Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T03:25:27.422Z Has data issue: false hasContentIssue false

Chapter 7 - Cardiomyopathy

Published online by Cambridge University Press:  19 August 2019

Michael T. Ashworth
Affiliation:
Great Ormond Street Hospital for Children, London
Get access

Summary

After a general introduction, the classification systems for cardiomyopathy are discussed. The main clinical types are discussed together with their variants. Hypertrophic, dilated, restrictive, non-compaction, mitochondrial and arrhythmogenic cardiomyopathy are all detailed and illustrated. Tables list the many genes associated with development of these cardiomyopathies. Rarer forms such as histiocytoid cardiomyopathy and mitogenic cardiomyopathy are also illustrated.

Type
Chapter
Information
Pathology of Heart Disease in the Fetus, Infant and Child
Autopsy, Surgical and Molecular Pathology
, pp. 164 - 186
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Elliott, P, Andersson, B, Arbustini, E et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J 2008; 29: 270276.CrossRefGoogle Scholar
Andrews, RA, Fenton, MJ, Ridout, DA, Burch, M. New-onset heart failure due to heart muscle disease in childhood: a prospective study in the United Kingdom and Ireland. Circulation 2008; 117: 7984.CrossRefGoogle ScholarPubMed
Maron, BJ, Towbin, JA, Thiene, G et al.; American Heart Association; Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; Council on Epidemiology and Prevention. Contemporary definitions and classification of the cardiomyopathies. Circulation 2006; 113: 18071816.CrossRefGoogle ScholarPubMed
Elliott, P. The 2006 American Heart Association classification of cardiomyopathies is not the gold standard. Circ Heart Fail 2008; 1: 7779.CrossRefGoogle Scholar
Wigle, ED, Rakowski, H, Kimball, BP, Williams, WG. Hypertrophic cardiomyopathy. Clinical spectrum and treatment. Circulation 1995; 92: 16801692.CrossRefGoogle ScholarPubMed
Kaski, JP, Syrris, P, Esteban, MT et al. Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circ Cardiovasc Genet 2009; 2: 436441.CrossRefGoogle ScholarPubMed
Redwood, CS, Moolman-Smook, J, Watkins, H. Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy. Cardiovasc Res 1999; 44: 2036.CrossRefGoogle ScholarPubMed
Geisterfer-Lowrance, AA, Kass, S, Tanigawa, G et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 1990; 62: 9991006.CrossRefGoogle ScholarPubMed
Niimura, H, Patton, KK, McKenna, WJ et al. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation 2002; 105: 446451.CrossRefGoogle ScholarPubMed
Mogensen, J, Klausen, IC, Pedersen, AK et al. Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 1999; 103: R39–43.CrossRefGoogle ScholarPubMed
Thierfelder, L, Watkins, H, MacRae, C et al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy. Cell 1994; 77: 701712.CrossRefGoogle ScholarPubMed
Hoffmann, B, Schmidt-Traub, H, Perrot, A, Osterziel, KJ, Gessner, R. First mutation in cardiac troponin C, L29Q in a patient with hypertrophic cardiomyopathy. Hum Mutat 2001; 17: 524.CrossRefGoogle Scholar
Kimura, A, Harada, H, Park, JE et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet 1997; 16: 379382.Google Scholar
Watkins, H, Conner, D, Thierfelder, L et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet 1995; 11: 434437.CrossRefGoogle ScholarPubMed
Poetter, K, Jiang, H, Hassanzadeh, S et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 1996; 13: 6369.Google Scholar
Geier, C, Gehmlich, K, Ehler, E et al. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum Mol Genet 2008; 17: 27532765.Google Scholar
Theis, JL, Bos, JM, Bartleson, VB et al. Echocardiographic-determined septal morphology in Z-disc hypertrophic cardiomyopathy. Biochem Biophys Res Commun 2006; 351: 896902.CrossRefGoogle ScholarPubMed
Bos, JM, Poley, RN, Ny, M et al. Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin. Mol Genet Metab 2006; 88: 7885.CrossRefGoogle ScholarPubMed
Landstrom, AP, Adekola, BA, Bos, JM, Ommen, SR, Ackerman, MJ. PLN-encoded phospholamban mutation in a large cohort of hypertrophic cardiomyopathy cases: summary of the literature and implications for genetic testing. Am Heart J 2011; 161: 165171.CrossRefGoogle Scholar
Osio, A, Tan, L, Chen, SN et al. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ Res 2007; 100: 766768.CrossRefGoogle ScholarPubMed
Wang, H, Li, Z, Wang, J et al. Mutations in NEXN, a Z-disc gene, are associated with hypertrophic cardiomyopathy. Am J Hum Genet 2010; 87: 687693.CrossRefGoogle ScholarPubMed
Vasile, VC, Ommen, SR, Edwards, WD, Ackerman, MJ. A missense mutation in a ubiquitously expressed protein, vinculin, confers susceptibility to hypertrophic cardiomyopathy. Biochem Biophys Res Commun 2006; 345: 9981003.CrossRefGoogle Scholar
Purevjav, E, Arimura, T, Augustin, S et al. Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations. Hum Molec Genet 2012; 21: 20392053.CrossRefGoogle ScholarPubMed
Chiu, C, Tebo, M, Ingles, J et al. Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 2007; 43: 337343.CrossRefGoogle ScholarPubMed
Hayashi, T, Arimura, T, Ueda, K et al. Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochem Biophys Res Commun 2001; 313: 178184.CrossRefGoogle Scholar
Landstrom, AP, Weisleder, N, Batalden, KB et al. Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J Mol Cell Cardiol 2007; 42: 10261035.CrossRefGoogle ScholarPubMed
Marian, AJ, Braunwald, E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 2017; 121: 749770.Google Scholar
Burke, MA, Cook, SA, Seidman, JG, Seidman, CE. Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol 2016; 68: 28712886.CrossRefGoogle ScholarPubMed
Viswanathan, SK, Sanders, HK, McNamara, JW et al. Hypertrophic cardiomyopathy clinical phenotype is independent of gene mutation and mutation dosage. PLoS One 2017; 12: e0187948.CrossRefGoogle ScholarPubMed
McKenna, WJ, Coccolo, F, Elliott, PM. Genes and disease expression in hypertrophic cardiomyopathy. Lancet 1998; 352: 11621163.CrossRefGoogle ScholarPubMed
Mathew, J, Zahavich, L, Lafreniere-Roula, M et al. Utility of genetics for risk stratification in pediatric hypertrophic cardiomyopathy. Clin Genet 2018; 93 : 310319.CrossRefGoogle ScholarPubMed
Dutka, DP, Donnelly, JE, Nihoyannopoulos, P, Oakley, CM, Nunez, DJ. Marked variation in the cardiomyopathy associated with Friedreich’s ataxia. Heart 1999; 81: 141147.CrossRefGoogle ScholarPubMed
Koeppen, AH, Ramirez, RL, Becker, AB et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS One 2015; 10: e0116396.CrossRefGoogle ScholarPubMed
Kipps, A, Alexander, M, Colan, SD et al. The longitudinal course of cardiomyopathy in Friedreich’s ataxia during childhood. Pediatr Cardiol 2009; 30: 306310.CrossRefGoogle ScholarPubMed
Sreeram, N, Kitchener, D, Smith, A. Spectrum of valvular abnormalities in Noonan’s syndrome – a pathologic study. Cardiol Young 1994; 4: 6266.CrossRefGoogle Scholar
Jorge, AAL, Malaquias, AC, Arnhold, IJP, Mendonca, BB. Noonan Syndrome and related disorders: a review of clinical features and mutations in genes of the RAS/MAPK pathway. Horm Res 2009; 71: 185193.Google Scholar
Tartaglia, M, Gelb, BD. Noonan syndrome and related disorders: genetics and pathogenesis. Annu Rev Genomics Hum Genet 2005; 6: 4568.CrossRefGoogle ScholarPubMed
Kobayashi, T, Aoki, Y, Niihori, T et al. Molecular and clinical analysis of RAF1 in Noonan Syndrome and related disorders: dephosphorylation of serine 259 as the essential mechanism for mutant activation Hum Mutat 2010; 31: 284289.CrossRefGoogle ScholarPubMed
Burch, M, Mann, JM, Sharland, M et al. Myocardial disarray in Noonan syndrome. Br Heart J 1992; 68: 586588.CrossRefGoogle ScholarPubMed
McMahon, JN, Berry, PJ, Joffe, HS. Fatal hypertrophic cardiomyopathy in an infant of a diabetic mother. Pediatr Cardiol 1990; 11: 211212.CrossRefGoogle Scholar
Israel, BA, Sherman, FS, Guthrie, RD. Hypertrophic cardiomyopathy associated with dexamethasone therapy for chronic lung disease in preterm infants. Am J Perinatol 1993; 10: 307310.CrossRefGoogle ScholarPubMed
Gilbert-Barness, G, Barness, LA. Nonmalformative cardiovascular pathology in infants and children. Pediatr Devel Pathol 1999; 2: 499530.CrossRefGoogle ScholarPubMed
Batlle, M, Pérez-Villa, F, Lázaro, A et al. Correlation between mast cell density and myocardial fibrosis in congestive heart failure patients. Transplant Proc 2007; 39: 23472349.CrossRefGoogle ScholarPubMed
Graham, RM, Owens, WA. Pathogenesis of inherited forms of dilated cardiomyopathy. N Eng J Med 1999; 341: 17591762.CrossRefGoogle ScholarPubMed
Grünig, E, Tasman, JA, Kücherer, H et al. Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol 1998; 31: 186194.CrossRefGoogle ScholarPubMed
Dellefave, L, McNally, EM. The genetics of dilated cardiomyopathy. Curr Opin Cardiol 2010; 25: 198204.CrossRefGoogle ScholarPubMed
Mohapatra, B, Jimenez, S, Lin, JH et al. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 2003; 80: 207215.CrossRefGoogle ScholarPubMed
Vicart, P, Caron, A, Guicheney, P et al. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 1998; 20: 9295.CrossRefGoogle ScholarPubMed
Olson, TM, Kishimoto, NY, Whitby, FG, Michels, VV. Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. Mol Cell Cardiol 2001; 33: 723732.CrossRefGoogle ScholarPubMed
Kamisago, M, Sharma, SD, DePalma, SR et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Eng J Med 2000; 343: 16881696.CrossRefGoogle ScholarPubMed
Olson, TM, Michels, VV, Thibodeau, SN, Tai, YS, Keating, MT. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 1998; 280: 750752.CrossRefGoogle ScholarPubMed
Moulik, M, Vatta, M, Witt, SH et al. ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J Am Coll Cardiol 2009; 54: 325333.CrossRefGoogle ScholarPubMed
Daehmlow, S, Erdmann, J, Knueppel, T et al. Novel mutations in sarcomeric protein genes in dilated cardiomyopathy. Biochem Biophys Res Commun 2002; 298: 116120.CrossRefGoogle ScholarPubMed
McNair, WP, Sinagra, G, Taylor, MR et al.; Familial Cardiomyopathy Registry Research Group. SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol 2011; 57: 21602168.Google Scholar
Kaski, JP, Burch, M, Elliott, PM. Mutations in cardiac Troponin C gene are a cause of idiopathic dilated cardiomyopathy in childhood. Cardiol Young 2007; 17: 675677.Google Scholar
Carballo, S, Robinson, P, Otway, R et al. Identification and functional characterisation of cardiac troponin I as a novel disease gene in autosomal dominant dilated cardiomyopathy. Circ Res 2009; 105: 375382.Google Scholar
Herschberger, RE, Pinto, JR, Parks, SB et al. Clinical and functional characterisation of TNNT2 mutations identified in patients with dilated cardiomyopathy. Circ Cardiovasc Genet 2009; 2: 306313.Google Scholar
Erdmann, J, Hassfeld, S, Kallisch, H, Fleck, E, Regitz-Zagrose, V. Genetic variants in the promoter (g983G>T) and coding region (A92G) of the human cardiotrophin-1 gene (CTF1) in patients with dilated cardiomyopathy. Hum Mutat 2000; 16: 448.3.0.CO;2-D>CrossRefGoogle Scholar
Arimura, T, Hiyashi, T, Terada, H et al. A Cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity of protein kinase C. J Biol Chem 2004; 279: 67466752.CrossRefGoogle ScholarPubMed
Tsubata, S, Bowles, KR, Vatta, M et al. Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest 2000; 16: 655662.CrossRefGoogle Scholar
Goldfarb, LG, Park, KY, Cervenakova, L et al. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat Genet 1998; 19: 402403.CrossRefGoogle ScholarPubMed
Norgett, EE, Hatsell, SJ Carvajal-Huerta, L. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 2000; 9: 27612766.CrossRefGoogle ScholarPubMed
Towbin, JA, Hetjmancik, JF, Brink, P et al. X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 1993; 87: 18541865.CrossRefGoogle Scholar
Finsterer, J, Stöllberger, C, Sehnal, E, Rehder, H, Laccone, F. Dilated, arrhythmogenic cardiomyopathy in Emery-Dreifuss muscular dystrophy due to the emerin splice-site mutation c.449 + 1G>A. Cardiology 2015; 130: 4851.CrossRefGoogle Scholar
Schönberger, J, Wang, L, Shin, JT et al. Mutation in the transcriptional co-activator EYA4 causes dilated cardiomyopathy and sensorineuronal hearing loss. Nat Genet 2005; 37: 418422.Google Scholar
Bienengraeber, M, Olson, TM, Selivanov, VA et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic K(ATP) channel gating. Nature Genet 2004; 36: 382387.CrossRefGoogle ScholarPubMed
Fatkin, D, MacRae, C, Sasaki, T et al. Missense mutations in the rod domain of the lamin A|C genes as causes of dilated cardiomyopathy and conduction-system disease. N Eng J Med 1999; 341: 17151724.CrossRefGoogle ScholarPubMed
Knöll, R, Postel, R, Wang, J et al. Laminin-alpha4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation 2007; 116: 515525.CrossRefGoogle ScholarPubMed
Ogata, T, Ueyama, T, Isodono, K et al. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol Cell Biol 2008; 28: 34243436.CrossRefGoogle ScholarPubMed
Purevjav, E, Arimura, T, Augustin, S et al. Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations. Hum Mol Genet 2012; 21: 20392053.CrossRefGoogle ScholarPubMed
Perrot, A, Tomasov, P, Villard, E et al. Mutations in NEBL encoding the cardiac Z-disk protein nebulette are associated with various cardiomyopathies. Arch Med Sci 2016; 12: 263278.CrossRefGoogle ScholarPubMed
Hassel, D, Dahme, T, Erdmann, J et al. Nexilin mutations destabilize cardiac Z-disks and lead to dilated cardiomyopathy. Nat Med 2009; 15: 12811288.CrossRefGoogle ScholarPubMed
Klauke, B, Gaertner-Rommel, A, Schulz, U et al. High proportion of genetic cases in patients with advanced cardiomyopathy including a novel homozygous Plakophilin 2-gene mutation. PLoS One 2017; 12: e0189489.CrossRefGoogle ScholarPubMed
Haghighi, K, Kolokathis, F, Peter, L et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 2003; 111: 869876.CrossRefGoogle ScholarPubMed
Brauch, KM, Karst, ML, Herron, KJ et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol 2009; 54: 930941.Google Scholar
Guo, W, Schafer, S, Greaser, ML et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med 2012; 18: 766773.CrossRefGoogle ScholarPubMed
Barth, PG, Wanders, RJ, Vreken, P et al. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome). J Inherit Metab Dis 1999; 22: 555567.Google Scholar
Taylor, MR, Slavov, D, Gajewski, A et al.; Familial Cardiomyopathy Registry Research Group. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat 2005; 26: 566574.CrossRefGoogle ScholarPubMed
Itoh-Satoh, M, Hayashi, T, Nishi, H et al. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 2002; 291: 385393.Google Scholar
Herschberger, RE, Parks, SB, Kushner, JD et al. Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3 and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy. Clin Transl Sci 2008; 1: 2126.CrossRefGoogle Scholar
Losun, TM, Illenberger, S, Kishimotos, NY et al. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 2002; 105: 431437.Google Scholar
Badorff, C, Lee, G-H, Lamphear, BJ et al. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in acquired cardiomyopathy. Nature Med 1999; 5: 320325.CrossRefGoogle ScholarPubMed
van den Hoogenhof, MMG, Beqqali, A, Amin, AS et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation 2018; 138: 13301342.CrossRefGoogle ScholarPubMed
Chang, KTE, Taylor, GP, Meschino, WS, Kantor, PF, Cutz, E. Mitogenic cardiomyopathy: a lethal neonatal familial cardiomyopathy characterized by myocyte hyperplasia and proliferation. Hum Pathol 2010; 41: 10021008.CrossRefGoogle ScholarPubMed
Shenje, LT, Andersen, P, Halushka, MK et al. Mutations in Alström protein impair terminal differentiation of cardiomyocytes. Nat Commun 2014; 5: 3416.CrossRefGoogle ScholarPubMed
Price, DI, Stanford, LC, Braden, DS, Ebeid, MR, Smith, JC. Hypocalcemic rickets: an unusual cause of dilated cardiomyopathy. Pediatr Cardiol 2003; 5: 510512.CrossRefGoogle Scholar
Maiya, S, Sullivan, I, Allgrove, J et al. Hypocalcaemia and vitamin D deficiency: an important, but preventable, cause of life-threatening infant heart failure. Heart 2008; 94: 581584.Google Scholar
Brown, J, Nunez, S, Russell, M, Spurney, C. Hypocalcemic rickets and dilated cardiomyopathy: case reports and review of literature. Pediatr Cardiol 2009; 30: 818823.CrossRefGoogle ScholarPubMed
Chen, S, Law, CS, Grigsby, CL et al. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation 2011; 124: 18381847.CrossRefGoogle ScholarPubMed
Bansal, B, Bansal, M, Bajpai, P, Garewal, HK. Hypocalcemic cardiomyopathy – different mechanisms in adult and pediatric cases. J Clin Endocrinol Metab 2014; 99: 26272632.CrossRefGoogle ScholarPubMed
Kushwaha, SS, Fallon, JT, Fuster, V. Restrictive cardiomyopathy. N Eng J Med 1997; 336: 267276.CrossRefGoogle ScholarPubMed
Russo, LM, Webber, SA. Idiopathic restrictive cardiomyopathy in children. Heart 2005; 91: 11991202.CrossRefGoogle ScholarPubMed
Hughes, SE, McKenna, WJ. New insights into the pathology of inherited cardiomyopathy. Heart 2005; 91: 257264.CrossRefGoogle ScholarPubMed
Kaski, J, Syrris, P, Tomé-Esteban, MT et al. Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart 2008; 94: 14781484.CrossRefGoogle ScholarPubMed
Selcen, D, Ohno, K, Engel, AG. Myofibrillary myopathy: clinical, morphological and genetic studies in 63 patients. Brain 2004; 127: 439451.Google Scholar
Benezet-Mazuecos, J, de la Fuente, A, Maercos-Alberca, P, Farre, J. Loeffler endocarditis: what have we learned? Am J Hematol 2007; 82: 920923.Google Scholar
Löffler, W. Endocarditis parietalis fibroplastica mit bluteosinophilie. Ein eigenartiges Krankheitsbild Schweiz Med Wochenschr 1936; 66: 817820.Google Scholar
Gottdiener, JS, Maron, BJ, Schooley, RT et al. Two-dimensional echocardiographic assessment of the idiopathic hypereosinophilic syndrome. Anatomic basis of mitral regurgitation and peripheral embolization. Circulation 1983; 67: 572578.CrossRefGoogle ScholarPubMed
Séguéla, PE, Iriart, X, Acar, P et al. Eosinophilic cardiac disease: molecular, clinical and imaging aspects. Arch Cardiovasc Dis 2015; 108: 258268.Google Scholar
Karadimas, C, Tanji, K, Geremek, M et al. A5814G mutation in mitochondrial DNA can cause mitochondrial myopathy and cardiomyopathy. J Child Neurol 2001; 16: 531533.CrossRefGoogle ScholarPubMed
Marin-Garcia, J, Ananthakrishnan, R, Goldenthal, MJ, Filiano, JJ, Perez-Atayde, A. Cardiac mitochondrial dysfunction and DNA depletion in children with hypertrophic cardiomyopathy. J Inher Metab Dis 1997; 20: 674679.CrossRefGoogle ScholarPubMed
Marin-Garcia, J, Goldenthal, MJ. Mitochondrial cardiomyopathy: molecular and biochemical analysis. Pediatr Cardiol 1997; 18: 251260.Google Scholar
Limongelli, G, Masarone, D, Pacileo, G. Mitochondrial disease and the heart. Heart 2017; 103: 390398.Google Scholar
Finsterer, J, Kothari, S. Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol 2014; 177: 754763.Google Scholar
Kraus, B, Cain, H. Giant mitochondria in the human myocardium – morphogenesis and fate. Virchows Arch B Cell Pathol Incl Mol Pathol 1980; 33: 7789.CrossRefGoogle ScholarPubMed
Tandler, B, Dunlap, M, Hoppel, CL, Hassan, M. Giant mitochondria in a cardiomyopathic heart. Ultrastruct Pathol 2002; 26: 177183.CrossRefGoogle Scholar
Taylor, GP. Neonatal mitochondrial cardiomyopathy. Pediatr Devel Pathol 2004; 7: 620624.Google Scholar
Arbustini, E, Diegoli, M, Fasani, R et al. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol 1998; 153: 15011510.CrossRefGoogle ScholarPubMed
Suomalainen, A, Kaukonen, J, Amati, P et al. An autosomal locus predisposing to deletions of mitochondrial DNA. Nature Genet 1995; 9: 146151.CrossRefGoogle ScholarPubMed
Enns, GM. Pediatric mitochondrial diseases and the heart. Curr Opin Pediatr 2017; 29: 541551.CrossRefGoogle ScholarPubMed
Brunel-Guitton, C, Levtova, A, Sasarman, F. Mitochondrial diseases and cardiomyopathies. Can J Cardiol 2015; 31: 13601376.CrossRefGoogle ScholarPubMed
Desbats, MA, Lunardi, G, Doimo, M, Trevisson, E, Salviati, L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J Inherit Metab Dis 2015; 38: 145156.Google Scholar
Ikon, N, Ryan, RO. Barth syndrome: connecting cardiolipin to cardiomyopathy. Lipids 2017; 52: 99108.CrossRefGoogle ScholarPubMed
Moraes, CT, Shanske, S, Tritschler, HJ et al. mtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. Am J Hum Genet 1991; 48: 492501.Google ScholarPubMed
d’Amati, G, Leone, O, di Gioia, CR et al. Arrhythmogenic right ventricular cardiomyopathy: clinicopathologic correlation based on a revised definition of pathologic patterns. Hum Pathol 2001; 32: 10781086.CrossRefGoogle ScholarPubMed
Yang, Z, Bowles, NE, Scherer, SE et al. Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Res 2006; 99: 646655.CrossRefGoogle ScholarPubMed
Asimaki, A, Syrris, P, Wichter, T et al. A novel dominant mutation in plakoglobin causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 2007; 81: 964973.Google Scholar
Gerull, B, Heuser, A, Wichter, T et al. Mutations in the Desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet 2004; 36: 11621164.Google Scholar
Heuser, A, Plovie, ER, Ellinor, PT et al. Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 2006; 79: 10811088.CrossRefGoogle ScholarPubMed
Syrris, P, Ward, D, Asimaki, A et al. Desmoglein-2 mutations in arrhythmogenic right ventricular cardiomyopathy: a genotype-phenotype characterization of familial disease. Eur Heart J 2007; 28: 581588.CrossRefGoogle ScholarPubMed
Asimaki, A, Tandri, H, Huang, H et al. A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N Eng J Med 2009; 360: 10751084.Google Scholar
Burke, A, Mont, E, Kutys, R, Virmani, R. Left ventricular noncompaction: a pathological study of 14 cases. Hum Pathol 2005; 36: 403411.CrossRefGoogle ScholarPubMed
Xing, Y, Ichida, F, Matsuoka, T et al. Genetic analysis of in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab 2006; 88: 7177.CrossRefGoogle ScholarPubMed
Sasse-Klaasen, S, Gerull, B, Oechslin, E et al. Isolated noncompaction of the left ventricular myocardium in the adult is an autosomal dominant disorder in the majority of patients. Am J Med Genet 2003; 119: 162167.Google Scholar
Bleyl, SB, Mumford, BR, Thompson, V et al. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am J Hum Genet 1997; 61: 868872.CrossRefGoogle ScholarPubMed
Ichida, F, Tsubata, S, Bowles, KR et al. Novel gene mutations in patients with left ventricular non-compaction or Barth syndrome. Circulation 2001; 103: 12561263.CrossRefGoogle ScholarPubMed
Vatta, M, Mohapatra, B, Jimenez, S et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular noncompaction. J Am Coll Cardiol 2003; 42: 20142027.Google Scholar
Budde, BS, Binner, P, Waldmüller, S et al. Noncompaction of the ventricular myocardium is associated with a de novo mutation in the beta-myosin heavy chain gene. PLoS One 2007; 2: e1362.Google Scholar
Pignatelli, RH, McMahon, CJ, Dreyer, WJ et al. Clinical characterisation of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 2003; 108: 26722678.CrossRefGoogle ScholarPubMed
Wong, JA, Bofinger, MK. Noncompaction of the left ventricular myocardium in Melnick-Needles syndrome. Am J Med Genet 1997; 71: 7275.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Sen-Chowdhry, S, McKenna, WJ. Left ventricular noncompaction and cardiomyopathy: cause, contributor or epiphenomenon? Curr Opin Cardiol 2008; 23: 171175.CrossRefGoogle ScholarPubMed
Malhotra, V, Ferrans, VJ, Virmani, R. Infantile histiocytoid cardiomyopathy: three cases and literature review. Am Heart J 1994; 128: 10091021.Google Scholar
Shehata, BM, Patterson, K, Thomas, JE et al. Histiocytoid cardiomyopathy: three new cases and review of the literature. Paediatr Dev Pathol 1998; 1: 5669.Google Scholar
Vallance, HD, Jeven, G, Wallace, DC, Brown, MD. A case of sporadic infantile histiocytoid cardiomyopathy caused by the A8344 G (MERRF) mitochondrial DNA mutation. Pediatr Cardiol 2004; 25: 538540.CrossRefGoogle Scholar
Finsterer, J. Histiocytoid cardiomyopathy: a mitochondrial disorder. Clin Cardiol 2008; 31: 225227.Google Scholar
Bird, LM, Krous, HF, Eichenfield, LF, Swalwell, CI, Jones, MC. Female infant with oncocytic cardiomyopathy and microphthalmia with linear skin defects (MLS): a clue to the pathogenesis of oncocytic cardiomyopathy? Am J Med Genet 1994; 53: 141158.Google Scholar
Rea, G, Homfray, T, Till, J et al. Histiocytoid cardiomyopathy and microphthalmia with linear skin defects syndrome: phenotypes linked by truncating variants in NDUFB11. Cold Spring Harb Mol Case Stud 2017; 3: a001271.CrossRefGoogle ScholarPubMed
Gehrmann, J, Sohlbach, K, Linnebank, M et al. Cardiomyopathy in congenital disorders of glycosylation. Cardiol Young 2003; 13: 345351.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cardiomyopathy
  • Michael T. Ashworth
  • Book: Pathology of Heart Disease in the Fetus, Infant and Child
  • Online publication: 19 August 2019
  • Chapter DOI: https://doi.org/10.1017/9781316337073.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cardiomyopathy
  • Michael T. Ashworth
  • Book: Pathology of Heart Disease in the Fetus, Infant and Child
  • Online publication: 19 August 2019
  • Chapter DOI: https://doi.org/10.1017/9781316337073.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cardiomyopathy
  • Michael T. Ashworth
  • Book: Pathology of Heart Disease in the Fetus, Infant and Child
  • Online publication: 19 August 2019
  • Chapter DOI: https://doi.org/10.1017/9781316337073.007
Available formats
×