Skip to main content Accessibility help
×
  • Cited by 26
Publisher:
Cambridge University Press
Online publication date:
June 2012
Print publication year:
2011
Online ISBN:
9780511973932

Book description

Written with undergraduate students in mind, the new edition of this classic textbook provides a compact introduction to the physiology of nerve and muscle. It gives a straightforward account of the fundamentals accompanied by some of the experimental evidence upon which this understanding is based. It first explores the nature of nerve impulses, clarifying their mechanisms in terms of ion flow through molecular channels in cell membranes. There then follows an account of the synaptic transmission processes by which one excitable cell influences activity in another. Finally, the emphasis turns to the consequences of excitable activity in the activation of contraction in skeletal, cardiac and smooth muscle, highlighting the relationships between cellular structure and function. This fourth edition includes new material on the molecular nature of ion channels, the activation of skeletal muscle and the function of cardiac and smooth muscle, reflecting exciting new developments in these rapidly growing fields.

Reviews

'Huang has taken on the mammoth task of bringing the book up to date and has succeeded in maintaining the enthusiastic and eminently readable approach of Keynes and Aidley who created one of the greatest physiology books covering the crucial areas of nerve and muscle. The fascinating historical perspective on the discovery of membrane potentials, the transmission of nerve impulses and their molecular basis is essential reading for students of medicine and physiology with a curiosity about scientific methods, and progress. … The new edition shows how the important discoveries in the twentieth century remain central today, and the book provides the groundwork for the enormous and exciting task that still lies ahead, namely the understanding of how nerve transmission in the central nervous system is integrated to achieve the higher functions of the human brain, memory, learning and consciousness.'

Michael A. Ferenczi - Imperial College London

'This book is a beautifully written gem. It is clearly illustrated, and it makes one of the most difficult areas of biology completely accessible. It should find its way onto the bookshelves of electrophysiologists everywhere and any students who aspire to master one of the most exciting areas of modern biology.'

Denis Noble - University of Oxford

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Further reading
References
Adrian, R. H. and Peachey, L. D. (1983). Skeletal muscle. Handbook of Physiology, Section 10. Bethesda, MD: American Physiological Society.
Aidley, D. J. (1998). The Physiology of Excitable Cells, 4th edn. Cambridge: Cambridge University Press.
Aidley, D. J. and Stanfield, P. R. (1996). Ion Channels: Molecules in Action. Cambridge: Cambridge University Press.
Bagshaw, C. R. (1993). Muscle Contraction, 2nd edn. London: Chapman & Hall.
Bers, D. M. (1991). Excitation Contraction Coupling and Cardiac Contractile Force. Dordrecht: Kluwer.
Brown, H. and Kozlowski, R. (1997). Physiology and Pharmacology of the Heart. Oxford: WileyBlackwell.
Gussak, I. and Antzelevich, C. (2003). Cardiac Repolarization: Bridging Basic and Clinical Science. Totowa, NJ: Humana Press, Inc.
Hille, B. (2001). Ionic Channels of Excitable Membranes, 3rd edn. Sunderland, Massachusetts: Sinauer Associates.
Hodgkin, A. L. (1992). Chance and Design. Cambridge: Cambridge University Press.
Huang, C. L-H. (1994). Intramembrane Charge Movements in Striated Muscle. Oxford: Oxford University Press.
Kao, C. Y. and Carsten, M. E. (2005). Cellular Aspects of Smooth Muscle Function. Cambridge: Cambridge University Press.
Keynes, R. D. (1994). The kinetics of voltage-gated ion channels. Q. Rev. Biophys. 27, 339–434.
Koeppen, B. M. and Stanton, B. A. (2009). Berne & Levy: Principles of Physiology, 6th edn. New York: Mosby, 848pp.
Lei, M., Grace, A. A. and Huang, C. L-H. (eds.) (2008). Double focus issue: Translational models for cardiac arrhythmogenesis. Prog. in Biophys. Molec. Biol. 98 [ed. D. Noble and T. Blundell]. Theme double issue.
Nicholls, C. G., Fuchs, P. A., Martin, A. R. and Wallace, B (2001). From Neuron to Brain: Cellular Approach to the Function of the Nervous System, 3rd edn. Sunderland, MA: Sinauer Associates Inc.
Noble, D. (1984). The Initiation of the Heartbeat, 3rd edn. Oxford: Oxford University Press.
Noble, D. (2008). The Music of Life: Biology Beyond Genes. Oxford: Oxford University Press.
Sugi, H. (2004). Molecular and Cellular Aspects of Muscle Contraction (Advances in Experimental Medicine and Biology). New York: Springer.
Zipes, D. P. and Jalife, J. (2004). Cardiac Electrophysiology: From Cell to Bedside. 4th edn. Philadelphia, PA: Saunders.
Adrian, E. D. and Lucas, K. (1912). On the summation of propagated disturbances in nerve and muscle. J. Physiol., Lond. 44, 68–124.
Adrian, R.H. and Almers, W. (1976a). The voltage dependence of membrane capacity. J. Physiol., Lond. 254, 317–338.
Adrian, R.H. and Almers, W. (1976b). Charge movement in the membrane of striated muscle. J. Physiol., Lond. 254, 339–360.
Adrian, R. H. and Bryant, S. H. (1974). On the repetitive discharge in myotonic muscle fibres. J. Physiol. 240, 505–515.
Adrian, R. H. and Peachey, L.D. (1973). Reconstruction of the action potential of frog sartorius muscle. J. Physiol. 235, 103–131.
Ahern, C. A. and Horn, R. (2005). Focused electric field across the voltage sensor of potassium channels. Neuron 48, 25–29.
Aidley, D. J. (1998). The Physiology of Excitable Cells, 4th edn. Cambridge: Cambridge University Press.
Allen, D. G., Lamb, G. D. and Westerblad, H. (2008). Skeletal muscle fatigue: cellular mechanisms. Physiol. Rev. 88, 287–332.
Armstrong, C. M. and Bezanilla, F. M. (1973). Current related to the movement of the gating particle of the sodium channels. Nature 242, 459–461.
Ashley, C. C. and Ridgeway, E. B. (1968). Simultaneous recording of membrane potential, calcium transient and tension in single muscle fibres. Nature 219, 1168–1169.
Bagshaw, C. R. (1993). Muscle Contraction, 2nd edn. London: Chapman & Hall.
Baker, P. F., Hodgkin, A. L. and Shaw, T. I. (1962). The effect of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J. Physiol. 164, 355–374.
Barnard, E. A., Miledi, R. and Sumikawa, K. (1982). Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. R. Soc. Lond. B215, 241–246.
Block, B. A., Imagawa, T., Campbell, K. P. and Franzini-Armstrong, C. (1988). Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol. 107, 2587–2600.
Boyle, P. J. and Conway, E. J. (1941). Potassium accumulation in muscle and associated changes. J. Physiol. 100, 1–63.
Brock, L. G., Coombs, J. S. and Eccles, J. C. (1952). The recording of potentials from motoneurones with an intracellular electrode. J. Physiol. 117, 431–460.
Broomand, A. and Elinder, F. (2008). Large-scale movement within the voltage-sensor paddle of a potassium channel-support for a helical-screw motion. Neuron 59, 770–777.
Bülbring, E. (1979). Post junctional adrenergic mechanisms. Brit. Med. Bull. 35, 285–294.
Buller, A. J. (1975). The Contractile Behaviour of Mammalian Skeletal Muscle (Oxford Biology Reader No. 36). London: Oxford University Press.
Cain, D. F., Infante, A. A. and Davies, R. E. (1962). Chemistry of muscle contraction. Adenosine triphosphate and phosphoryl creatine as energy supplies for single contractions of working muscle. Nature 196, 214–217.
Caldwell, P. C., Hodgkin, A. L., Keynes, R. D. and Shaw, T. I. (1960). The effects of injecting ‘energy-rich’ phosphate compounds on the active transport of ions in the giant axons ofLoligo. J. Physiol. 152, 561–590.
Caldwell, P. C. and Keynes, R. D. (1957). The utilization of phosphate bond energy for sodium extrusion from giant axons. J. Physiol. 137, 12–13P.
Catterall, W. A. (1986). Molecular properties of voltage-sensitive sodium channels. Ann. Rev. Biochem. 55, 953–985.
Catterall, W. A. (1992). Cellular and molecular biology of voltage-gated ion channels. Physiol. Rev. 72, S15–S48.
Catterall, W. A. (2001). A one-domain voltage-gated sodium channel in bacteria. Science 294, 2306–2308.
Chandler, W. K. and Meves, H. (1970). Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. J. Physiol. 211, 653–678.
Clausen, T. (2003). Na+-K+ pump regulation and skeletal muscle contractility. Physiol. Rev. 83, 1269–1324.
Cole, K. S. and Curtis, H. J. (1939). Electric impedance of the squid giant axon during activity. J. Gen. Physiol. 22, 649–670.
Colquhoun, D. and Sakmann, B. (1985). Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol. 369, 501–557.
Conway, E. J. (1957). Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle. Physiol. Rev. 37, 84–132.
Coombs, J. S., Eccles, J. C. and Fatt, P. (1955a). Excitatory synaptic action in motoneurones. J. Physiol. 130, 374–395.
Coombs, J. S., Eccles, J. C. and Fatt, P. (1955b). The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory postsynaptic potential. J. Physiol. 130, 326–373.
Dale, H. H., Feldburg, W. and Vogt, M. (1936). Release of acetylcholine at voluntary motor nerve endings. J. Physiol. 86, 353–380.
Davson, H. and Danielli, J. F. (1943). The Permeability of Natural Membranes. Cambridge: Cambridge University Press.
del Castillo, J. and Katz, B. (1954). Quantal components of the end-plate potential. J. Physiol. 124, 560–573.
del Castillo, J. and Katz, B. (1955). On the localization of acetylcholine receptors. J. Physiol. 128, 157–181.
del Castillo, J. and Moore, J. W. (1959). On increasing the velocity of a nerve impulse. J. Physiol. 148, 665–670.
DiFrancesco, D. (1993). Pacemaker mechanisms in cardiac tissue. Ann. Rev. Physiol. 55, 455–472.
DiFrancesco, D. and Noble, D. (1985). A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil. Trans. R. Soc. Lond. B307, 353–398.
Doyle, D. A., Cabral, J. M., Pfuetzen, R. A. et al. (1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77.
Eccles, J. C. (1964). The Physiology of Synapses. Berlin: Springer Verlag.
Einthoven, W. (1924). The string galvanometer and measurement of the action currents of the heart. Nobel Lecture. Republished in 1965 in Nobel Lectures, Physiology or Medicine 1921–41. Amsterdam: Elsevier.
Emslie-Smith, D., Paterson, C.R., Scratcherd, T. and Read, N.W. (1988). Textbook of Physiology, 11th edn. Edinburgh: Churchill-Livingstone.
Erlanger, J. and Gasser, H. S. (1937). Electrical Signs of Nervous Activity. Philadelphia: University of Pennsylvania Press.
Fatt, P. and Katz, B. (1951). An analysis of the end-plate potential recorded with an intracellular electrode. J. Physiol. 115, 320–369.
Fatt, P. and Katz, B. (1952). Spontaneous subthreshold activity at motor nerve endings. J. Physiol. 117, 109–128.
Fawcett, D.W. and McNutt, N. S. (1969). The ultrastructure of cat myocardium. I. Ventricular papillary muscle. J. Cell Biol. 42, 1–45.
Ferenczi, E. A., Fraser, J. A., Chawla, S.et al. (2004). Membrane potential stabilization in amphibian skeletal muscle fibres in hypertonic solutions. J. Physiol. 555, 423–438.
Frankenhaeuser, B. and Hodgkin, A. L. (1957). The action of calcium on the electrical properties of squid axons. J. Physiol. 137, 218–244.
Franzini-Armstrong, C. and Jorgensen, A. O. (1994). Structure and development of e–c coupling units in skeletal muscle. Ann. Rev. Physiol. 56, 509–534.
Fraser, J. A. and Huang, C. L.-H. (2004). A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells. J. Physiol. 559, 459–478.
Fraser, J. A. and Huang, C. L.-H. (2007). Quantitative techniques for steady-state calculation and dynamic integrated modelling of membrane potential and intracellular ion concentrations. Prog. Biophys. Mol. Biol. 94, 336–372.
Fraser, J. A., Middlebrook, C. E., Usher-Smith, J. A., Schweining, C. J. and Huang, C. L.-H. (2005). The effect of intracellular acidification on the relationship between cell volume and membrane potential in amphibian skeletal muscle. J. Physiol. 563, 745–764.
Fraser, J. A., Skepper, J. N., Hockaday, A. R. and Huang, C. L.-H. (1998). The tubular vacuolation process in amphibian skeletal muscle. J. Musc. Res. Cell Motility 19, 613–629.
Gordon, A. M., Huxley, A. F. and Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184, 170–192.
Gulbis, J. M. and Doyle, D. A. (2004). Potassium channel structures: do they conform? Curr. Opin. Struct. Biol. 14, 440–446.
Gussak, I. and Antzelevich, C (2003). Cardiac Repolarization: Bridging Basic and Clinical Science. Totowa NJ: Humana Press Inc.
Guy, H. R. (1988). A model relating the structure of the sodium channel to its functions. Curr. Topics Membr. Transp. 33, 289–308.
Hamill, O. P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100.
Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B126, 136–195.
Hill, A. V. (1950a). A challenge to biochemists. Biochim. Biophys. Acta 4, 4–11.
Hill, A. V. (1950b). The dimensions of animals and their muscular dynamics. Sci. Prog. Lond. 38, 209–230.
Hill, A. V. and Hartree, W. (1920). The four phases of heat production of muscle. J. Physiol. 54, 84–128.
Hille, B. (1971). The hydration of sodium ions crossing the nerve membrane. Proc. Nat. Acad. Sci. USA. 68, 280–282.
Hodgkin, A. L. (1939). The relation between conduction velocity and the electrical resistance outside a nerve fibre. J. Physiol. 94, 560–70.
Hodgkin, A. L. (1951). The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26, 339–409.
Hodgkin, A. L. (1958). Ionic movements and electrical activity in giant nerve fibres. Proc. R. Soc. Lond. B148, 1–37.
Hodgkin, A. L. (1975). The optimum density of sodium channels in an unmyelinated nerve. Phil. Trans. R. Soc. Lond. B270, 297–300.
Hodgkin, A. L. and Horowicz, P. (1957). The differential action of hypertonic solutions on the twitch and action potential of a muscle fibre. J. Physiol. 136, 17–18P.
Hodgkin, A. L. and Horowicz, P. (1959). The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. 148, 127–160.
Hodgkin, A. L. and Horowicz, P. (1960). Potassium contractures in single muscle fibres. J. Physiol. 153, 386–403.
Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544.
Hodgkin, A. L., Huxley, A. F. and Katz, B. (1952). Measurement of current voltage relations in the membrane of the giant axon ofLoligo. J. Physiol. 116, 424–448.
Hodgkin, A. L. and Katz, B. (1949). The effects of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108, 37–77.
Hodgkin, A. L. and Keynes, R. D. (1955a). Active transport of cations in giant axons from, Sepia and Loligo. J. Physiol. 128, 28–60.
Hodgkin, A. L. and Keynes, R. D. (1955b). The potassium permeability of a giant nerve fibre. J. Physiol. 128, 61–88.
Hoffman, B.F. and Cranefield, P.F. (1960). Electrophysiology of the Heart. New York: McGrawHill.
Homsher, E. (1987). Muscle enthalpy production and its relationship to actomyosin ATPase. Ann. Rev. Physiol. 49, 673–690.
Huang, C.L.-H. (1982). Pharmacological separation of charge movement components in frog skeletal muscle. J. Physiol. 324, 375–387.
Huang, C. L.-H. (1990). Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle. J. Gen. Physiol. 96, 535–557.
Huang, C.L.-H. (1994) Charge conservation in intact frog skeletal muscle fibres in gluconate-containing solutions. J. Physiol. 474, 161–171.
Huang, C. L.-H. (1996). Kinetic isoforms of intramembrane charge in intact amphibian striated muscle. J. Gen. Physiol. 107, 515–534.
Huang, C. L.-H. (1998). The influence of caffeine on intramembrane charge movements in intact frog striated muscle. J. Physiol. 512, 707–721.
Huang, C. L.-H. and Peachey, L. D. (1989). The anatomical distribution of voltage-dependent membrane capacitance in frog skeletal muscle fibres. J. Gen. Physiol. 93, 565–584.
Huxley, A. F. and Niedergerke, R. (1954). Structural changes in muscle during contraction. Interference microscopy of living muscle fibres. Nature 173, 971–973.
Huxley, A. F. and Stämpfli, R. (1949). Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. 108, 315–339.
Huxley, A. F. and Taylor, R. E. (1958). Local activation of striated muscle fibres. J. Physiol. 144, 426–441.
Huxley, H. E. (1963). Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. Mol. Biol. 7, 281–308.
Huxley, H. E. (1976). The structural basis of contraction and regulation in skeletal muscle. In Molecular Basis of Motility, ed. Heilmeyer, L. M. G. Jr, Ruegg, J. C. and Wieland, Th.. Berlin: Springer-Verlag.
Huxley, H. E. (1990). Sliding filaments and molecular motile systems. J. Biol. Chem. 265, 8347–8350.
Huxley, H. E. and Hanson, J. (1954). Change in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173, 973–976.
Jiang, Y., Lee, A., Chen, J. et al. (2003). X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41.
Kato, G. (1936). On the excitation, conduction, and narcotization of single nerve fibers. Cold Spr. Harb. Symp. Quant. Biol. 4, 202–213.
Katz, B. and Miledi, R. (1965). The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond. B 161, 483–495.
Katz, B. and Miledi, R. (1967). The timing of calcium action during neuromuscular transmission. J. Physiol. 189, 535–544.
Keynes, R. D. (1951). The ionic movements during nervous activity. J. Physiol. 114, 119–150.
Keynes, R. D. (1963). Chloride in the squid giant axon. J. Physiol. 169, 690–705.
Keynes, R. D. (1994). The kinetics of voltage-gated ion channels. Q. Rev. Biophys. 27, 339–434.
Keynes, R. D. and Elinder, F. (1998a). On the slowly rising phase of the sodium gating current in the squid giant axon. Proc. R. Soc. Lond. B 265, 255–262.
Keynes, R. D. and Elinder, F. (1998b). Modelling the activation, opening, inactivation and reopening of the voltage-gated sodium channel. Proc R. Soc. Lond. B: Biol Sci. 265, 263–270.
Keynes, R. D. and Elinder, F. (1999). The screw-helical voltage gating of ion channels. Proc. R. Soc. Lond. B 266, 843–852.
Keynes, R. D. and Lewis, P. R. (1951). The sodium and potassium content of cephalopod nerve fibres. J. Physiol. 114, 151–182.
Keynes, R. D. and Martins-Ferreira, H. (1953). Membrane potentials in the electroplates of the electric eel. J. Physiol. 119, 315–351.
Keynes, R. D. and Meves, H. (1993). Properties of the voltage sensor for the opening and closing of the sodium channels in the squid giant axon. R. Soc. Lond. B: Biol Sci. 253, 61–68.
Keynes, R. D. and Ritchie, J. M. (1984). On the binding of labelled saxitoxin to the squid giant axon. Proc. R. Soc. Lond. B 222, 147–153.
Keynes, R. D. and Rojas, E. (1973). Characteristics of the sodium gating current in the squid giant axon. J. Physiol. 233, 28–30P
Keynes, R. D. and Rojas, E. (1974). Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J Physiol. 239, 393–434.
Killeen, M. J., Sabir, I. N., Grace, A. A. and Huang, C. L.-H. (2008). Dispersions of repolarization and ventricular arrhythmogenesis: lessons from animal models. Prog. Biophys. Mol. Biol. 98, 219–229.
Koeppen, B. M. and Stanton, B. A. (2009). Berne & Levy: Principles of Physiology, 6th edn. New York: Mosby, 848pp.
Kovacs, L., Rios, E. and Schneider, M. F. (1979). Calcium transients and intramembrane charge movement in skeletal muscle fibres. Nature 279, 391–396.
Kuffler, S. W. (1980). Slow synaptic responses in the autonomic ganglia and the pursuit of a peptidergic transmitter. J. Exp. Biol. 89, 257–286.
Kuffler, S. W. and Yoshikami, D. (1975). The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J. Physiol. 251, 465–482.
Kyte, J. and Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132.
Lamb, J. F., Ingram, C. G., Johnston, I. A. and Pitman, R. M. (1991). Essential Physiology. 3rd edn. Oxford: WileyBlackwell.
Larsson, H. P., Baker, O. S., Dhillon, D. S. and Isacoff, E. Y. (1996). Transmembrane movement of the Shaker K+ channel S4. Neuron 16, 387–397.
Lei, M., Goddard, C., Liu, J.et al. (2005). Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene, SCN5A. J. Physiol. 567, 387–400.
Levy, M. N., Koeppen, B. M and Stanton, B. A. (2005). Berne & Levy: Principles of Physiology, 4th edn. New York: Mosby.
Loewi, O. (1921). Über humorale Übertragbarkeit der Herzner-venwirkung. Pflügers Arch. Ges. Physiol. 189, 239–242.
Makowski, L., Caspar, D. L. D., Phillips, W. C., Baker, T. S. and Goodenough, D. A. (1984). Gap junction structures VI. Variation and conservation in connexon conformation and packing. Biophys. J. 45, 208–218.
Maylie, J., Irving, M., Sizto, N. L. and Chandler, W. K. (1987). Calcium signals recorded from cut frog twitch fibers containing Antipyrylazo III. J. Gen. Physiol. 89, 83–143.
McCleskey, E. W. (1999). Calcium channel permeation: a field in flux. J. Gen. Physiol. 113, 765–772.
Merton, P. A. (1954). Voluntary strength and fatigue. J. Physiol. 128, 553–564.
Merton, P. A., Hill, D. K. and Morton, H. B. (1981). Indirect and direct stimulation of fatigued human muscle. In Human Muscle Fatigue: Physiological Mechanisms, ed. Porter, R. and Whelan, J., pp. 120–126. London: Pitman Medical.
Neher, E. and Sakmann, B. (1976). Single-channel currents recorded from membrane of denervated frog muscle cells. Nature 260, 799–802.
Nielsen, O. B., Paoli, F., and Overgaard, K. (2001). Protective effects of lactic acid on force production in rat skeletal muscle. J. Physiol. 536: 161–166.
Noble, D. (1979). The Initiation of the Heartbeat, 2nd edn. Oxford: Oxford University Press.
Noda, M., Shimizu, S., Tanabe, T.et al. (1984). Primary structure ofElectrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127.
Noda, M., Takahashi, H., Tanabe, T.et al. (1982). Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 279, 793–797.
Offer, G. (1974). The molecular basis of muscular contraction. In Companion to Biochemistry, ed. Bull, A. T., Lagnado, J. R., Thomas, J. O. and Tipton, K. F., pp. 623–671. London: Longman.
Ostrowski, J., Kjelsberg, M. A., Caron, M. G. and Lefkowitz, R. J. (1992). Mutagenesis of the β2-adrenergic receptor: how structure elucidates function. Ann. Rev. Pharmacol. Toxicol. 32, 167–183.
Padmanabhan, N. and Huang, C. L.-H. (1990). Separation of tubular electrical activity in amphibian skeletal muscle through temperature change. Exp. Physiol. 75, 721–724.
Papadatos, G. A., Wallerstein, P. M. R., Head, C. E. G.et al. (2002). Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel Scn5a. Proc. Nat. Acad. Sci. 99, 6210–6215.
Peachey, L. D. (1965). The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J. Cell Biol. 25, 209–232.
Pedersen, T. H, Macdonald, W. A., dePaoli, F. V., Gurung, I. S. and Nielsen, O. B. (2009). Comparison of regulated passive membrane conductance in action potential firing fast and slow-twitch muscle. J. Gen. Physiol. 134, 323–337.
Pedersen, T. H., Nielsen, O. B., Lamb, G. D., and Stephenson, D. G. (2004). Intracellular acidosis enhances the excitability of working muscle. Science 305, 1144–1147.
Porter, K. R. and Palade, G. E. (1957). Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J. Biophys. Biochem. Cytol. 3, 269–300.
Rayment, I. and Holden, H. M. (1994). The three-dimensional structure of a molecular motor. Trends Biochem. Sci. 19, 129–134.
Rayment, I., Smith, C. and Yount, R. G. (1996). The active site of myosin. Ann. Rev. Physiol. 58, 671–702.
Rios, E. and Brum, G. (1987). Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325, 717–720.
Ritchie, J. M. and Rogart, R. B. (1977). The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev. Physiol. Biochem. Pharmacol. 79, 1–50.
Robertson, J. D. (1960). The molecular structure and contact relationships of cell membranes. Prog. Biophys. 10, 343–418.
Rushton, W. A. H. (1933). Lapicque's theory of curarization. J. Physiol. 77, 337–364.
Ryall, R. W. (1979). Mechanisms of Drug Action on the Nervous System. Cambridge: Cambridge University Press.
Scher, A. M. (1965). Electrical correlates of the cardiac cycle. In Physiology and Biophysics, ed. Ruch, T. C. and Patten, H. D.. Philadelphia: Saunders, pp. 565–599.
Schmidt-Nielsen, K. (1990). Animal Physiology, 4th edn. Cambridge: Cambridge University Press.
Schneider, M.F. and Chandler, W. K. (1973). Voltage-dependent charge in skeletal muscle: a possible step in excitation-contraction coupling. Nature 242, 244–246.
Schwartz, L. M., McCleskey, E. W. and Almers, W. (1985). Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature. 314, 747–751.
Sejersted, O. M. and Sjøgård, G. (2000). Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol. Rev. 80, 1411–1481.
Sheikh, S. M., Skepper, J. N., Chawla, S.et al. (2001). Normal conduction of surface action potentials in detubulated amphibian skeletal muscle fibres. J. Physiol. 535, 579–590.
Skou, J. C. (1957). The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23, 394–401.
Skou, J. C. (1998). Nobel Lecture. The identification of the sodium pump. Biosci Rep. 18, 155–169.
Spudich, J. A. (1994). How molecular motors work. Nature 372, 515–518.
Spudich, J. A., Finer, J., Simmons, B.et al. (1995). Myosin structure and function. Cold Spr. Harb. Symp. Quant. Biol. 60, 783–71.
Squire, J. M. (1986). Muscle: Design, Diversity and Disease. Menlo Park, California: Benjamin/Cummings.
Stokoe, K. S., Thomas, G., Goddard, C. A.et al. (2007). Effects of flecainide and quinidine on arrhythmogenic properties of Scn5a+/Δ murine hearts modelling long QT syndrome 3. J. Physiol. 578, 69–84.
Takeshima, H., Nishimura, S., Matsumoto, T.et al. (1989). Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339, 439–445.
Takeuchi, A. and Takeuchi, N. (1959). Active phase of frog's end-plate potential. J. Neurophysiol. 22, 395–411.
Takeuchi, A. and Takeuchi, N. (1960). On the permeability of the end-plate membrane during the action of the transmitter. J. Physiol. 154, 52–67.
Tasaki, I. (1953). Nervous Transmission. Springfield, Illinois: Charles C. Thomas.
Unwin, N. (1993). Nicotinic acetylcholine receptor at 9 Å resolution. J. Mol. Biol. 229, 1101–1124.
Unwin, N. (1995). Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43.
Usher-Smith, J. A., Fraser, J. A., Bailey, P. S. J., Griffin, J. L., and Huang, C. L-H. (2006a). The influence of intracellular lactate and H+ on cell volume in amphibian skeletal muscle. J. Physiol. 573, 799–818.
Usher-Smith, J. A., Huang, C. L.-H. and Fraser, J. A. (2009). Control of cell volume in skeletal muscle. Biol Rev Camb Philos Soc. 84, 143–159.
Usher-Smith, J. A., Skepper, J. N., Fraser, J. A. and Huang, C. L.-H. (2006b). Effect of repetitive stimulation on cell volume and its relationship to membrane potential in amphibian skeletal muscle. Eur. J. Physiol. 452: 231–239.
Weidmann, S. (1956). Elektrophysiologie der Herzmuskelfaser. Huber: Berne.
Whittaker, V. P. (1984). The structure and function of cholinergic synaptic vesicles. Biochem. Soc. Trans. 12, 561–576.
Wilkie, D. R. (1968). Heat work and phosphorylcreatine breakdown in muscle. J. Physiol. 195, 157–183.
Wilkie, D. R. (1976). Energy transformation in muscle. In Molecular Basis of Motility, ed. Heilmeyer, L. M. G. Jr., Ruegg, J. C. and Wieland, Th., pp. 69–80. Berlin: Springer-Verlag.
Yang, N., George, A. L. and Horn, R. (1996). Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113–122.
Zhang, F., Wang, L. P., Boyden, E. S. and Deisseroth, K. (2006). Channelrhodopsin-2 and optical control of excitable cells. Nature Methods. 3, 785–792.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.