Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-01T04:13:16.608Z Has data issue: false hasContentIssue false

Saxs Measurement of Morphology and its Relationship to Melting Point Depression in Poly(Beta-Hydroxybutyrate-CO-Beta-Hydroxyvalerate) Random Copolymers

Published online by Cambridge University Press:  06 March 2019

Terry L. Bluhm
Affiliation:
Xerox Research Centre of Canada Mississauga, Ontario, Canada
William J. Orts
Affiliation:
Xerox Research Centre of Canada Mississauga, Ontario, Canada
Robert H. Marchessault
Affiliation:
McGill University Montreal, Quebec, Canada
Get access

Abstract

Small-angle x-ray scattering (SAXS) and wide-angle x-ray diffraction (WAXD) data are used to establish relationships among the degree of crystallinity, melting temperature and lamellar thickness for random copolymers of poly(β-hydroxybutyrate-co-β-hydroxyvaierate) (PHB/V). The morphology of this isodimorphic system is best described by a two phase model consisting of crystalline and amorphous domains having density fluctuations within each domain. The Sanchez-Eby inclusion model is used to predict melting point depression in these materials and, combined with SAXS data, to gain insight into the degree of inclusion of hydroxy valerate units within the polyhydroxybutyrate crystalline domains.

Type
IX. XRD Applications: Detection Levitts, Superconductors, Organics, Minerals
Copyright
Copyright © International Centre for Diffraction Data 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Allegra, G.; Bassi, I.W.; Adv. Polym. Sci, 6, 549 (1969).Google Scholar
2. Bluhm, T. L; Hamer, GTK.; Marchessault, R.H.; Fyfe, C.A.; Veregin, R.P.; Macromolecules, 19, 2861 (1986). b) Bloembergen, S.; HoldenF D. A.; Hamer, G.K.; Bluhm, T. L; Marchessault, R.H.; Macromolecules, 19, 2865 (1986).Google Scholar
3. Mitomo, H.; Barham, P.J.; Keller, A.; Polymer Journal, 19,1241 (1987).Google Scholar
4. Doi, Y.; Tamaki, A.; Kunioka, M.; Soga, K.; Appl, Microbiol. Biotechnol., 28, 330(1988).Google Scholar
5. Holmes, P.A., in Developments in Crystalline Polymers 1988; Basset, D.C. Ed.; Elsevier: New York, Vol.2,Google Scholar
6. Howells, E.R., Chem.lnd., 7, 508 (1982).Google Scholar
7. Flory, P.J., Trans. Fraday Soc, 51, 848 (1955).Google Scholar
8. Sanchez, I. C ; Ebv, R. K,; J. Res. Natl. Bur. Stand. Sect. A 77, 353 (1973).Google Scholar
9. Sanchez, I. C ; Eby, R.K.; Macro molecules, 8, 638 (1975).Google Scholar
10. Ruland, W., Acta. Crystaiiogr., 14,1180(1961).Google Scholar
11. Alexander, L.E., in X ray Diffraction Methods in Polymer Science, Chapter 5, Wiley, New York, NY 1969.Google Scholar
12. Vonk, C.G., J. Appl. Crystallogr., 11, 541 (1978).Google Scholar
13. Ruland, W., J. Appl. Crystallogr., 4, 70 (1971).Google Scholar
14. Helfand, E.; Lauritzen, J.I.; Macromolecules, 6, 631 (1973).Google Scholar
15. Allegra, G., Am. Chem. SocT. Div, Polym. Chem. Polym. Prepr., 29, 615 (1988).Google Scholar