Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-03T12:14:43.822Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  16 February 2024

Mai Gehrke
Affiliation:
Université Côte d’Azur
Sam van Gool
Affiliation:
Université Paris Cité
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Topological Duality for Distributive Lattices
Theory and Applications
, pp. 330 - 338
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramsky, S. 1987. Domain theory in logical form. In Proceedings of the Second Annual IEEE Symposium on Logic in Computer Science (LICS 1987). IEEE Computer Society Press, pp. 4753.Google Scholar
Abramsky, S. 1988. A cook’s Tour of the Finitary Non-well-founded Sets. Invited Lecture at BCTCS.Google Scholar
Abramsky, S. 1990. The Lazy Lambda Calculus. Addison-Wesley Longman, pp. 65116.Google Scholar
Abramsky, S. 1991. Domain theory in logical form. Ann. Pur. Appl. Logic, 51(1), 177.Google Scholar
Abramsky, S. and Jung, A. 1994. Domain Theory. Vol. 3. Oxford University Press, pp. 1168.Google Scholar
Abramsky, S. and Ong, C. H. L. 1993. Full abstraction in the lazy lambda calculus. Inf. Comput., 105(2), 159267.Google Scholar
Adámek, J., Herrlich, H., and Strecker, G. E. 1990. Abstract and Concrete Categories: The Joy of Cats. John Wiley and Sons.Google Scholar
Adámek, J. and Rosický, J. 1994. Locally Presentable and Accessible Categories. LMS Lecture Note Series, vol. 189. Cambridge University Press.Google Scholar
Almeida, J. 1991. Implicit operations on finite ℑ -trivial semigroups and a conjecture of I. Simon. J. Pure. Appl. Algebra, 69(3), 205218.CrossRefGoogle Scholar
Almeida, J. 1995. Finite Semigroups and Universal Algebra. World Scientific.Google Scholar
Almeida, J. 2005. Profinite semigroups and applications. In Kudryavtsev, V. B., Rosenberg, I. G., and Goldstein, M. (eds.), Structural Theory of Automata, Semigroups, and Universal Algebra. Springer, pp. 145.Google Scholar
Almeida, J. and Costa, A. 2009. Infinite-vertex free profinite semigroupoids and symbolic dynamics. J. Pure Appl. Algebra, 213, 605631.Google Scholar
Almeida, J. and Weil, P. 1998. Profinite categories and semidirect products. J. Pure Appl. Algebra, 123(1–3), 150.Google Scholar
Almeida, J., Costa, A., Kyriakoglou, R., and Perrin, D. 2020. Profinite Semigroups and Symbolic Dynamics. Lecture Notes in Mathematics, vol. 2274. Springer International.Google Scholar
Almeida, J., Goulet-Ouellet, H., and Klíma, O. 2023. What makes a Stone topological algebra profinite. Algebr. Univ., 84(6).Google Scholar
Amadio, R. M. and Curien, P.-L. 1998. Domains and Lambda-Calculi. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.CrossRefGoogle Scholar
Awodey, S. 2010. Category Theory. 2nd ed. Oxford University Press.Google Scholar
Balbes, R. and Dwinger, P. 1975. Distributive Lattices. University of Missouri Press. (Reprinted by Abstract Space Publishing in 2011).Google Scholar
Banaschewski, B. 1996. Radical ideals and coherent frames. Comment. Math. Univ. Carolin., 37(2), 349370.Google Scholar
Barendregt, H. 2014. The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and the Foundations of Mathematics, 2nd ed., vol. 103. North Holland.Google Scholar
Barendregt, H. and Manzonetto, G. 2022. A Lambda Calculus Satellite. College Publications.Google Scholar
Bekkali, M., Pouzet, M., and Zhani, D. 2007. Incidence structures and Stone–Priestley duality. Ann. Math. Artif. Intel., 49, 2738.Google Scholar
Bezhanishvili, G. 1998. Varieties of monadic Heyting algebras. Part I. Stud. Logica, 61, 367402.Google Scholar
Bezhanishvili, G. 1999. Varieties of monadic Heyting algebras. Part II. Duality theory. Stud. Logica, 62(1), 2148.CrossRefGoogle Scholar
Bezhanishvili, G. 2000. Varieties of monadic Heyting algebras. Part III. Stud. Logica, 64(2), 215256.Google Scholar
Bezhanishvili, G., Bezhanishvili, N., Gabelaia, D., and Kurz, A. 2010. Bitopological duality for distributive lattices and Heyting algebras. Math. Struct. Comp. Sci., 20(3), 359393.Google Scholar
Bezhanishvili, G., Carai, L., and Morandi, P. J. 2022. The Vietoris functor and modal operators on rings of continuous functions. Ann. Pur. Appl. Logic, 173(1), 103029.Google Scholar
Bezhanishvili, N. and Gehrke, M. 2011. Finitely generated free Heyting algebras via Birkhoff duality and coalgebra. Log. Meth. Comput. Sci., 7(2), 124.Google Scholar
Bezhanishvili, N. and Kurz, A. 2007. Free modal algebras: A coalgebraic perspective. In Mossakowski, T., Montanari, U., and Haveraaen, M. (eds.), CALCO 2007. Lecture Notes in Computer Science, vol. 4624. Springer, pp. 143157.Google Scholar
Birkhoff, G. 1933. On the combination of subalgebras. Math. Proc. Cambridge, 29, 441464.Google Scholar
Birkhoff, G. 1967. Lattice Theory. 3rd ed. American Mathematical Society.Google Scholar
Blackburn, P., de Rijke, M., and Venema, Y. 2001. Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press.Google Scholar
Boole, G. 1847. An Investigation of the Laws of Thought. Walton. Reprinted by Philisophical Library, New York, 1954.Google Scholar
Borceux, F. 1994. Handbook of Categorical Algebra 1: Basic Category Theory. Cambridge University Press.Google Scholar
Borceux, F. and Clementino, M. M. 2005. Topological semi-abelian algebras. Adv. Math., 190(2), 425453.Google Scholar
Borlido, C., Gehrke, M., Krebs, A., and Straubing, H. 2020. Difference hierarchies and duality with an application to formal languages. Topol. Appl., 273, 106975.CrossRefGoogle Scholar
Branco, M. J. J. and Pin, J.-E. 2009. Equations defining the polynomial closure of a lattice of regular languages. In Aceto, L., et al. (eds.), ICALP 2009, Part II. Lecture Notes in Computer Science, vol. 5556. Springer, pp. 115126.Google Scholar
Burris, S. and Sankappanavar, H. P. 2000. A Course in Universal Algebra: The Millennium Edition. www.math.uwaterloo.ca/snburris/htdocs/ualg.htmlGoogle Scholar
Caramello, O. 2011. A Topos-Theoretic Approach to Stone-Type Dualities. arXiv:1103.3493.Google Scholar
Caramello, O. 2017. Theories, Sites, Toposes. Oxford University Press.Google Scholar
Celani, S., and Jansana, R. 1999. Priestley duality, a Sahlqvist theorem and a Goldblatt–Thomason theorem for positive modal logic. Log. J. IGPL, 7(6), 683715.CrossRefGoogle Scholar
Celani, S. and Jansana, R. 2005. Bounded distributive lattices with strict implication. Math. Logic. Quart., 51(3), 219246.Google Scholar
Chagrov, A. and Zakharyaschev, M. 1997. Modal Logic. Oxford Logic Guides, vol. 35. Clarendon Press.Google Scholar
Chikhladze, D., Clementino, M. M., and Hofmann, D. 2015. Representable (T, V)-categories. Appl. Categor. Struct., 23(6), 829858.Google Scholar
Cignoli, R. L. O., D’Ottaviano, I. M. L., and Mundici, D. 2000. Algebraic Foundations of Many-Valued Reasoning. Trends in Logic – Studia Logica Library, vol. 7. Kluwer Academic Publishers.CrossRefGoogle Scholar
Clark, D. M. and Davey, B. A. 1998. Natural Dualities for the Working Algebraist. Cambridge Studies in Advanced Mathematics. Cambridge University Press.Google Scholar
Conradie, W., Ghilardi, S., and Palmigiano, A. 2014. Unified Correspondence. Outstanding Contributions to Logic. Springer International, pp. 933975.Google Scholar
Conradie, W. and Palmigiano, A. 2020. Constructive canonicity of inductive inequalities. Log. Meth. Comput. Sci., 16(3), 8:18:39. https://lmcs.episciences.org/6694/pdfGoogle Scholar
Cornish, W. H. 1975. On H. Priestley’s dual of the category of bounded distributive lattices. Matematički Vesnik, 12(27)(60), 329332.Google Scholar
Coumans, D. C. S. and van Gool, S. J.. 2012. On generalizing free algebras for a functor. J. Logic. Comput., 23(3), 645672.Google Scholar
Davey, B. A. and Priestley, H. A. 2002. Introduction to Lattices and Order. 2nd ed. Cambridge University Press.CrossRefGoogle Scholar
Dickmann, M., Schwartz, N., and Tressl, M. 2019. Spectral Spaces. New Mathematical Monographs. Cambridge University Press.Google Scholar
Dimov, G., Ivanova-Dimova, E., and Tholen, W. 2022. Categorical extension of dualities: From Stone to de Vries and beyond. Appl. Categ. Struct., 30, 287329.Google Scholar
Dunn, J. M. and Hardegree, G. 2001. Algebraic Methods in Philosophical Logic. Oxford University Press.Google Scholar
Dzamonja, M. 2008. Representation theorems for connected compact Hausdorff spaces. Sarajevo J. Math., 4(16), 721.Google Scholar
Eilenberg, S. 1974. Automata, Languages, and Machines. Vol. A. Academic Press. Pure and Applied Mathematics, Vol. 59A.Google Scholar
Eilenberg, S. 1976. Automata, Languages, and Machines. Vol. B. Academic Press. Pure and Applied Mathematics, Vol. 59B.Google Scholar
Engelking, R. 1989. General Topology. Sigma Series in Pure Mathematics, vol. 6. Heldermenn Verlag.Google Scholar
Erné, M. 2009. Quasicoherent domains and hyperspectral spaces: A missing link in Stone– Priestley duality. Abstract of a talk given at Topology, Algebra, and Categories in Logic (TACL).Google Scholar
Esakia, L. 1974. Topological Kripke models. Dokl. Akad. Nauk SSSR, 15(1), 147151.Google Scholar
Esakia, L. 2019. Heyting Algebras: Duality Theory. Trends in Logic, vol. 50. Springer. Translation of the Russian 1985 original.Google Scholar
Fleisher, I. 2000. Priestley’s duality from Stone’s. Adv. Appl. Math., 25(3), 233238.Google Scholar
Forssell, H. 2008. First-Order Logical Duality. PhD thesis, Carnegie Mellon University.Google Scholar
Fussner, W. and Palmigiano, A. 2019. Residuation algebras with functional duals. Algebr. Univ., 80(4), 110.Google Scholar
Galatos, N., Jipsen, P., Kowalski, T., and Ono, H. 2007. Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics. Elsevier Science.Google Scholar
Gastin, P., Manuel, A., and Govind, R. 2021. Reversible regular languages: Logical and algebraic characterisations. Fund. Inform., 180(4), 333350.Google Scholar
Gehrke, M. 2014. Canonical extensions, Esakia spaces, and universal models. In Bezhanishvili, G. (ed.), Leo Esakia on Duality in Modal and Intuitionistic Logics. Springer, pp. 941.Google Scholar
Gehrke, M. 2016. Stone duality, topological algebra, and recognition. J. Pure Appl. Algebra, 220(7), 27112747.Google Scholar
Gehrke, M. 2018. Canonical extensions: An algebraic approach to Stone duality. Algebr. Univ., 79(3).Google Scholar
Gehrke, M. and van Gool, S. J.. 2014. Distributive envelopes and topological duality for lattices via canonical extensions. Order, 31(3), 435461.Google Scholar
Gehrke, M., Grigorieff, S., and Pin, J.-E. 2008. Duality and equational theory of regular languages. In Aceto, L. et al. (eds.), ICALP 2008, Part II. Lecture Notes in Computer Science, vol. 5126. Springer, pp. 246257.Google Scholar
Gehrke, M., Grigorieff, S., and Pin, J.-E. 2010. A topological approach to recognition. In Abramsky, S. et al. (eds.), Automata, Languages and Programming (ICALP 2010). Lecture Notes in Computer Science, vol. 6199, no. 2. Springer, pp. 151162.Google Scholar
Gehrke, M. and Jónsson, B. 1994. Bounded distributive lattices with operators. Math. Japon., 40(2), 207215.Google Scholar
Gehrke, M. and Jónsson, B. 2004. Bounded distributive lattice expansions. Math. Scand., 94, 1345.Google Scholar
Gehrke, M., Krebs, A., and Pin, J.-E. 2016. Ultrafilters on words for a fragment of logic. Theor. Comput. Sci., 610(Part A), 3758.Google Scholar
Gehrke, M., Nagahashi, H., and Venema, Y. 2005. A Sahlqvist theorem for distributive modal logic. Ann. Pur. Appl. Logic, 131(1–3), 65102.CrossRefGoogle Scholar
Gehrke, M. and Priestley, H. A. 2006. Duality for distributive quasioperator algebras via their canonical extensions. Stud. Logica, 86(1), 3168.Google Scholar
Gehrke, M. and Priestley, H. A. 2007. Canonical extensions of double quasioperator algebras: An algebraic perspective on duality for certain algebras with binary operations. J. Pure Appl. Algebra, 209(1), 269290.Google Scholar
Gehrke, M., Jakl, T., and Reggio, L. 2023. A cook’s tour of duality in logic: From quantifiers, through Vietoris, to Measures. In Palmigiano, A. and Sadrzadeh, M. (eds.), Samson Abramsky on Logic and Structure in Computer Science and Beyond. Springer, pp. 129158.Google Scholar
Ghilardi, S. 1992. Free Heyting algebras as bi-Heyting algebras. C. R. Math. Rep. Acad. Sci. Canada, 14(6), 240244.Google Scholar
Ghilardi, S. 1995. An algebraic theory of normal forms. Ann. Pur. Appl. Logic, 71, 189245.Google Scholar
Ghilardi, S. 2010. Continuity, freeness, and filtrations. J. Appl. Non-Class. Log., 20(3), 193217.Google Scholar
Gierz, G., Hofmann, K. H., Keimel, K., et al. 1980. A Compendium of Continuous Lattices. Springer-Verlag.Google Scholar
Gierz, G., Hofmann, K. H., Keimel, K., et al. 2003. Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications. Cambridge University Press.Google Scholar
Givant, S. 2014. Duality Theories for Boolean Algebras with Operators. Springer.Google Scholar
Givant, S. and Halmos, P. 2008. Introduction to Boolean Algebras. Undergraduate Texts in Mathematics. Springer-Verlag.Google Scholar
Goldblatt, R. 1989. Varieties of complex algebras. Ann. Pur. Appl. Logic, 44, 173242.Google Scholar
Goldblatt, R., Hodkinson, I., and Venema, Y. 2003. On canonical modal logics that are not elementarily determined. Log. Anal., 181, 77101.Google Scholar
van Gool, S. J.. 2014. On Sheaves and Duality. PhD thesis, Raboud University Nijmegen.Google Scholar
van Gool, S. J., and Marquès, J. 2024. On duality and model theory for polyadic spaces. Ann. Pur. Appl. Logic, 175(2), 103388.Google Scholar
Goubault-Larrecq, J. 2013. Non-Hausdorff Topology and Domain Theory. Cambridge University Press.Google Scholar
Goubault-Larrecq, J. 2019. A probabilistic and non-deterministic call-by-push-value language. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, pp. 113.Google Scholar
Grätzer, G. 2003. General Lattice Theory. 2nd ed. Birkhäuser.Google Scholar
Grätzer, G. 2008. Universal Algebra. 2nd ed. Springer.Google Scholar
Grätzer, G. 2011. Lattice Theory: Foundation. Birkhäuser.Google Scholar
Gunter, C. 1985. Profinite Solutions for Recursive Domain Equations. PhD thesis, University of Wisconsin.Google Scholar
Hart, K. P. and van Mill, J. 2022. Problems on βN. arXiv:2205.11204.Google Scholar
Hausdorff, F. 1914. Grundzüge der Mengenlehre. Veit & Comp. Reprinted by Chelsea Publishing Company in 1949.Google Scholar
Haviar, M. 2019. On selected developments in the theory of natural dualities. Acta Univ. M. Belii Ser. Math., 27, 5978.Google Scholar
Henckell, K. and Pin, J.-E. 2000. Ordered monoids and ℑ -trivial monoids. In Birget, J-C., Margolis, S., Meakin, J., and Sapir, M. (eds.), Algorithmic Problems in Groups and Semigroups (Lincoln, NE, 1998). Trends Math. Birkhäuser, pp. 121137.Google Scholar
Higgins, P. M. 1997. A proof of Simon’s theorem on piecewise testable languages. Theor. Comput. Sci., 178(1–2), 257264.CrossRefGoogle Scholar
Higman, G. 1952. Ordering by divisibility in abstract algebras. Proc. London Math. Soc., 3(1), 326336.Google Scholar
Ho, W. K., Goubault-Larrecq, J., Jung, A., and Xi, X. 2018. The Ho–Zhao problem. Log. Meth. Comput. Sci., 14(1).Google Scholar
Hodkinson, I. and Venema, Y. 2005. Canonical varieties with no canonical axiomatisation. T. Am. Math. Soc., 357, 45794605.Google Scholar
Hoffmann, R.-E. 1981. Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactification. In Banaschewski, B. and Hoffmann, R.-E. (eds.), Continuous Lattices, Proceedings Bremen 1979. Lecture Notes in Mathematics, vol. 871. Springer Verlag, pp. 159208.Google Scholar
Hofmann, K. H. and Lawson, J. D. 1978. The spectral theory of distributive continuous lattices. T. Am. Math. Soc., 246, 285310.Google Scholar
Hofmann, K. H., Mislove, M., and Stralka, A. 1974. The Pontryagin Duality of Compact 0-Dimensional Semilattices and its Applications. Springer.Google Scholar
Hofmann, D. and Nora, P. 2015. Dualities for modal algebras from the point of view of triples. Algebr. Univ., 73, 297320.Google Scholar
Hofmann, D. and Nora, P. 2018. Enriched Stone-type dualities. Adv. Math., 330, 307360.Google Scholar
Hofmann, D. and Nora, P. 2023. Duality theory for enriched Priestley spaces. J. Pure Appl. Algebra, 227(3), 107231.Google Scholar
Hofmann, D., Seal, G. J., and Tholen, W. 2014. Monoidal Topology: A Categorical Approach to Order, Metric, and Topology. Cambridge University Press.CrossRefGoogle Scholar
Hofmann, D. and Stubbe, I. 2011. Towards Stone duality for topological theories. Topol. Appl., 158(7), 913925.Google Scholar
Howard, P. and Rubin, J. E. 1998. Consequences of the Axiom of Choice. American Mathematical Society.Google Scholar
Jech, T. J. 1973. The Axiom of Choice. North Holland.Google Scholar
Jia, X., Jung, A., and Q., Li. 2016. A note on coherence of dcpos. Topology and its Applications, 209, 235238.Google Scholar
Jipsen, P. 2009. Generalizations of Boolean products for lattice-ordered algebras. Ann. Pur. Appl., 161, 228234.CrossRefGoogle Scholar
Johnstone, P. T. 1981. Scott is not always sober. In Banaschewski, B. and Hoffmann, R.-E. (eds.), Continuous Lattices. Lecture Notes in Mathematics, vol. 871. Springer, pp. 282283.Google Scholar
Johnstone, P. T. 1986. Stone Spaces. Cambridge University Press. Reprint of the 1982 ed.Google Scholar
Jónsson, B. and Tarski, A. 1951. Boolean algebras with operators. I. Am. J. Math., 73(4), 891939.Google Scholar
Jónsson, B. and Tarski, A. 1952. Boolean algebras with operators. II. Am. J. Math., 74(1), 127162.Google Scholar
Jung, A. 1989. Cartesian Closed Categories of Domains. Tech. Rept. Amsterdam.Google Scholar
Jung, A. 1990. The classification of continuous domains. In Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, pp. 3540.Google Scholar
Jung, A. 2004. Stably compact spaces and the probabilistic powerspace construction. Electron. Notes Theor. Comput. Sci., 87, 15.Google Scholar
Jung, A. and Moshier, M. A. 2006. On the Bitopological Nature of Stone Duality. Tech. Rept. CSR-06-13. University of Birmingham.Google Scholar
Jung, A. and Sünderhauf, P. 1996. On the duality of compact vs. open. In Andima, S., Flagg, R.C., Itzkowitz, G., et al. (eds.), Papers on General Topology and Applications: Eleventh Summer Conference at the University of Southern Maine. vol. 806. New York Academy of Sciences, pp. 214230.Google Scholar
Jung, A. and Tix, R. 1998. The troublesome probabilistic powerdomain. Electron. Notes Theor. Comput. Sci., 13, 7091.Google Scholar
Kleene, S. C. 1956. Representation of events in nerve nets and finite automata. In Shannon, C. E. and McCarthy, J. (eds.), Automata Studies. Annals of Mathematics Studies, vol. 34. Princeton University Press, pp. 341.Google Scholar
Klíma, O. 2011. Piecewise testable languages via combinatorics on words. Discrete Math., 311(20), 21242127.Google Scholar
Koppelberg, S., Monk, J. D., and Bonnet, R. 1989. Handbook of Boolean Algebras. Vol. 1. North-Holland.Google Scholar
Kupke, C., Kurz, A., and Venema, Y. 2004. Stone coalgebras. Theor. Comput. Sci., 327(1–2), 109134.Google Scholar
Lambek, J. and Scott, P. J. 1986. Introduction to Higher Order Categorical Logic. Cambridge University Press.Google Scholar
Larsen, K. G. and Winskel, G. 1991. Using information systems to solve recursive domain equations. Inform. Comput., 91(2), 232258.Google Scholar
Lawson, J. D. 1979. The duality of continuous posets. Houston J. Math., 5, 357394.Google Scholar
Lawson, J. D. 2011. Stably compact spaces. Math. Struct. Comp. Sci., 21, 125169.Google Scholar
Leinster, T. 2014. Basic Category Theory. Cambridge University Press.CrossRefGoogle Scholar
MacLane, S. 1971. Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer-Verlag.Google Scholar
MacLane, S. and Moerdijk, I. 1992. Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer.Google Scholar
MacNeille, H. M. 1937. Partially ordered sets. Trans. Amer. Math. Soc., 42, 416460.Google Scholar
Makkai, M. 1987. Stone duality for first-order logic. Adv. Math., 65, 97170.Google Scholar
Makkai, M. 1993. Duality and definability in first order logic. Mem. Amer. Math. Soc., 105(503), 97170.Google Scholar
Makkai, M., and Reyes, G. 1977. First Order Categorical Logic. Lecture Notes in Mathematics, no. 611. Springer.Google Scholar
Manzonetto, G. and Salibra, A. 2008. Applying universal algebra to lambda calculus. J. Logic Comput., 20(4), 877915.Google Scholar
Marquès, J. 2021. Polyadic spaces and profinite monoids. In Fahrenberg, U., Gehrke, M., Santocanale, L., and Winter, M. (eds.), Relational and Algebraic Methods in Computer Science: 19th International Conference, RAMiCS 2021, Marseille, France, November 2–5, 2021, Proceedings. Springer.International Publishing, pp. 292308.Google Scholar
Marquis, J.-P. and Reyes, G. 2011. The history of categorical logic: 1963–1977. In Gabbay, D., Kanamori, A., and Woods, J. (eds.), Handbook of the History of Logic. Elsevier, pp. 1116.Google Scholar
McKinsey, J. C. C. and Tarski, A. 1948. Some theorems about the sentential calculi of Lewis and Heyting. J. Symbolic Logic, 13(1), 115.Google Scholar
Moshier, M. A. and Jipsen, P. 2014a. Topological duality and lattice expansions, I: A topological construction of canonical extensions. Algebr. Univ., 71, 109126.Google Scholar
Moshier, M. A. and Jipsen, P. 2014b. Topological duality and lattice expansions, II: Lattice expansions with quasioperators. Algebr. Univ., 71, 221234.Google Scholar
Mundici, D. 2011. Advanced Łukasiewicz Calculus and MV-Algebras. Trends in Logic – Studia Logica Library. Vol. 35. Springer.Google Scholar
Murthy, C. R. and Russell, J. R. 1990. A constructive proof of Higman’s lemma. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science. IEEE, pp. 257267.Google Scholar
Myhill, J. 1957. Finite Automata and the Representation of Events. Tech. Rept. WADD.Google Scholar
Nachbin, L. 1947. Une propriété caractéristique des algèbres booléiennes. Port. Math., 6, 115118.Google Scholar
Nachbin, L. 1964. Topology and Order. van Nostrand.Google Scholar
Nerode, A. 1958. Linear automaton transformations. P. Am. Math. Soc., 9(4), 541544.Google Scholar
Nerode, A. 1959. Some Stone spaces and recursion theory. Duke Math. J., 26, 397406.Google Scholar
Palmigiano, A. 2004. A coalgebraic view on positive modal logic. Theor. Comput. Sci., 327(1), 175195.CrossRefGoogle Scholar
Picado, J. 1994. Join-continuous frames, Priestley’s duality and biframes. Appl. Categor. Struct., 2, 297313.Google Scholar
Picado, J. and Pultr, A. 2012. Frames and Locales. Birkhäuser.Google Scholar
Pin, J.-E. 1995. A variety theorem without complementation. Izv. Math. (Izvestija vuzov. Matematika), 39, 8090.Google Scholar
Pin, J.-E. 2009. Profinite methods in automata theory. In Albers, S. and Marion, J.-Y. (eds.), 26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009), vol. 5556, Schloss Dagstuhl, pp. 3150.Google Scholar
Pin, J.-E. 2011. Theme and variations on the concatenation product. In Winkler, F. (ed.), CAI. Springer, pp. 4464.Google Scholar
Pin, J.-E. 2017. Dual space of a lattice as the completion of a Pervin space. In Höfner, P., Pous, D., and Struth, G. (eds.), RAMICS. Lecture Notes in Computer Science, vol. 10226. Springer, pp. 151162.Google Scholar
Pin, J.-E. (ed.). 2021a. Handbook of Automata Theory. Volume I. Theoretical Foundations. European Mathematical Society (EMS).Google Scholar
Pin, J.-E. (ed.). 2021b. Handbook of Auomata Theory. Volume II. Automata in Mathematics and Selected Applications. European Mathematical Society (EMS).Google Scholar
Pin, J.-E. 2022. Mathematical Foundations of Automata Theory. Lecture notes. https://www.irif.fr/∼jep/PDF/MPRI/MPRI.pdfGoogle Scholar
Pippenger, N. 1997. Regular languages and Stone duality. Theor. Comput. Syst., 30(2), 121134.Google Scholar
Plotkin, G. D. 1976. A powerdomain construction. SIAM J. Comput., 5(3), 452487.Google Scholar
Pouzet, M. 2018. A topological interpretation of de Jongh-Parikh theorem. https://www2.cms.math.ca/Events/winter18/abs/pdf/sdr-mp.pdfGoogle Scholar
Priestley, H. A. 1970. Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc., 2, 186190.Google Scholar
Raney, G. N. 1953. A subdirect-union representation for completely distributive complete lattices. P. Am. Math. Soc., 4(4), 518522.Google Scholar
Reiterman, J. 1982. The Birkhoff theorem for finite algebras. Algebr. Univ., 14(1), 110.CrossRefGoogle Scholar
Rhodes, J., Schilling, A., and Silva, P. V. 2022. Holonomy theorem for finite semigroups. Int. J. Algebr. Comput., 32(03), 443460.Google Scholar
Rhodes, J. and Steinberg, B. 2008. The Q-Theory of Finite Semigroups. Springer.Google Scholar
Ribes, L. and Zalesskii, P. 2010. Profinite Groups. Springer.CrossRefGoogle Scholar
Sakarovitch, J. 2009. Elements of Automata Theory. Cambridge University Press.Google Scholar
Santocanale, L. 2020. The involutive quantaloid of completely distributive lattices. In Relational and Algebraic Methods in Computer Science: 18th International Conference, RAMiCS, Palaiseau, France, October 26–29. Proceedings. Springer, pp. 286301.Google Scholar
Santocanale, L., and Wehrung, F. 2014. Lattices of regular closed subsets of closure spaces. Int. J. Algebr. Comput., 24(07), 9691030.Google Scholar
Schmid, J. 2002. Quasiorders and sublattices of distributive lattices. Order, 19(1), 1134.CrossRefGoogle Scholar
Schützenberger, M. P. 1955. Une théorie algébrique du codage. Séminaire Dubreil. Algèbre et Théorie des Nombres, 9, 124.Google Scholar
Schützenberger, M. P. 1965. On finite monoids having only trivial subgroups. Inform. Cont., 8(2), 190194.Google Scholar
Scott, D. S. 1972. Continuous Lattices. In Lawvere, F. W. (ed.), Toposes, Algebraic Geometry, and Logic. Lecture Notes in Computer Science, vol. 274. Springer, pp. 97136.CrossRefGoogle Scholar
Scott, D. S. 1980. Relating theories of the lambda calculus. In Hindley, J. R. and Seldin, J. P. (eds.), To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism. Academic Press, pp. 403450.Google Scholar
Scott, D. S. and Strachey, C. 1971. Towards a mathematical semantics for computer languages. In Fox, J. (ed.), Proceedings of the Symposium on Computers and Automata. Microwave Research Institute Symposia Series. Polytechnic Institute of Brooklyn Press. Also Tech. Mon. PRG-6, Oxford University Computing Laboratory, pp. 1946.Google Scholar
Simon, I. 1975. Piecewise testable events. In Brackage, H. (ed.), Proc. 2nd GI Conf. Lecture Notes in Comp. Sci., vol. 33. Springer Verlag, pp. 214222.Google Scholar
Smyth, M. B. 1983a. The largest Cartesian closed category of domains. Theor. Comput. Sci., 27, 109119.Google Scholar
Smyth, M. B. 1983b. Power domains and predicate transformers: A topological view. In Diaz, Josep (ed.), Automata, Languages and Programming. Springer, pp. 662675.CrossRefGoogle Scholar
Smyth, M. B. 1992. Stable compactification I. J. London Math. Soc., 45, 321340.Google Scholar
Smyth, M. B. and Plotkin, G. D. 1982. The C-category-theoretic solution of recursive domain equations. SIAM Journal on Computing, 11(4), 761783.Google Scholar
Steinberg, B. 2013. Topological dynamics and recognition of languages. arXiv:1306.1468.Google Scholar
Stern, J. 1985. Characterizations of some classes of regular events. Theor. Comput. Sci., 35(1), 1742.Google Scholar
Stone, M. H. 1934. Boolean algebras and their application to topology. Proc. Natl. Acad. Sci. USA, 20(3), 197202.Google ScholarPubMed
Stone, M. H. 1935. Subsumption of the theory of Boolean algebras under the theory of rings. Proc. Natl. Acad. Sci. USA, 21(2), 103105.Google ScholarPubMed
Stone, M. H. 1936. The theory of representation for Boolean algebras. T. Am. Math. Soc., 40(1), 37111.Google Scholar
Stone, M. H. 1937a. Applications of the theory of Boolean rings to general topology. T. Am. Math. Soc., 41, 375481.Google Scholar
Stone, M. H. 1937b. Topological representations of distributive lattices and Brouwerian logics. Čas. Mat. Fys., 67, 125.Google Scholar
Stone, M. H. 1938. The representation of Boolean algebras. B. Am. Math. Soc., 44(12), 807816.Google Scholar
Stralka, A. 1980. A partially ordered space which is not a Priestley space. Semigroup Forum, 20, 293297.Google Scholar
Straubing, H., and Thérien, D. 1988. Partially ordered finite monoids and a theorem of I. Simon. J. Algebra, 119(2), 393399.CrossRefGoogle Scholar
Venema, Y. 2007. Algebras and coalgebras. In Studies in Logic and Practical Reasoning, vol. 3. Elsevier, pp. 331426.Google Scholar
Vickers, S. 1989. Topology via Logic. Cambridge University Press.Google Scholar
Wechler, W. 1992. Universal Algebra for Computer Scientists. EATCS Monographs on Theoretical Computer Science, vol. 25. Springer-Verlag.Google Scholar
Wehrung, F. 2008. Poset representations of distributive semilattices. Int. J. Algebr. Comput., 18(2), 321356.Google Scholar
Weil, P. 2002. Profinite methods in semigroup theory. Int. J. Algebr. Comput., 12, 137178.CrossRefGoogle Scholar
Zhang, G.-Q. 1989. Logics of domains. Tech. Rept. UCAM-CL-TR-185. University of Cambridge, Computer Laboratory.Google Scholar
Zhang, G.-Q. 1991. Logic of Domains. Progress in Theoretical Computer Science. Birkhauser.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Mai Gehrke, Université Côte d’Azur, Sam van Gool, Université Paris Cité
  • Book: Topological Duality for Distributive Lattices
  • Online publication: 16 February 2024
  • Chapter DOI: https://doi.org/10.1017/9781009349680.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Mai Gehrke, Université Côte d’Azur, Sam van Gool, Université Paris Cité
  • Book: Topological Duality for Distributive Lattices
  • Online publication: 16 February 2024
  • Chapter DOI: https://doi.org/10.1017/9781009349680.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Mai Gehrke, Université Côte d’Azur, Sam van Gool, Université Paris Cité
  • Book: Topological Duality for Distributive Lattices
  • Online publication: 16 February 2024
  • Chapter DOI: https://doi.org/10.1017/9781009349680.010
Available formats
×