Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T10:21:41.467Z Has data issue: false hasContentIssue false

Appendix D - Occupation Number Formalism Second Quantization

Published online by Cambridge University Press:  14 September 2023

P. C. Deshmukh
Affiliation:
Indian Institute of Technology, Tirupati, India
Get access

Summary

We might say that the three operators a, a and n = aa correspond respectively to the Creator (Brahma), the Destroyer (Shiva), and the Preserver (Vishnu) in Hindu mythology.

—J. J. Sakurai in Advance Quantum Mechanics

The aforementioned remark by Sakurai may be taken in a lighter vein. When we consider matter energy conversion, it does become essential to introduce operators for particle creation and annihilation. We will, however, introduce them in this appendix with a limited objective, to indicate their efficacy in going beyond the Hartree–Fock (HF) self-consistent field (SCF) method (Chapter 9). It would prepare the readers to tackle problems involving a many-electron system going beyond the single-particle approximation, also referred to as the Independent Particle Approximation (IPA). The mathematical machinery we employ to achieve this is the occupation number formalism. Also, it will familiarize the reader with basic tools introduced in Appendix E to solve the quantum mechanical many-electron problem on a quantum computer (Chapter 11). Much of the occupation number formalism was developed by Jordan and Wigner [1, 2].

D.1 Creation and Annihilation Operators

In Chapter 1, we introduced “quantization” as a mathematical framework to describe the laws of nature in a consistent and successful manner. Essentially, it encompassed dispensing with the classical description of a system in terms of the dynamical variables q and p, and replacing them by operators qop and pop. These operate on wavefunctions, which are coordinate representations of state vectors in a Hilbert space. The resulting mathematical contraption initially seemed abstract, but unlike the classical description, it provides a suitable and beneficial description of nature. Quantization leads to discrete energy eigen-spectra when boundary conditions on the differential (Schrödinger) equation are appropriate for bound-states of the physical system under study, as well as to an energy continuum in the case of unbound states. When a bound state and a continuum state are degenerate, and both are accessible to the system, one has meta-stable states (resonances) which may decay (autoionization) into separate fragments of the system. Such a process can also be described as annihilation of a particle in a discrete level and creation of the same in a continuum eigenstate. In particular, the description of atomic photoionization (Section 6.3, Chapter 6) as well as that of an autoionization resonance benefits from a reformulation in terms of annihilation and creation operators.

Type
Chapter
Information
Quantum Mechanics
Formalism, Methodologies, and Applications
, pp. 594 - 606
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×