We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This book is designed as per NEP 2020 guidelines and is meant for undergraduate physics students. The text begins with a coverage of kinetic theory and dynamics of ideal gases and then proceeds to discuss real gases. Thereafter the basic formalism, zeroth law, first and second laws of thermodynamics are introduced. It concludes with chapters on thermodynamic potentials and Maxwell's relations as well as classical and quantum theory of black body radiation. Written in a lucid manner, students will require only a prior knowledge of mathematical concepts such as differentiation and integration to understand these topics. Each chapter is divided into sections and subsections for ease of comprehension. Special attention has been paid to the simplification of concepts by providing intermediate steps for difficult derivations. Chapters are supported by a rich pool of practice questions like multiple choice questions, short answer type questions, long answer type questions, and numerical problems.
Adopting a unified mathematical framework, this textbook gives a comprehensive derivation of the rules of continuum physics, describing how the macroscopic response of matter emerges from the underlying discrete molecular dynamics. Covered topics include elasticity and elastodynamics, electromagnetics, fluid dynamics, diffusive transport in fluids, capillary physics and thermodynamics. By also presenting mathematical methods for solving boundary-value problems across this breadth of topics, readers develop understanding and intuition that can be applied to many important real-world problems within the physical sciences and engineering. A wide range of guided exercises are included, with accompanying answers, allowing readers to develop confidence in using the tools they have learned. This book requires an understanding of linear algebra and vector calculus and will be a valuable resource for undergraduate and graduate students in physics, chemistry, engineering and geoscience.
How do mathematicians approach a problem, explore the possibilities, and develop an understanding of a whole area around it? The issue is not simply about obtaining 'the answer'; rather, Beardon explains that a mathematical problem is just one of many related ones that should be simultaneously investigated and discussed at various levels, and that understanding this is a crucial step in becoming a creative mathematician. The book begins with some good advice about procedure, presentation, and organisation that will benefit every mathematician, budding, teaching or practised. In the rest of the book, Beardon presents a series of simple problems, then, through discussion, consideration of special cases, computer experiments, and so on, the reader is taken through these same problems, but at an increasing level of sophistication and generality. Mathematics is rarely a closed book, and seemingly innocent problems, when examined and explored, can lead to results of significance.
Understanding Fluid Flow takes a fresh approach to introducing fluid dynamics, with physical reasoning and mathematical developments inextricably intertwined. The 'dry' fluid dynamics described by potential theory is set within the context of real viscous flows to give fundamental insight into how fluids behave. The book gives a flavour of theoretical, experimental and numerical approaches to analysing fluid flow, and implicitly develops skills in applied mathematical modelling of physical systems. It is supplemented by movies that are freely downloadable.
In this new edition of the standard undergraduate textbook on electricity and magnetism, David Griffiths provides expanded discussions on topics such as the nature of field lines, the crystal ambiguity, eddy currents, and the Thomson kink model. Ideal for junior and senior undergraduate students from physics and electrical engineering, the book now includes many new examples and problems, including numerical applications (in Mathematica) to reflect the increasing importance of computational techniques in contemporary physics. Many figures have been redrawn, while updated references to recent research articles not only emphasize that new discoveries are constantly made in this field, but also help to expand readers' understanding of the topic and of its importance in current physics research.
Rotational motion is of fundamental importance in physics and engineering, and an essential topic for undergraduates to master. This accessible yet rigorous Student's Guide focuses on the underlying principles of rotational dynamics, providing the reader with an intuitive understanding of the physical concepts, and a firm grasp of the mathematics. Key concepts covered include torque, moment of inertia, angular momentum, work and energy, and the combination of translational and rotational motion. Each chapter presents one important aspect of the topic, with derivations and analysis of the fundamental equations supported by step-by-step examples and exercises demonstrating important applications. Much of the book is focused on scenarios in which point masses and rigid bodies rotate around fixed axes, while more advanced examples of rotational motion, including gyroscopic motion, are introduced in a final chapter.
This engaging undergraduate text uses the performance, recording, and enjoyment of music to present basic principles of physics. The narrative lays out specific results from physics, as well as some of the methodology, thought processes, and 'interconnectedness' of physics concepts, results, and ideas. Short chapters start with basic definitions and everyday observations and ultimately work through standard topics, including vibrations, waves, acoustics, and electronics applications. Each chapter includes problems, some of which are suited for longer-term projects, and suggestions for extra reading that guide students toward a deeper understanding of the physics behind music applications. To aid teaching, additional review questions, audio and video clips, and suggestions for class activities are provided online for instructors.
The Ising model provides a detailed mathematical description of ferromagnetism and is widely used in statistical physics and condensed matter physics. In this Student's Guide, the author demystifies the mathematical framework of the Ising model and provides students with a clear understanding of both its physical significance, and how to apply it successfully in their calculations. Key topics related to the Ising model are covered, including exact solutions of both finite and infinite systems, series expansions about high and low temperatures, mean-field approximation methods, and renormalization-group calculations. The book also incorporates plots, figures, and tables to highlight the significance of the results. Designed as a supplementary resource for undergraduate and graduate students, each chapter includes a selection of exercises intended to reinforce and extend important concepts, and solutions are also available for all exercises.
Scientific research is communicated, organized, financed, governed, and evaluated through the process of publication. The result of this process is a highly competitive academic environment that rewards researchers for high volume publication, preferably in high-impact journals, leading to the popularised expression 'publish or perish'. Universities and other scientific institutions are under similar pressure, with their aggregated research output being under constant scrutiny. This innovative text provides a detailed introduction to the origin and development of the scholarly metrics used to measure academic productivity, and the effect they have upon the quality and diversity of scientific research. With its careful attention to both the positive and negative outcomes of research evaluation and their distinct expressions around the globe, The Evaluation Game guides the way to a more grounded understanding of metrics, and the diverse academic cultures they give rise to.
Case Studies in Star Formation offers an overview of our current observational and theoretical understanding in the molecular astronomy of star formation. The book is divided into six sections: the first introduces an overview of star formation and the essential language, concepts and tools specific to molecular astronomy studies. Each subsequent section focuses on individual sources, beginning with a description of large-scale surveys. The volume covers low- and high mass star formation, ionization and photodissociation regions, and concludes with the extragalactic perspective. Conventional textbooks begin with principles, ending with a few convenient examples. Through copious examples, Case Studies reflects the reality of research, which requires the creative matching of ongoing observations to theory and vice-versa, often raising as many questions as answers. This supplementary study guide enables graduate students and early researchers to bridge the gap between textbooks and the wealth of research literature.
The Navier-Stokes equations describe the motion of fluids and are an invaluable addition to the toolbox of every physicist, applied mathematician, and engineer. The equations arise from applying Newton's laws of motion to a moving fluid and are considered, when used in combination with mass and energy conservation rules, to be the fundamental governing equations of fluid motion. They are relevant across many disciplines, from astrophysics and oceanic sciences to aerospace engineering and materials science. This Student's Guide provides a clear and focused presentation of the derivation, significance and applications of the Navier-Stokes equations, along with the associated continuity and energy equations. Designed as a useful supplementary resource for undergraduate and graduate students, each chapter concludes with a selection of exercises intended to reinforce and extend important concepts. Video podcasts demonstrating the solutions in full are provided online, along with written solutions and other additional resources.
Magnetostatics, the mathematical theory that describes the forces and fields resulting from the steady flow of electrical currents, has a long history. By capturing the basic concepts, and building towards the computation of magnetic fields, this book is a self-contained discussion of the major subjects in magnetostatics. Overviews of Maxwell's equations, the Poisson equation, and boundary value problems pave the way for dealing with fields from transverse, axial and periodic magnetic arrangements and assemblies of permanent magnets. Examples from accelerator and beam physics give up-to-date context to the theory. Both complex contour integration and numerical techniques for calculating magnetic fields are discussed in detail with plentiful examples. Theoretical and practical information on carefully selected topics make this a one-stop reference for magnet designers, as well as for physics and electrical engineering undergraduate students. This title, first published in 2016, has been reissued as an Open Access publication on Cambridge Core.
Modern Physics intertwines active learning pedagogy with the material typically covered in an introductory survey, from the basics of relativity and quantum mechanics through recent developments in particle physics and cosmology. The flexible approach taken by the authors allows instructors to easily incorporate as much or as little active learning into their teaching as they choose. Chapters are enhanced by 'Discovery' and 'Active Reading' exercises to guide students through key ideas before or during class, while 'ConcepTests' help check student understanding and stimulate classroom discussions. Each chapter also includes extensive assessment material, with a range of basic comprehension questions, drill and practice calculations, computer-based problems, and explorations of advanced applications. A test bank and interactive animations as well as other support for instructors and students are available online. Students are engaged by an accessible and lively writing style, thorough explanations, 'Math Interludes' which account for varying levels of skill and experience, and advanced topics to further pique their interest in physics.
This advanced undergraduate physics textbook presents an accessible treatment of classical mechanics using plain language and clear examples. While comprehensive, the book can be tailored to a one-semester course. An early introduction of the Lagrangian and Hamiltonian formalisms gives students an opportunity to utilize these important techniques in the easily visualized context of classical mechanics. The inclusion of 321 simple in-chapter exercises, 82 worked examples, 550 more challenging end-of-chapter problems, and 65 computational projects reinforce students' understanding of key physical concepts and give instructors freedom to choose from a wide variety of assessment and support materials. This new edition has been reorganized. Numerous sections were rewritten. New problems, a chapter on fluid dynamics, and brief optional studies of advanced topics such as general relativity and orbital mechanics have been incorporated. Online resources include a solutions manual for instructors, lecture slides, and a set of student-oriented video lectures.
Problem-solving is the cornerstone of all walks of scientific research. Fascinating Problems for Young Physicists attempts to clear the boundaries of seemingly abstract physical laws and their tangible effects through a step-by-step approach to physics in the world around us. It consists of 42 problems with detailed solutions, each describing a specific, interesting physical phenomenon. Each problem is further divided into questions designed to guide the reader through, encouraging engagement with and learning the physics behind the phenomenon. By solving the problems, the reader will be able to discover, for example, what the relation is between the mass of an animal and its expected lifetime, or what the efficiency limit is of wind turbines. Intended for first-year undergraduate students and interested high school students, this book develops inquiry-based scientific practice and enables students to acquire the necessary skills for applying the laws of physics to realistic situations.
This compact yet informative Guide presents an accessible route through Special Relativity, taking a modern axiomatic and geometrical approach. It begins by explaining key concepts and introducing Einstein's postulates. The consequences of the postulates – length contraction and time dilation – are unravelled qualitatively and then quantitatively. These strands are then tied together using the mathematical framework of the Lorentz transformation, before applying these ideas to kinematics and dynamics. This volume demonstrates the essential simplicity of the core ideas of Special Relativity, while acknowledging the challenges of developing new intuitions and dealing with the apparent paradoxes that arise. A valuable supplementary resource for intermediate undergraduates, as well as independent learners with some technical background, the Guide includes numerous exercises with hints and notes provided online. It lays the foundations for further study in General Relativity, which is introduced briefly in an appendix.