We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This text on general relativity and its modern applications is suitable for an intensive one-semester course on general relativity, at the level of a Ph.D. student in physics. Assuming knowledge of classical mechanics and electromagnetism at an advanced undergraduate level, basic concepts are introduced quickly, with greater emphasis on their applications. Standard topics are covered, such as the Schwarzschild solution, classical tests of general relativity, gravitational waves, ADM parametrization, relativistic stars and cosmology, as well as more advanced standard topics like vielbein-spin connection formulation, trapped surfaces, the Raychaudhuri equation, energy conditions, the Petrov and Bianchi classifications and gravitational instantons. More modern topics, including black hole thermodynamics, gravitational entropy, effective field theory for gravity, the PPN expansion, the double copy and fluid-gravity correspondence, are also introduced using the language understood by physicists, without too abstract mathematics, proven theorems, or the language of pure mathematics.
Orbital motions have always been used to test gravitational theories which, from time to time, have challenged the then-dominant paradigms. This book provides a unified treatment for calculating a wide variety of orbital effects due to general relativity and modified models of gravity, to its first and second post-Newtonian orders, in full generality. It gives explicit results valid for arbitrary orbital configurations and spin axes of the sources, without a priori simplifying assumptions on either the orbital eccentricity or inclination. These general results apply to a range of phenomena, from Earth's artificial satellites to the S-stars orbiting the supermassive black hole in the Galactic Centre to binary and triple pulsars, exoplanets, and interplanetary probes. Readers will become acquainted with working out a variety of orbital effects other than the time-honoured perihelion precession, designing their own space-based tests, performing effective sensitivity analyses, and assessing realistic error budgets.
This graduate textbook covers the basic formalism of supergravity, as well as its modern applications, suitable for a focused first course. Assuming a working knowledge of quantum field theory, Part I gives the basic formalism, including on- and off-shell supergravity, the covariant formulation, superspace and coset formulations, coupling to matter, higher dimensions and extended supersymmetry. A wide range of modern applications are introduced in Part II, including string theoretical (T- and U-duality, AdS/CFT, susy and sugra on the worldsheet, superembeddings), gravitational (p-brane solutions and their susy, attractor mechanism, Witten's positive energy theorem) and phenomenological (inflation in supergravity, supergravity no-go theorems, string theory constructions at low energies, minimal supergravity and its susy-breaking). The broader emphasis on applications than competing texts gives Ph.D. students the tools they need to do research that uses supergravity and benefits researchers already working in areas related to supergravity.
Experts Plebański and Krasiński provide a thorough introduction to the tools of general relativity and relativistic cosmology. Assuming familiarity with advanced calculus, classical mechanics, electrodynamics and special relativity, the text begins with a short course on differential geometry, taking a unique top-down approach. Starting with general manifolds on which only tensors are defined, the covariant derivative and affine connection are introduced before moving on to geodesics and curvature. Only then is the metric tensor and the (pseudo)-Riemannian geometry introduced, specialising the general results to this case. The main text describes relativity as a physical theory, with applications to astrophysics and cosmology. It takes the reader beyond traditional courses on relativity through in-depth descriptions of inhomogeneous cosmological models and the Kerr metric. Emphasis is given to complete and clear derivations of the results, enabling readers to access research articles published in relativity journals.
Einstein's theory of gravity can be difficult to introduce at the undergraduate level, or for self-study. One way to ease its introduction is to construct intermediate theories between the previous successful theory of gravity, Newton's, and our modern theory, Einstein's general relativity. This textbook bridges the gap by merging Newtonian gravity and special relativity (by analogy with electricity and magnetism), a process that both builds intuition about general relativity, and indicates why it has the form that it does. This approach is used to motivate the structure of the full theory, as a nonlinear field equation governing a second rank tensor with geometric interpretation, and to understand its predictions by comparing it with the, often qualitatively correct, predictions of intermediate theories between Newton's and Einstein's. Suitable for a one-semester course at junior or senior level, this student-friendly approach builds on familiar undergraduate physics to illuminate the structure of general relativity.
Building on mathematical structures familiar from quantum mechanics, this book provides an introduction to quantization in a broad context before developing a framework for quantum geometry in Matrix Theory and string theory. Taking a physics-oriented approach to quantum geometry, this framework helps explain the physics of Yang–Mills-type matrix models, leading to a quantum theory of space-time and matter. This novel framework is then applied to Matrix Theory, which is defined through distinguished maximally supersymmetric matrix models related to string theory. A mechanism for gravity is discussed in depth, which emerges as a quantum effect on quantum space-time within Matrix Theory. Using explicit examples and exercises, readers will develop a physical intuition for the mathematical concepts and mechanisms. It will benefit advanced students and researchers in theoretical and mathematical physics, and is a useful resource for physicists and mathematicians interested in the geometrical aspects of quantization in a broader context.
Present-day elliptical, spiral and irregular galaxies are large systems made of stars, gas and dark matter. Their properties result from a variety of physical processes that have occurred during the nearly fourteen billion years since the Big Bang. This comprehensive textbook, which bridges the gap between introductory and specialized texts, explains the key physical processes of galaxy formation, from the cosmological recombination of primordial gas to the evolution of the different galaxies that we observe in the Universe today. In a logical sequence, the book introduces cosmology, illustrates the properties of galaxies in the present-day Universe, then explains the physical processes behind galaxy formation in the cosmological context, taking into account the most recent developments in this field. The text ends on how to find distant galaxies with multi-wavelength observations, and how to extract the physical and evolutionary properties based on imaging and spectroscopic data.
Einstein's general theory of relativity can be a notoriously difficult subject for students approaching it for the first time, with arcane mathematical concepts such as connection coefficients and tensors adorned with a forest of indices. This book is an elementary introduction to Einstein's theory and the physics of curved space-times that avoids these complications as much as possible. Its first half describes the physics of black holes, gravitational waves and the expanding Universe, without using tensors. Only in the second half are Einstein's field equations derived and used to explain the dynamical evolution of the early Universe and the creation of the first elements. Each chapter concludes with problem sets and technical mathematical details are given in the appendices. This short text is intended for undergraduate physics students who have taken courses in special relativity and advanced mechanics.
General relativity is a subject that most undergraduates in physics are particularly curious about, but it has a reputation for being very difficult. This book provides as gentle an introduction to general relativity as possible, leading you through the necessary mathematics in order to arrive at important results. Of course, you cannot avoid the mathematics of general relativity altogether, but, using this book, you can gain an appreciation of tensors and differential geometry at a pace you can keep up with. Early chapters build up to a complete derivation of Einstein's Equations, while the final chapters cover the key applications on black holes, cosmology and gravitational waves. It is designed as a coursebook with just enough material to cover in a one-semester undergraduate class, but it is also accessible to any numerate readers who wish to appreciate the power and beauty of Einstein's creation for themselves.
This new graduate textbook adopts a pedagogical approach to contemporary cosmology that enables readers to build an intuitive understanding of theory and data, and of how they interact, which is where the greatest advances in the field are currently being made. Using analogies, intuitive explanations of complex topics, worked examples and computational problems, the book begins with the physics of the early universe, and goes on to cover key concepts such as inflation, dark matter and dark energy, large‑scale structure, and cosmic microwave background. Computational and data analysis techniques, and statistics, are integrated throughout the text, particularly in the chapters on late-universe cosmology, while another chapter is entirely devoted to the basics of statistical methods. A solutions manual for end-of-chapter problems is available to instructors, and suggested syllabi, based on different course lengths and emphasis, can be found in the Preface. Online computer code and datasets enhance the student learning experience.
Written by an international leader in the field, this is a coherent and accessible account of the concepts that are now vital for understanding cutting-edge work on supermassive black holes. These include accretion disc misalignment, disc breaking and tearing, chaotic accretion, the merging of binary supermassive holes, the demographics of supermassive black holes, and the defining effects of feedback on their host galaxies. The treatment is largely analytic and gives in-depth discussions of the underlying physics, including gas dynamics, ideal and non-ideal magnetohydrodynamics, force-free electrodynamics, accretion disc physics, and the properties of the Kerr metric. It stresses aspects where conventional assumptions may be inappropriate and encourages the reader to think critically about current models. This volume will be useful for graduate or Masters courses in astrophysics, and as a handbook for active researchers in the field. eBook formats include colour figures while print formats are greyscale only.
The mystery of gravity has captivated us for centuries. But what is gravity and how does it work? This engaging book delves into the bizarre and often counter-intuitive world of gravitational physics. Join distinguished astrophysicist Professor Luciano Rezzolla on this virtual journey into Einstein's world of gravity, with each milestone presenting ever more fascinating aspects of gravitation. Through gentle exposure to concepts such as spacetime curvature and general relativity, you will discover some of the most curious consequences of gravitational physics, such as black holes, neutron stars and gravitational waves. The author presents and explains one of the most impressive scientific achievements of recent times: the first image of a supermassive black hole. Written by one of the key scientists involved in producing these results, you'll get a behind-the-scenes view of how the image was captured and discover what happens to matter and light near a black hole.
First published in 1973, this influential work discusses Einstein's General Theory of Relativity to show how two of its predictions arise: first, that the ultimate fate of many massive stars is to undergo gravitational collapse to form 'black holes'; and second, that there was a singularity in the past at the beginning of the universe. Starting with a precise formulation of the theory, including the necessary differential geometry, the authors discuss the significance of space-time curvature and examine the properties of a number of exact solutions of Einstein's field equations. They develop the theory of the causal structure of a general space-time, and use it to prove a number of theorems establishing the inevitability of singularities under certain conditions. A Foreword contributed by Abhay Ashtekar and a new Preface from George Ellis help put the volume into context of the developments in the field over the past fifty years.
This is a concise introduction to modern astrophysics for physicists, with a focus on galaxy dynamics and the discovery of dark matter halos in galaxies. Part I summarizes important discoveries in observational astronomy and astrophysics, in a manner accessible to those who are new to the topic. Building on this foundation, Part II describes the study of dark matter and provides more detail on galactic dynamics. Important physical concepts that form the basis of key astrophysical phenomena are explained, avoiding unnecessary technicalities and complex derivations. The approach is semi-empirical and emphasizes the importance of key measurements and observations in formulating fundamental theoretical questions and developing their solutions. Students are encouraged to develop a deep understanding of major discoveries and contemporary research topics, beyond the simple application of practical models and formulae, as a bridge to more advanced study in astrophysics.
This volume summarizes the many alternatives and extensions to Einstein's General Theory of Relativity, and shows how symmetry principles can be applied to identify physically viable models. The first part of the book establishes the foundations of classical field theory, providing an introduction to symmetry groups and the Noether theorems. A quick overview of general relativity is provided, including discussion of its successes and shortcomings, then several theories of gravity are presented and their main features are summarized. In the second part, the 'Noether Symmetry Approach' is applied to theories of gravity to identify those which contain symmetries. In the third part of the book these selected models are tested through comparison with the latest experiments and observations. This constrains the free parameters in the selected models to fit the current data, demonstrating a useful approach that will allow researchers to construct and constrain modified gravity models for further applications.
This volume provides a self-contained introduction to applications of loop representations, and the related topic of knot theory, in particle physics and quantum gravity. These topics are of considerable interest because they provide a unified arena for the study of the gauge invariant quantization of Yang-Mills theories and gravity, and suggest a promising approach to the eventual unification of the four fundamental forces. The book begins with a detailed review of loop representation theory and then describes loop representations in Maxwell theory, Yang-Mills theories as well as lattice techniques. Applications in quantum gravity are then discussed, with the following chapters considering knot theories, braid theories and extended loop representations in quantum gravity. A final chapter assesses the current status of the theory and points out possible directions for future research. First published in 1996, this title has been reissued as an Open Access publication on Cambridge Core.
Before matter as we know it emerged, the universe was filled with the primordial state of hadronic matter called quark–gluon plasma. This hot soup of quarks and gluons is effectively an inescapable consequence of our current knowledge about the fundamental hadronic interactions: quantum chromodynamics. This book covers the ongoing search to verify the prediction experimentally and discusses the physical properties of this novel form of matter. It begins with an overview of the subject, followed by a discussion of experimental methods and results. The second half of the book covers hadronic matter in confined and deconfined form, and strangeness as a signature of the quark-gluon phase. It is ideal as an introduction for graduate students, as well as providing a valuable reference for researchers already working in this and related fields. This title, first published in 2002, has been reissued as an Open Access publication on Cambridge Core.
This book offers a systematic exposition of conformal methods and how they can be used to study the global properties of solutions to the equations of Einstein's theory of gravity. It shows that combining these ideas with differential geometry can elucidate the existence and stability of the basic solutions of the theory. Introducing the differential geometric, spinorial and PDE background required to gain a deep understanding of conformal methods, this text provides an accessible account of key results in mathematical relativity over the last thirty years, including the stability of de Sitter and Minkowski spacetimes. For graduate students and researchers, this self-contained account includes useful visual models to help the reader grasp abstract concepts and a list of further reading, making this an ideal reference companion on the topic. This title, first published in 2016, has been reissued as an Open Access publication on Cambridge Core.
After more than half a century since their unexpected discovery and identification as neutron stars, the observation and understanding of pulsars touches upon many areas of astronomy and astrophysics. The literature on pulsars is vast and the observational techniques used now cover the whole of the electromagnetic spectrum from radio to gamma-rays. Now in its fifth edition, this volume has been reorganised and features new material throughout. It provides an introduction in historical and physical terms to the many aspects of neutron stars, including condensed matter, physics of the magnetosphere, supernovae and the development of the pulsar population, propagation in the interstellar medium, binary stars, gravitation and general relativity. The current development of a new generation of powerful radio telescopes, designed with pulsar research in mind, makes this survey and guide essential reading for a growing body of students and astronomers.
The author – a leading theoretical cosmologist – expands on his widely acclaimed lecture notes in this self-contained textbook, suitable for the advanced undergraduate or starting graduate level. Presenting the key theoretical foundations of cosmology and describing the observations that have turned the subject into a precision science, the author keeps the student in mind on every page by explaining concepts step-by-step, in an approachable manner. After describing the dynamics of the homogeneous universe, the book traces the evolution of small density fluctuations, which were created quantum-mechanically during inflation and are today observed in the cosmic microwave background and the large-scale structure of the universe. The book is ideally suited as a course companion or for self-study. With all necessary background material covered, students have everything they need to establish an unrivalled understanding of the subject. Complete with many worked examples, figures, and homework problems, this textbook is a definitive resource for advanced students in physics, astronomy and applied mathematics.