. Philosophical Transactions of the Royal Society, B279, 3954.Google Scholar
Hrbáček, F., Kňažková, M., Nývlt, D., Láska, K., Mueller, C.W. & Ondruch, J. 2017. Active layer monitoring at CALM-S site near J.G.Mendel Station, James Ross Island, eastern Antarctic Peninsula. Science of the Total Environment, 601–602, 10.1016/j.scitotenv.2017.05.266.Google Scholar
Kavan, J. 2017. Water temperature regime of selected lakes on James Ross Island during 2015 austral summer. Czech Polar Reports, 7, 10.5817/CPR2017-1-9.CrossRefGoogle Scholar
Kavan, J., Nývlt, D., Láska, K., Engel, Z. & Kňažková, M. 2020. High-latitude dust deposition in snow on the glaciers of James Ross Island, Antarctica. Earth Surface Processes and Landforms, 45, 10.1002/esp.4831.CrossRefGoogle Scholar
Kavan, J., Ondruch, J., Nývlt, D., Hrbáček, F., Carrivick, J.L. & Láska, K. 2017. Seasonal hydrological and suspended sediment transport dynamics in proglacial streams, James Ross Island, Antarctica. Geografiska Annaler - Physical Geography, 99A, 10.1080/04353676.2016.1257914.Google Scholar
Košler, J., Magna, T., Mlčoch, B., Mixa, P., Nývlt, D. & Holub, F. 2009. Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chemical Geology, 258, 10.1016/j.chemgeo.2008.10.006.CrossRefGoogle Scholar
Laybourn-Parry, J. & Pearce, D.A. 1997. The biodiversity and ecology of Antarctic lakes: models for evolution. Philosophical Transactions of the Royal Society, B362, 10.1098/rstb.2006.1945.Google Scholar
Lecomte, K.L., Vignoni, P.A., Córdoba, F.E., Chaparro, M.A.E., Chaparro, M.A.E., Kopalová, K., et al. 2016. Hydrological systems from the Antarctic Peninsula under climate change: James Ross archipelago as study case. Environmental Earth Sciences, 75, 10.1007/s12665-016-5406-y.CrossRefGoogle Scholar
Marinsek, S. & Ermolin, E. 2015. 10 year mass balance by glaciological and geodetic methods of Glaciar Bahía del Diablo, Vega Island, Antarctic Peninsula. Annals of Glaciology, 56, 10.3189/2015AoG70A958.CrossRefGoogle Scholar
Moreno, L., Silva-Busso, A., Lopez-Martinez, J., Duran-Valsero, J.J., Martinez-Navarrete, C., Cuchi, J.A. & Ermolin, E. 2012. Hydrogeochemical characteristics at Cape Lamb, Vega Island, Antarctic Peninsula. Antarctic Science, 24, 10.1017/S0954102012000478.CrossRefGoogle Scholar
Murphy, J. & Riley, J.P. 1962. A modified single-solution method for the determination of phosphorus in natural waters. Analytica Chimica Acta, 27, 3136.CrossRefGoogle Scholar
Nedbalová, L., Nývlt, D., Kopáček, J., Šobr, M. & Elster, J. 2013. Freshwater lakes of Ulu Peninsula, James Ross Island, north-east Antarctic Peninsula: origin, geomorphology and physical and chemical limnology. Antarctic Science, 25, 10.1017/S0954102012000934.CrossRefGoogle Scholar
Oliva, M., Antoniades, D., Giralt, S., Granados, I., Pla-Rabes, S., Toro, M., et al. 2016. The Holocene deglaciation of the Byers Peninsula (Livingston Island, Antarctica) based on the dating of lake sedimentary records. Geomorphology, 261, 10.1016/j.geomorph.2016.02.029.CrossRefGoogle Scholar
Oliva, M., Navarro, F., Hrbáček, H., Hernández, A., Nývlt, D., pereira, P., et al. 2017. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Science of the Total Environment, 580, 10.1016/j.scitotenv.2016.12.030.CrossRefGoogle ScholarPubMed
Purdie, H., Bealing, P., Tidey, E., Gomez, C. & Harrison, J. 2016. Bathymetric evolution of Tasman Glacier terminal lake, New Zealand, as determined by remote surveying techniques. Global and Planetary Change, 147, 10.1016/j.gloplacha.2016.10.010.CrossRefGoogle Scholar
Quayle, W.C, Peck, L.S., Peat, H., Ellis-Evans, J.C. & Harrigan, P.R. 2002. Extreme responses to climate change in Antarctic lakes. Science, 295, 10.1126/science.1064074.CrossRefGoogle ScholarPubMed
Roman, M., Nedbalová, L., Kohler, T.J., Lirio, J.M., Coria, S.H., Kopáček, J., et al. 2019. Lacustrine systems of Clearwater Mesa (James Ross Island, northeastern Antarctic Peninsula): geomorphological setting and limnological characterization. Antarctic Science, 31, 10.1017/S0954102019000178.CrossRefGoogle Scholar
Ruiz-Fernández, J., Oliva, M., Nývlt, D., Cannone, N., García-Hernandéz, C., Guglielmin, M., et al. 2019. Patterns of spatio-temporal paraglacial response in the Antarctic Peninsula region and associated ecological implications. Earth-Science Reviews, 192, 10.1016/j.earscirev.2019.03.014.CrossRefGoogle Scholar
Seehaus, T., Cook, A.J., Silva, A.B. & Braun, M. 2018. Changes in glacier dynamics in the northern Antarctic Peninsula since 1985. The Cryosphere, 12, 10.5194/tc-12-577-2018.CrossRefGoogle Scholar
Shevnina, E. & Kourzeneva, E. 2017. Thermal regime and components of water balance of lakes in Antarctica at the Fildes peninsula and the Larsemann Hills. Tellus A: Dynamic Meteorology and Oceanography, 69, 10.1080/16000870.2017.1317202.CrossRefGoogle Scholar
Smellie, J.L., Johnson, J.S. & Nelson, A.E. 2013. Geological map of James Ross Island 1. James Ross Island Volcanic Group (1:125 000 scale). British Antarctic Survey GEOMAP 2 Series, sheet 5. Cambridge: British Antarctic Survey.Google Scholar
Smellie, J.L., Johnson, J.S., McIntosh, W.C., Esser, R., Gudmundsson, M.T., Hambrey, M.J. & van Wik de Vries, B. 2008. Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeography Palaeoclimatology Palaeoecology, 260, 10.1016/j.palaeo.2007.08.011.CrossRefGoogle Scholar
Terauds, A. & Lee, J.R. 2016. Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Diversity and Distributions, 22, 10.1111/ddi.12453.CrossRefGoogle Scholar
Toner, J.D., Catling, D.C. & Sletten, R.S. 2017. The geochemistry of Don Juan Pond: evidence for a deep groundwater flow system in Wright Valley, Antarctica. Earth and Planetary Science Letters, 474, 10.1016/j.epsl.2017.06.039.CrossRefGoogle Scholar
Toro, M., Camacho, A., Rochera, C., Roco, E., Banon, M., Fernandez-Valiente, E., et al. 2007. Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime Antarctica. Polar Biology, 30, 10.1007/s00300-006-0223-5.CrossRefGoogle Scholar
Truffer, M. & Motyka, R.J. 2016. Where glaciers meet water: subaqueous melt and its relevance to glaciers in various settings. Review of Geophysics, 54, 10.1002/2015RG000494.CrossRefGoogle Scholar
Turner, J., Lu, H., White, I., King, J.C., Phillips, T., Hosking, J.S., et al. 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 10.1038/nature18645.CrossRefGoogle ScholarPubMed
Van Lipzig, N.P.M., King, J.C. & Lachlan-Cope, T. 2004. Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. Journal of Geophysical Research Atmospheres, 109, 10.1029/2004JD004701.CrossRefGoogle Scholar
Van Vliet, M.T.H., Ludwig, F., Zwolsman, J.J.G., Weedon, G. P. & Kabat, P. 2011. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research, 47, 10.1029/2010WR009198.CrossRefGoogle Scholar
Vincent, W.F. & Laybourn-Parry, J. 2008. Polar lakes and rivers. Oxford: Oxford University Press, 327 pp.CrossRefGoogle Scholar
Webster, J., Hawes, I., Downes, M., Timperley, M. & Howard-Williams, C. 1996. Evidence for regional climate change in the recent evolution of a high latitude pro-glacial lake. Antarctic Science, 8, 10.1017/S0954102096000090.CrossRefGoogle Scholar
Wright, A. & Siegert, M. 2012. A fourth inventory of Antarctic subglacial lakes. Antarctic Science, 24, 10.1017/S095410201200048X.CrossRefGoogle Scholar