Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T17:27:15.486Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 December 2024

Jennifer Bates
Affiliation:
Seoul National University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbo, S., Zezak, I., Schwartz, E., Lev-Yadun, S., Gopher, A. 2008. Experimental harvesting of wild peas in Israel: Implications for the origins of Near East farming. Journal of Archaeological Science 35, 922–9. https://doi.org/10.1016/j.jas.2007.06.016.Google Scholar
Abdel-Magid, A. 1989. Plant Domestication in the Middle Nile Basin: An Archaeobotanical Case Study. Cambridge Monographs in African Archaeology 35. British Archaeological Reports International Series 523. Oxford.CrossRefGoogle Scholar
Abdel-Magid, A. 2003. Exploitation of food-plants in the Early and Middle Holocene Blue Nile area, Sudan and neighbouring areas. Complutum 14, 345–72.Google Scholar
Abhayan, G. S. 2016. Preparation and application of fish bone identification keys for Harappan sites in Gujarat with special reference to Bagasra, Kanmer and Shikarpur (PhD). Deemed University, Gurgaon.Google Scholar
Abhayan, G. S., Joglekar, P. P., Ajithprasad, P. et al. 2018. Fish exploitation during the Harappan period at Bagasra in Gujarat, India, in Frenez, D., Jamison, G. M., Law, R. W., Vidale, M., Meadow, R. H. (eds.), Walking with the Unicorn: Social Organization and Material Culture in Ancient South Asia. Jonathan Mark Kenoyer Felicitation Volume. Oxford: Archaeopress, pp. 118. https://doi.org/10.2307/j.ctv19vbgkc.Google Scholar
Acedo, C., Llamas, F. 2001. Variation of micromorphological characters of Lemma and Palea in the genus Bromus (Poaceae). Annales Botanici Fennici 38, 14.Google Scholar
Achyuthan, H., Nagasundaram, M., Gourlan, A. T. et al. 2014. Mid-Holocene Indian Summer Monsoon variability off the Andaman Islands, Bay of Bengal. Quaternary International 349, 232–44. https://doi.org/10.1016/j.quaint.2014.07.041.CrossRefGoogle Scholar
Adams, R. McC. 1978. Strategies of maximization, stability, and resilience in Mesopotamian society, settlement, and agriculture. Proceedings of the American Philosophical Society 122, 329–35.Google Scholar
Adams, R. McC. 1981. Heartland of Cities. Chicago, IL: University of Chicago Press.Google Scholar
Aggarwal, P. K., Frohlich, K., Kulkarni, K. M., Gourcy, L. L. 2004. Stable isotope evidence for moisture sources in the Asian summer monsoon under present and past climate regimes. Geophysical Research Letters 31, L08203. https://doi.org/10.1029/2004GL019911.CrossRefGoogle Scholar
Agrawal, D. P. 2007. The Indus Civilization: An Interdisciplinary Perspective. New Delhi: Aryan Books International.Google Scholar
Agrawal, D. P., Sood, R. K. 1993. Ecological factors and the Harappan civilisation, in Possehl, G. L. (ed.), Harappan Civilisation: A Recent Perspective. New Delhi: Oxford and IBH, pp. 445–54.Google Scholar
Aitken, E. H. 1907. Gazetteer of the Province of Sindh. Karachi: Printed for the Government.Google Scholar
Ajithprasad, P. 2004. Holocene adaptations of the Mesolithic and Chalcolithic settlements in north Gujarat, in Yasuda, Y., Shinde, V. S. (eds.), Monsoon and Civilization. New Delhi: Lustre Press/Roli, pp. 115–32.Google Scholar
Ajithprasad, P., Sonawane, V. H. 2011. The Harappan culture in north Gujarat: A regional paradigm, in Osada, T., Endo, H. (eds.), Linguistics, Archaeology and Human Past. Kyoto: Research Institute for Humanity and Nature, pp. 223–69.Google Scholar
Aldrich, P. R., Doebley, J. 1992. Restriction fragment variation in the nuclear and chloroplast genomes of cultivated and wild Sorghum bicolor. Theoretical and Applied Genetics 85, 293302.CrossRefGoogle ScholarPubMed
Aliscioni, S. S., Giussani, L. M., Zuloaga, F. O., Kellogg, E. A. 2003. A molecular phylogeny of Panicum (Poaceae: Paniceae): Tests of monophyly and phylogenetic placement within the Panicoideae. American Journal of Botany 90, 796821. https://doi.org/10.3732/ajb.90.5.796.CrossRefGoogle ScholarPubMed
Allaby, R. G., Brown, T. A., Fuller, D. Q. 2010. A simulation of the effect of inbreeding on crop domestication genetics with comments on the integration of archaeobotany and genetics: A reply to Honne and Heun. Vegetation History and Archaeobotany 19, 151–8. https://doi.org/10.1007/s00334-009-0232-8.CrossRefGoogle Scholar
Allaby, R. G., Stevens, C., Lucas, L., Maeda, O., Fuller, D. Q. 2017. Geographic mosaics and changing rates of cereal domestication. Philosophical Transactions of the Royal Society B 372, 20160429. https://doi.org/10.1098/rstb.2016.0429.CrossRefGoogle ScholarPubMed
Allchin, B. 1995. The end of Harappan urbanism and its legacy, in Allchin, F. R. (ed.), The Archaeology of Early Historic South Asia. Cambridge: Cambridge University Press, pp. 2640.Google Scholar
Allchin, B., Allchin, F. R. 1997. Origins of a Civilisation. New Delhi: Penguin Books India.Google Scholar
Allchin, F. R. 1982. The legacy of the Indus civilisation, in Possehl, G. L. (ed.), Harappan Civilisation. New Delhi: Oxford and IBH, pp. 325–33.Google Scholar
Ambasta, S. P. (ed.). 1986. The Useful Plants of India. New Delhi: Council for Scientific and Industrial Research.Google Scholar
Amblard, S., Pernes, J. 1989. The identification of cultivated pearl millet (Pennisetum) amongst plant impressions on pottery from Oued Chebbi (Dhar Oualata, Mauritania). African Archaeological Review 7, 117–26.CrossRefGoogle Scholar
An, C.-B., Tang, L., Barton, L., Chen, F.-H. 2005. Climate change and cultural response around 4000 cal yr BP in the western part of Chinese Loess Plateau. Quaternary Research 63, 347–52. https://doi.org/10.1016/j.yqres.2005.02.004.CrossRefGoogle Scholar
An, Z. 1988. Archaeological research on Neolithic China. Current Anthropology 29, 753–9. https://doi.org/10.1086/203698.Google Scholar
Ananda, G. K. S., Myrans, H., Norton, S. L. et al. 2020. Wild sorghum as a promising resource for crop improvement. Frontiers in Plant Science 11, 1108. https://doi.org/10.3389/fpls.2020.01108.CrossRefGoogle ScholarPubMed
Anderson, E. 1951. Discussion on rice. Indian Journal of Genetic and Plant Breeding 11, 114–15.Google Scholar
Andrews, D. J., Kassam, A. H. 1976. The importance of multiple cropping in increasing world food supplies, in Stelly, M. (ed.), Multiple Cropping. Madison, WI: American Society of Agronomy, pp. 110.Google Scholar
Angourakis, A., Bates, J., Baudouin, J.-P. et al. 2020. How to ‘downsize’ a complex society: An agent-based modelling approach to assess the resilience of Indus civilisation settlements to past climate change. Environmental Research Letters 15, 115004. https://doi.org/10.1088/1748-9326/abacf9.CrossRefGoogle Scholar
Angourakis, A., Bates, J., Baudouin, J.-P. et al. 2022. Weather, land and crops in the Indus village model: A simulation framework for crop dynamics under environmental variability and climate change in the Indus civilisation. Quaternary 5.2, 25. https://doi.org/10.3390/quat5020025.CrossRefGoogle Scholar
Anuradha, N., Patro, T. S. S. K., Triveni, U., Joga Rao, P., Rajkumar, S. 2020. Trait association and genetic variability in browntop millet. Journal of Pharmacognosy and Phytochemistry 9, 1950–3.Google Scholar
Aoki, D., Yamaguchi, H. 2008. Genetic relationship between Echinochloa crus-galli and Echinochloa oryzicola accessions inferred from internal transcribed spacer and chloroplast DNA sequences. Weed Biology and Management 8, 233–42. https://doi.org/10.1111/j.1445-6664.2008.00303.x.CrossRefGoogle Scholar
Appadurai, A. 1981. Gastro-politics in Hindu South Asia. American Ethnologist 8, 494511.CrossRefGoogle Scholar
Appadurai, A. (ed.). 1986. The Social Life of Things: Commodities in Cultural Perspective. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Armitage, P. L. 1975. The extraction and identification of opal phytoliths from the teeth of ungulates. Journal of Archaeological Science 2, 187–97. https://doi.org/10.1016/0305-4403(75)90056-4.CrossRefGoogle Scholar
Arnold, J. E. 2000. Revisiting power, labour rights and kinship: Archaeology and social theory, in Schiffer, M. B. (ed.), Social Theory in Archaeology. Salt Lake City: University of Utah Press, pp. 1430.Google Scholar
Arora, R. K., Chandel, K. P. S., Joshi, B. S. 1973. Morphological diversity in Phaseolus subobatus Roxb. Current Science 42, 359–61.Google Scholar
Arranz-Otaegui, A., Gonzalez Carretero, L., Ramsey, M. N., Fuller, D. Q., Richter, T. 2018. Archaeobotanical evidence reveals the origins of bread 14,400 years ago in northeastern Jordan. Proceedings of the National Academy of Sciences USA 115, 7925–30. https://doi.org/10.1073/pnas.1801071115.CrossRefGoogle ScholarPubMed
Arunachalam, V., Rengalakshmi, R., Kubera Raj, M. S. 2005. Ecological stability of genetic diversity among landraces of little millet (Panicum sumatrense) in south India. Genetic Resources and Crop Evolution 52, 1519. https://doi.org/10.1007/s10722-005-6693-4.CrossRefGoogle Scholar
Asawa, G. L. 2006. Irrigation and Water Resources Engineering. New Delhi: New Age International.Google Scholar
Asouti, E., Fuller, D. Q. 2008. Trees and Woodlands of South India. San Francisco, CA: Left Coast Press.Google Scholar
Atalay, S., Hastorf, C. A. 2006. Food, meals, and daily activities: Food habitus at Neolithic Çatalhöyük. American Antiquity 71, 283319. https://doi.org/10.2307/40035906.CrossRefGoogle Scholar
Austin, D. F. 2006. Fox-tail Millets (Setaria: Poaceae): Abandoned food in two hemispheres. Economic Botany 60, 143–58. https://doi.org/10.1663/0013-0001(2006)60[143:FMSPFI]2.0.CO;2.CrossRefGoogle Scholar
Bajwa, A. A., Jabran, K., Shahid, M. et al. 2015. Eco-biology and management of Echinochloa crus-galli. Crop Protection 75, 151–62. https://doi.org/10.1016/j.cropro.2015.06.001.CrossRefGoogle Scholar
Balbo, A. L., Rubio-Campillo, X., Rondelli, B. et al. 2014. Agent-based simulation of Holocene monsoon precipitation patterns and hunter-gatherer population dynamics in semi-arid environments. Journal of Archaeological Method and Theory 21, 426–46. https://doi.org/10.1007/s10816-014-9203-1.CrossRefGoogle Scholar
Balfour, E. 1873. Cyclopedia of India and of Eastern and Southern Asia, Commercial, Industrial and Scientific: Products of the Mineral, Vegetable and Animal Kingdoms. Madras: Scottish and Adelphi Presses.Google Scholar
Ball, T., Chandler-Ezell, K., Dickau, R. et al. 2016. Phytoliths as a tool for investigations of agricultural origins and dispersals around the world. Journal of Archaeological Science 68, 3245. https://doi.org/10.1016/j.jas.2015.08.010.CrossRefGoogle Scholar
Ball, T., Gardner, J. S., Anderson, N. 2001. An approach to identifying inflorescence phytoliths from selected specie of wheat and barley, in Meunier, J.-D., Colin, F. (eds.), Phytoliths: Applications in Earth Sciences and Human History. Lisse: A. A. Balkema, pp. 289301.CrossRefGoogle Scholar
Ball, T., Vrydaghs, L., Van den Houwe, I., Manwaring, J., de Langhe, E. 2006. Differentiating banana phytoliths, wild and edible: Musa acuminata and Musa balbisiana. Journal of Archaeological Science 33, 1228–36.CrossRefGoogle Scholar
Baltensperger, D. D. 2002. Progress with proso, pearl and other millets, in Janick, J., Whipkey, A. (eds.), Trends in New Crops and New Uses. Alexandria, VA: ASHS Press, pp. 100–3.Google Scholar
Banks, W., Greenwood, C. T. 1975. Starch and Its Components. Edinburgh: Edinburgh University Press.Google Scholar
Barakat, H., Fahmy, A. 1999. Wild grasses as ‘Neolithic’ food resources in the eastern Sahara: A review of the evidence from Egypt, in Van der Veen, M. (ed.), The Exploitation of Plant Resources in Ancient Africa. New York: Kluwer Academic/Plenum, pp. 3346.CrossRefGoogle Scholar
Barnaud, A., Deu, M., Garine, E. et al. 2009. A weed-crop complex in sorghum: The dynamics of genetic diversity in a traditional farming system. American Journal of Botany 96, 1869–79. https://doi.org/10.3732/ajb.0800284.CrossRefGoogle Scholar
Barrett, S. C. H., Wilson, B. F. 1983. Colonizing ability in the Echinochloa crus-galli complex (barnyard grass). II. Seed biology. Canadian Journal of Botany 61, 556–62. https://doi.org/10.1139/b83-063.CrossRefGoogle Scholar
Bartlett, P. F. 1980. Agricultural Decision Making: Anthropological Contributions to Rural Development. San Diego, CA: Academic Press.Google Scholar
Barton, H. 2009. Starch granule taphonomy, in Haslam, M., Robertson, G., Crowther, A., Nugent, S., Kirkwood, L. (eds.), Archaeological Science under a Microscope: Studies in Residue and Ancient DNA Analysis in Honour of Thomas H. Loy. Canberra: Anu Press, pp. 129–40.Google Scholar
Barton, H., Matthews, P. J. 2006. Taphonomy, in Torrence, R., Barton, H. (eds.), Ancient Starch Research. Walnut Creek, CA: Left Coast Press, pp. 7594.Google Scholar
Barton, L., Newsome, S. D., Chen, F.-H. et al. 2009. Agricultural origins and the isotopic identity of domestication in northern China. Proceedings of the National Academy of Sciences USA 106, 5523–8. https://doi.org/10.1073/pnas.0809960106.CrossRefGoogle ScholarPubMed
Basappa, G. P., Muniyamma, M., Chinnappa, C. C. 1987. An investigation of chromosome numbers in the genus Brachiaria (Poaceae: Paniceae) in relation to morphology and taxonomy. Canadian Journal of Botany 65, 22972309. https://doi.org/10.1139/b87-313.CrossRefGoogle Scholar
Bates, J. 2011. Social organization and change in the Indus Civilization: Phytolith analysis of crop processing aims at Masudpur VII. Bioscience Horizons 4, 112.CrossRefGoogle Scholar
Bates, J. 2016. Social organisation and change in Bronze Age South Asia: A multi-proxy approach to urbanisation, deurbanisation and village life through phytolith and macrobotanical analysis (PhD). University of Cambridge, Cambridge.Google Scholar
Bates, J. 2019a. The published archaeobotanical data from the Indus Civilisation, South Asia, c.3200–1500 BC. Journal of Open Archaeology Data 7, 5. https://doi.org/10.5334/joad.57.CrossRefGoogle Scholar
Bates, J. 2019b. Oilseeds, spices, fruits and flavour in the Indus Civilisation. Journal of Archaeological Science: Reports 24, 879–87. https://doi.org/10.1016/j.jasrep.2019.02.033.Google Scholar
Bates, J. 2020. Kitchen gardens, wild forage and tree fruits: A hypothesis on the role of the Zaid season in the Indus Civilisation (c.3200–1300 BCE). Archaeological Research in Asia 21, 100175. https://doi.org/10.1016/j.ara.2019.100175.CrossRefGoogle Scholar
Bates, J. 2021a. Vitis sp., Vitaceae and viticulture in the Indus Civilization, South Asia ca. 3200–1500 BC: A critical review. Vegetation History and Archaeobotany 31, 205–20. https://doi.org/10.1007/s00334-021-00842-1.Google Scholar
Bates, J. 2021b. Fish net and line fibers in the Indus Civilization (c.3200–1300 BCE): Exploring the possible materials that Indus fisherfolk may have used as part of their fishing strategies. Archaeological Research in Asia 25, 100237. https://doi.org/10.1016/j.ara.2020.100237.CrossRefGoogle Scholar
Bates, J. 2022. The fits and starts of Indian rice domestication: How the movement of rice across northwest India impacted domestication pathways and agricultural stories. Frontiers in Ecology and Evolution 10, 924977. https://doi.org/10.3389/fevo.2022.924977.CrossRefGoogle Scholar
Bates, J. 2023a. The origins and development of agriculture in South Asia, in Oxford Research Encyclopedia of Anthropology. Oxford: Oxford University Press. https://doi.org/10.1093/acrefore/9780190854584.013.553.Google Scholar
Bates, J. 2023b. A materiality approach to moveable containers in the Indus tradition. Archaeological Research in Asia 33, 100418. https://doi.org/10.1016/j.ara.2022.100418.CrossRefGoogle Scholar
Bates, J., Choi, J. 2023. Different strategies in Indus agriculture: The goals and outcomes of farming choices. Antiquity 97.396, 113. https://doi.org/10.15184/aqy.2023.134.CrossRefGoogle Scholar
Bates, J., Petrie, C. A. 2016. Phytolith analysis and the Indus Civilisation: A review. Man and Environment 41, 3249.Google Scholar
Bates, J., Petrie, C. A., Ballantyne, R. et al. 2021c. Cereal grains and grain pulses: Reassessing the archaeobotany of the Indus Civilisation and Painted Grey Ware period occupation at Alamgirpur district Meerut U.P. Indian Journal of Archaeology 6, 495522.Google Scholar
Bates, J., Petrie, C., Singh, R. 2017a. Cereals, calories and change: Exploring approaches to quantification in Indus archaeobotany. Archaeological and Anthropological Sciences 10 1703–16 (2018). https://doi.org/10.1007/s12520-017-0489-2.Google Scholar
Bates, J., Petrie, C. A., Singh, R. N. 2017b. Approaching rice domestication in South Asia: New evidence from Indus settlements in northern India. Journal of Archaeological Science 78, 193201. https://doi.org/10.1016/j.jas.2016.04.018.CrossRefGoogle ScholarPubMed
Bates, J., Singh, R. N., Petrie, C. A. 2017c. Exploring Indus crop processing: Combining phytolith and macrobotanical analyses to consider the organisation of agriculture in northwest India c.3200–1500 BC. Vegetation History and Archaeobotany 26, 2541. https://doi.org/10.1007/s00334-016-0576-9.CrossRefGoogle ScholarPubMed
Bates, J., Wilcox Black, K., Morrison, K. D. 2022. Millet bread and pulse dough from early Iron Age South India: Charred food lumps as culinary indicators. Journal of Archaeological Science 137, 105531. https://doi.org/10.1016/j.jas.2021.105531.CrossRefGoogle Scholar
Behre, K.-E. 1981. The interpretation of anthropogenic indicators in pollen diagrams. Pollen et Spores 23, 225–45.Google Scholar
Belcher, W. R. 2003. Fish exploitation of the Indus Valley tradition, in Weber, S. A., Belcher, W. R. (eds.), Indus Ethnobiology. Oxford: Lexington Books, pp. 95174.Google Scholar
Belcher, W. R. 2005. Marine exploitation in the third millennium BC: The eastern coast of Pakistan. Paleorient 31, 7985.CrossRefGoogle Scholar
Belcher, W. R. 2018. Fish symbolism and fish remains in ancient South Asia, in Frenez, D., Jamison, G. M., Law, R., Vidale, M., Meadow, R. H. (eds.), Walking with the Unicorn: Social Organization and Material Culture in Ancient South Asia. Jonathan Mark Kenoyer Felicitation Volume. Oxford: Archaeopress, pp. 2741.Google Scholar
Beldados, A. 2012. The plant remains, in Manzo, A. (ed.), Italian Archaeological Expedition of the Eastern Sudan of the University of Naples L’Oriental, Report of the 2011 Field Season. Naples: Università degli studi di Napoli L’Orientale, pp. 98100.Google Scholar
Beldados, A., Costantini, L. 2011. Sorghum exploitation at Kassala and its environs: Northeastern Sudan in the second and first millenniums BC. Nyame Akuma 75, 33–9.Google Scholar
Beldados, A., Manzo, A., Murphy, C., Stevens, C. J., Fuller, D. Q. 2018. Evidence of sorghum cultivation and possible pearl millet in the second millennium BC at Kassala, eastern Sudan, in Mercuri, A. M., D’Andrea, A. C., Fornaciari, R., Höhn, A. (eds.), Plants and People in the African Past. Cham: Springer International, pp. 503–28. https://doi.org/10.1007/978-3-319-89839-1_22.Google Scholar
Bellwood, P. 2005. First Farmers: The Origins of Agricultural Societies. Malden, MA: Blackwell.Google Scholar
Bender, B. 1981. Gather-hunter intensification, in Sheridan, A., Bailey, G. (eds.), Economic Archaeology: Towards an Integration of Ecological and Social Approaches. British Archaeological Reports International Series 96. Oxford: British Archaeological Reports International Series, pp. 149–58.Google Scholar
Benecke, N., Neef, R. 2005. Faunal and plant remains from Sohr Damb/Nal: A prehistoric site (c.3000–2000 BC) in Central Balochistan, Pakistan, in Franke-Vogt, U., Weisshaar, H.-J. (eds.), South Asian Archaeology 2003. Aachen: Linden Soft, pp. 8191.Google Scholar
Berkelhammer, M., Sinha, A., Mudelsee, M. et al. 2010. Persistent multidecadal power of the Indian Summer Monsoon. Earth and Planetary Science Letters 290, 166–72. https://doi.org/10.1016/j.epsl.2009.12.017.CrossRefGoogle Scholar
Berkelhammer, M., Sinha, A., Stott, L. et al. 2012. An abrupt shift in the Indian Monsoon 4000 years ago. Geophysical Monograph Series 198, 7587.Google Scholar
Bernard, R. B., Toft, C. A. 2007. Effect of seed size on seedling performance in a long‐lived desert perennial shrub (Ericameria nauseosa: Asteraceae). International Journal of Plant Sciences 168, 1027–33. https://doi.org/10.1086/518942.Google Scholar
Berthouly-Salazar, C., Mariac, C., Couderc, M. et al. 2016. Genotyping-by-sequencing SNP identification for crops without a reference genome: Using transcriptome-based mapping as an alternative strategy. Frontiers in Plant Science 7. https://doi.org/10.3389/fpls.2016.00777.CrossRefGoogle ScholarPubMed
Bestel, S., Crawford, G. W., Liu, L. et al. 2014. The evolution of millet domestication, Middle Yellow River Region, North China: Evidence from charred seeds at the late Upper Paleolithic Shizitan Locality 9 site. The Holocene 24, 261–5. https://doi.org/10.1177/0959683613518595.CrossRefGoogle Scholar
Bhan, K. K. 1992. Shell industry, in Hegde, K. T. M., Bhan, K. K., Sonawane, V. H., Krishnan, K., Shah, D. R. (eds.), Excavations at Nageshwar: A Shell Working Site on the Gulf of Kutch. Archaeological Series. Baroda: Maharaja Sayajirao University.Google Scholar
Bhan, K. K., Ajithprasad, P. 2008. Excavations at Shikarpur 2007–2008: A Coastal Port and Craft Production Centre of the Indus Civilisation in Kutch, India.Google Scholar
Bhan, K. K., Sonawane, V. H., Ajithprasad, P., Pratapchandran, S. 2004. Excavations of important Harapan trading and craft production centre at Gola Dhoro (Bagasra) on the Gulf of Kutch, Gujarat, India. Journal of Interdicisplinary Studies of History and Archaeology 1.Google Scholar
Bhan, K. K., Vidale, M., Kenoyer, J. M. 2002. Some important aspects of the Harappan technological tradition, in Settar, S., Korisettar, R. (eds.), Indian Archaeology in Retrospect 2, Protohistory: Archaeology of the Harappan Civilization. New Delhi: Manohar, pp. 223–72.Google Scholar
Bhan, S. 1975. Excavation at Mitathal (1968) and Other Explorations in the Sutlej–Yamuna Divide. Kurukshetra: Kurukshetra University.Google Scholar
Bhumiratana, A. 1978. Mungbean and its utilization in Thailand, in Cowell, R. (ed.), Proceedings of the 1st International Mungbean Symposium. Tainan, Taiwan: Asian Vegetable Research and Development Center, p. 46.Google Scholar
Bisht, I. S., Bhat, K. V., Lakhanpaul, S. et al. 2005. Diversity and genetic resources of wild Vigna species in India. Genetic Resources and Crop Evolution 52, 5368.CrossRefGoogle Scholar
Bisht, M. S., Mukai, Y. 2001. Genomic in situ hybridization identifies genome donor of finger millet (Eleusine coracana). Theoretical and Applied Genetics 102, 825–32. https://doi.org/10.1007/s001220000497.CrossRefGoogle Scholar
Bisht, R. S. 1982. Excavations at Banawali, 1974–77, in Possehl, G. L. (ed.), Harappan Civilization: A Contemporary Perspective. New Delhi: Oxford & IBH, pp. 113–24.Google Scholar
Bisht, R. S. 1987. Further excavation at Banawali: 1983–1984, in Pande, B. M., Chattopadhyaya, B. D. (eds.), Archaeology and History. New Delhi: Agam Kala Prakashan, pp. 135–56.Google Scholar
Bisht, R. S. 1994. Secrets of the water fort. Down to Earth 2, 2531.Google Scholar
Bisht, R. S. 2005. The water structures and engineering of the Harappans at Dholavira (India), in Jarrige, C., Lefevre, V. (eds.), South Asian Archaeology 2001. Paris: Editions Recherche sur les Civilisations, pp. 1125.Google Scholar
Bisht, R. S. 2009. Paradigms of the Harappan engineering at Dholavira, in Srivastava, V. K., Singh, M. K. (eds.), A Festschrift in Honour of Professor D.K. Bhattacharya. Delhi: Palaka Prakashan.Google Scholar
Blanton, R. E., Fargher, L. F. 2008. Collective Action in the Formation of Pre-modern States. New York: Springer.CrossRefGoogle Scholar
Blanton, R. E., Feinman, G. M., Kowalewski, S. A., Peregrine, P. N. 1996. A dual-processual theory for the evolution of Mesoamerican civilization. Current Anthropology 37, 114. https://doi.org/10.1086/204471.CrossRefGoogle Scholar
Blench, R. 2016. Finger millet: The contribution of vernacular names towards its prehistory. Archaeological and Anthropological Sciences 8, 7988. https://doi.org/10.1007/s12520-012-0103-6.CrossRefGoogle Scholar
Bloch, M. 2005. Commensality and poisoning, in Bloch, M. (ed.), Essays on Cultural Transmission. Oxford: Berg, pp. 4560.Google Scholar
Boardman, S., Jones, G. E. M. 1990. Experiments on the effects of charring on cereal plant components. Journal of Archaeological Science 17, 112.CrossRefGoogle Scholar
Bogaard, A. 2011a. Plant Use and Crop Husbandry in an Early Neolithic Village: Vaihingen an der Enz, Baden-Württemberg. Bonn: Frankfurter Archäologische Schriften.Google Scholar
Bogaard, A. 2011b. Farming practice and society in the central European Neolithic and Bronze Age: An archaeobotanical response to the secondary products revolution model, in Hadjikoumis, A., Robinson, E., Viner, S. (eds.), The Dynamics of Neolithisation in Europe: Studies in Honour of Andrew Sherratt. Oxford: Oxbow Books, pp. 266–83.Google Scholar
Bogaard, A. 2015. New insights into early farming practice and diet from stable isotope analysis of crop assemblages, in Brink, K., Hyden, S., Lennberg, K., Larsson, L., Olausson, D. (eds.), Neolithic Diversities: Perspectives from a Conference in Lund, Sweden. Lund: Department of Archaeology and Ancient History, University of Lund, pp. 3342.Google Scholar
Bogaard, A. 2017. The archaeology of food surplus. World Archaeology 49, 17. https://doi.org/10.1080/00438243.2017.1294105.CrossRefGoogle Scholar
Bogaard, A., Hodgson, J. G., Wilson, P. J., Band, S. R. 1998. An index of weed size for assessing the productivity of ancient crop fields. Vegetation History and Archaeobotany 7, 1723.CrossRefGoogle Scholar
Bogaard, A., Palmer, C., Jones, G., Charles, M., Hodgson, J. G. 1999. An FIBS approach to the use of weed ecology for archaeobotanical recognition of crop rotation. Journal of Archaeological Science 26, 1211–24.CrossRefGoogle Scholar
Boivin, N., Fuller, D. Q. 2009. Shell middens, ships and seeds: Exploring coastal subsistence, maritime trade and the dispersal of domesticates in and around the ancient Arabian Peninsula. Journal of World Prehistory 22, 113–80. https://doi.org/10.1007/s10963-009-9018-2.CrossRefGoogle Scholar
Boivin, N., Fuller, D. Q., Crowther, A., 2012. Old World globalization and the Columbian exchange: Comparison and contrast. World Archaeology 44, 452–69. https://doi.org/10.1080/00438243.2012.729404.CrossRefGoogle Scholar
Boivin, N., Fuller, D. Q., Korisettar, R., Petraglia, M. 2008. First farmers in South India: The role of internal processes and external influences in the emergence and transformations of South India’s earliest settled societies. Pragdhara 18, 179200.Google Scholar
Boivin, N., Korisettar, R., Fuller, D. Q. 2005. Further research on the southern Neolithic and the ashmound tradition: The Sanganakallu–Kupgal Archaeological Research Project Interim Report. Journal of Interdicisplinary Studies of History and Archaeology 2, 6392.Google Scholar
Booth, R. K., Jackson, S. T., Forman, S. L. et al. 2005. A severe centennial-scale drought in midcontinental North America 4200 years ago and apparent global linkages. The Holocene 15, 321–8. https://doi.org/10.1191/0959683605hl825ft.CrossRefGoogle Scholar
Bor, N. L. 1960. The Grasses of Burma, Ceylon, India and Pakistan. London: Pergamon.Google Scholar
Boserup, E. 1965. The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure. London: Allen & Unwin.Google Scholar
Boserup, E. 1981. Population and Technological Change: Study of Long-Term Trends. Chicago, IL: University of Chicago Press.Google Scholar
Bouby, L., Figueiral, I., Bouchette, A. et al. 2013. Bioarchaeological insights into the process of domestication of grapevine (Vitis vinifera L.) during Roman times in southern France. PLoS One 8, e63195. https://doi.org/10.1371/journal.pone.0063195.CrossRefGoogle ScholarPubMed
Bourdieu, P. 1984. Distinction: A Social Critique of the Judgement of Taste. London: Routledge.Google Scholar
Bourgeois, G., Gouin, P. 1995. Résultats d’une Analyse de Traces Organiques Fossiles dans une ‘Faisselle’ Harappéenne. Paléorient 21, 125–8.CrossRefGoogle Scholar
Braadbaart, F., Van der Horst, J., Boon, J. J., Van Bergen, P. F. 2004. Laboratory simulations of the transformation of emmer wheat as a result of heating. Journal of Thermal Analysis and Calorimetry 77, 957–73.CrossRefGoogle Scholar
Bray, T. (ed.). 2003. The Archaeology and Politics of Food and Feasting in Early States and Empires. New York: Kluwer Academic/Plenum.CrossRefGoogle Scholar
Breitenbach, S. 2009. Changes in monsoonal precipitation and atmospheric circulation during the Holocene reconstructed from stalagmites from northeastern India (PhD). University of Potsdam, Brandenburg.Google Scholar
Briggs, D. E. G., Evershed, R. P., Lockheart, M. J. 2000. The biomolecular paleontology of continental fossils. Paleobiology 26, 169–93. https://doi.org/10.1666/0094-8373(2000)26[169:TBPOCF]2.0.CO;2.CrossRefGoogle Scholar
Briggs, D. E. G., Summons, R. E. 2014. Ancient biomolecules: Their origins, fossilization, and role in revealing the history of life: Prospects & overviews. BioEssays 36, 482–90. https://doi.org/10.1002/bies.201400010.CrossRefGoogle Scholar
Briuer, F. L. 1976. New clues to stone tool function: Plant and animal residues. American Antiquity 41, 478–84. https://doi.org/10.2307/279013.CrossRefGoogle Scholar
Brookfield, H. C. 1972. Intensification and disintensification in Pacific agriculture: A theoretical approach. Pacific Viewpoint 13, 3048. https://doi.org/10.1111/apv.131003.CrossRefGoogle Scholar
Brookfield, H. C. 1986. Intensification intensified. Archaeology in Oceania 21, 177–80.CrossRefGoogle Scholar
Bruier, F. L. 1976. New clues to stone tool function: Plant and animal residues. American Antiquity 41, 478–84. https://doi.org/10.2307/279013.Google Scholar
Brunken, J. N. 1977. A systematic study of Pennisetum sect. Pennisetum (Gramineae). American Journal of Botany 64, 161–7.CrossRefGoogle Scholar
Bryant, V. M., Reinhard, K. J. 2012. Coprolites and archaeology: The missing links in understanding human health, in Hunt, A. P., Milan, J., Lucas, S. G., Spielmann, J. A. (eds.), Vertebrate Coprolites: Bulletin 57. Albuquerque: New Mexico Museum of Natural History and Science, pp. 379–87.Google Scholar
Bryson, R. A., Swain, A. M. 1981. Holocene variations of monsoon rainfall in Rajasthan. Quaternary Research 16, 135–45. https://doi.org/10.1016/0033-5894(81)90041-7.CrossRefGoogle Scholar
Burchfield, R. W. (ed.). 1971. The Compact Edition of the Oxford English Dictionary. Glasgow: Oxford University Press.Google Scholar
Burgarella, C., Cubry, P., Kane, N. A. et al. 2018. A western Sahara centre of domestication inferred from pearl millet genomes. Nature Ecology and Evolution 2, 1377–80. https://doi.org/10.1038/s41559-018-0643-y.CrossRefGoogle ScholarPubMed
Burts, B. C. 1941. Comments on cereals and fruits, in Vats, M. S. (ed.), Excavations at Mohenjo-Daro. New Delhi: Archaeological Survey of India, p. 466.Google Scholar
Butler, A. 1989. Cryptic anatomical characters as evidence of early cultivation in the grain legumes (Pulses), in Harris, D. R., Hillman, G. C. (eds.), Foraging and Farming. London: Unwin and Hyman, pp. 390407.Google Scholar
Butler, A. 1996. Trifolieae and related seeds from archaeological contexts: Problems in identification. Vegetation History and Archaeobotany 5, 157–67. https://doi.org/10.1007/BF00189447.CrossRefGoogle Scholar
Butler, A. 1999. Traditional seed cropping systems in the temperate Old World: Models for antiquity, in Gosden, C., Hather, J. (eds.), The Prehistory of Food: Appetites for Change. London: Routledge, pp. 463–77.Google Scholar
Butler, A., Tesfay, Z., D’Andrea, C., Lyons, D. 1999. The ethnobotany of Lathyrus sativus L. in the highlands of Ethiopia, in Van der Veen, M. (ed.), The Exploitation of Plant Resources in Ancient Africa. New York: Kluwer Academic/Plenum, pp. 123–36.Google Scholar
Butterfield, J. (ed.). 2003. Collins English Dictionary: Complete and Unabridged, 6th edition. Glasgow: HarperCollins.Google Scholar
Butts, S. H., Briggs, D. E. G. 2011. Silicification through time, in Allison, P. A., Bottjer, D. J. (eds.), Taphonomy: Aims and Scope Topics in Geobiology. Dordrecht: Springer, pp. 411–34.Google Scholar
Butzer, K. W. 1982. Archaeology as Human Ecology: Method and Theory for a Contextual Approach. New York: Cambridge University Press.CrossRefGoogle Scholar
Cabanes, D., Weiner, S., Shahack-Gross, R. 2011. Stability of phytoliths in the archaeological record: A dissolution study of modern and fossil phytoliths. Journal of Archaeological Science 38, 2480–90. https://doi.org/10.1016/j.jas.2011.05.020.CrossRefGoogle Scholar
Cai, H., Morishima, H. 2002. QTL clusters reflect character associations in wild and cultivated rice. Theoretical and Applied Genetics 104, 1217–28. https://doi.org/10.1007/s00122-001-0819-7.CrossRefGoogle ScholarPubMed
Cai, Y., Zhang, H., Cheng, H. et al. 2012. The Holocene Indian Monsoon variability over the southern Tibetan Plateau and its teleconnections. Earth and Planetary Science Letters 335–6, 135–44. https://doi.org/10.1016/j.epsl.2012.04.035.Google Scholar
Cartwright, C. R. 2003. Grapes or raisins? An early Bronze Age larder under the microscope. Antiquity 77, 345–8. https://doi.org/10.1017/S0003598X00092322.CrossRefGoogle Scholar
Casimir, M. J., Rao, A. 1985. Vertical control in the western Himalaya: Some notes on the pastoral ecology of the nomadic Bakrwal of Jammu and Kashmir. Mountain Research and Development 5, 221–32. https://doi.org/10.2307/3673355.CrossRefGoogle Scholar
Castillo, C. C. 2019. Preservation bias: Is rice overrepresented in the archaeological record? Archaeological and Anthropological Sciences 11, 6451–71. https://doi.org/10.1007/s12520-018-0717-4.CrossRefGoogle Scholar
Castillo, C. C., Tanaka, K., Sato, Y.-I. et al. 2015. Archaeogenetic study of prehistoric rice remains from Thailand and India: Evidence of early japonica in South and Southeast Asia. Archaeological and Anthropological Sciences 8, 523–43. https://doi.org/10.1007/s12520-015-0236-5.Google Scholar
Cernusak, L. A., Ubierna, N., Winter, K. et al. 2013. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytologyist 200, 950–65. https://doi.org/10.1111/nph.12423.Google ScholarPubMed
Chakrabarti, D. K. 1984. Origins of the Indus Civilization: Theories and problems, in Lal, B. B., Gupta, S. P. (eds.), Frontiers of the Indus Civilization. New Delhi: Books & Books, pp. 4350.Google Scholar
Chakrabarti, D. K. 1988. Theoretical Issues in Indian Archaeology. New Delhi: Munshiram Manoharlal.Google Scholar
Chakrabarti, D. K. 1995. The Archaeology of Ancient Indian Cities. Oxford: Oxford University Press.Google Scholar
Chakrabarti, D. K. 1999. India: An Archaeological History. Palaeolithic Beginnings to Early Historic Foundations. New Delhi: Oxford University Press.Google Scholar
Chakrabarti, D. K. 2000. Mahajanapada states of early historic India, in Hansen, M. H. (ed.), A Comparative Study of Thirty City-State Cultures. Copenhagen: Royal Danish Academy of Sciences and Letters, pp. 375–92.Google Scholar
Chakraborty, K. S., Slater, G. F., Miller, H. M.-L., Shirvalkar, P., Rawat, Y. 2020. Compound specific isotope analysis of lipid residues provides the earliest direct evidence of dairy product processing in South Asia. Scientific Reports 10, 16095. https://doi.org/10.1038/s41598-020-72963-y.CrossRefGoogle ScholarPubMed
Chalam, G. V., Venkateswarlu, J. 1965. Introduction to AgriculturalBotany in India vol. 1. Bombay: Asia Publishing House.Google Scholar
Chambers, F. 1886. Sunspots and prices of Indian food-grains. Nature 34, 100–4. https://doi.org/10.1038/034100c0.CrossRefGoogle Scholar
Chambers, R., Chambers, W. 1886. Chambers’s Encyclopedia: A Dictionary of Universal Knowledge for the People. London: W. and R. Chambers.Google Scholar
Chanchala, S. 1991. Harappan plant economy in the Rann of Kutch. Geophytology 23, 227–33.Google Scholar
Chandel, K. P. S., Lester, R. N., Starlin, R. J. 1984. The wild ancestors of Urad and Mung beans (Vigna mungo (L.) Hepper and V. radiata (L.) Wilczek). Botanical Journal of the Linnean Society 89, 8596.CrossRefGoogle Scholar
Charles, M., Bogaard, A. 2010. Charred plant macro-remains from Jeitun: Implications for early cultivation and herding practices in western Central Asia, in Harris, D. R. (ed.), Origins of Agriculture in Western Central Asia. Philadelphia: University of Pennsylvania Museum, pp. 150–65.Google Scholar
Charles, M., Jones, G., Hodgson, J. G. 1997. FIBS in archaeobotany: Functional interpretation of weed floras in relation to husbandry practices. Journal of Archaeological Science 24, 1151–61.CrossRefGoogle Scholar
Charlton, T. H., Nichols, D. L. 1997. The city-state concept, development and application, in Nichols, D. L., Charlton, T. H. (eds.), The Archaeology of City-States, Cross-Cultural Approaches. Washington, DC: Smithsonian Institute Press, pp. 114.Google Scholar
Chase, A. F., Chase, D. Z. 1983. Intensive gardening amongst the late classic Maya: A possible example at Ixtuz, Guatemala. Expedition 25, 211.Google Scholar
Chase, B. 2010. Social change at the Harappan settlement of Gola Dhoro: A reading from animal bones. Antiquity 84, 528–43.CrossRefGoogle Scholar
Chase, B. 2012a. Crafting Harappan cuisine on the Saurashtran frontier of the Indus Civilisation, in Graff, S. R., Rodriguez-Alegria, E. (eds.), The Menial Art of Cooking. Archaeological Studies of Cooking and Food Preparation. Denver: University Press of Colorado, pp. 145–72.Google Scholar
Chase, B. 2012b. More than one way to skin a goat? Domestic technologies of the Indus Civilisation in Baluchistan and Gujarat, in Lefevre, V. (ed.), Orientalismes De l’archaeologie Au Musee: Melanges Offert a Jean-Francois Jarrige. Turnhout: Brepols, pp. 161–76.Google Scholar
Chase, B. 2014. On the pastoral economies of Harappan Gujarat: Faunal analyses at Shikarpur in context. Heritage: Journal of Multidisciplinary Studies in Archaeology 2, 122.Google Scholar
Chase, B., Ajithprasad, P., Rajesh, S. V., Patel, A., Sharma, B. 2014b. Materializing Harappan identities: Unity and diversity in the borderlands of the Indus Civilization. Journal of Anthropological Archaeology 35, 6378. https://doi.org/10.1016/j.jaa.2014.04.005.CrossRefGoogle Scholar
Chase, B., Meiggs, D., Ajithprasad, P. 2020. Pastoralism, climate change, and the transformation of the Indus Civilization in Gujarat: Faunal analyses and biogenic isotopes. Journal of Anthropological Archaeology 59, 101173. https://doi.org/10.1016/j.jaa.2020.101173.CrossRefGoogle Scholar
Chase, B., Meiggs, D., Ajithprasad, P., Slater, P. A. 2014a. Pastoral land-use of the Indus Civilization in Gujarat: Faunal analyses and biogenic isotopes at Bagasra. Journal of Archaeological Science 50, 115.CrossRefGoogle Scholar
Chattopadaya, U. C. 2002. Researches in archaeozoology of the Holocene period (including the Harappan tradition in India and Pakistan), in Settar, S., Korisettar, R. (eds.), Indian Archaeology in Retrospect: Archaeology and Interactive Disciplines vol. 3. New Delhi: Manohar, pp. 365422.Google Scholar
Chauhan, B. S., Johnson, D. E. 2011. Ecological studies on Echinochloa crus-galli and the implications for weed management in direct-seeded rice. Crop Protection 30, 1385–91. https://doi.org/10.1016/j.cropro.2011.07.013.CrossRefGoogle Scholar
Chauhan, D. K., Tripathi, D. 2012. Phytolith study: Preliminary observations of phytolith study of Kanmer, in Kharakwal, J. S., Rawat, Y. S., Osada, T. (eds.), Excavation at Kanmer 2005–6–2008–9. Kyoto: Research Institute for Humanity and Nature, pp. 813–16.Google Scholar
Chauhan, M. S., Pokharia, A. K., Srivastava, R. K. 2015. Late Quaternary vegetation history, climatic variability and human activity in the Central Ganga Plain, deduced by pollen proxy records from Karela Jheel, India. Quaternary International 371, 144–56. https://doi.org/10.1016/j.quaint.2015.03.025.CrossRefGoogle Scholar
Chen, I., Manchester, S. R. 2011. Seed morphology of Vitaceae. International Journal of Plant Sciences 172, 135. https://doi.org/10.1086/657283.CrossRefGoogle Scholar
Chen, F., Yu, Z., Yang, M. et al. 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews 27, 351–64. https://doi.org/10.1016/j.quascirev.2007.10.017.CrossRefGoogle Scholar
Chen, S., Renvoize, S. A. 2006. Panicum Linnaeus, Sp. Pl. 1:55. 1753. Flora of China 22, 504–10.Google Scholar
Childe, V. G. 1929. The Most Ancient East: The Oriental Prelude to European Prehistory. London: K. Paul Trench Trubner & Company.Google Scholar
Childe, V. G. 1950. The urban revolution. Town Planning Review 21, 317.CrossRefGoogle Scholar
Chiou, K. L., Cook, A. G., Hastorf, C. A. 2013. Flotation versus dry sieving archaeobotanical remains: A case history from the Middle Horizon southern coast of Peru. Journal of Field Archaeology 38, 3853. https://doi.org/10.1179/0093469012Z.00000000035.CrossRefGoogle Scholar
Choi, J. Y., Platts, A. E., Fuller, D. Q. et al. 2017. The rice paradox: Multiple origins but single domestication in Asian rice. Molecular Biology and Evolution 34, 969–79. https://doi.org/10.1093/molbev/msx049.Google ScholarPubMed
Church, A. H. 1886. Food Grains of India. London: Chapman and Hall.Google Scholar
Clapham, A. J., Rowley-Conwy, P. J. 2007. New discoveries at Qasr Ibrim, Lower Nubia, in Cappers, R. (ed.), Fields of Change: Proceedings of the 4th International Workshop of African Archaeobotany. Groningen: Barkhuis and Groningen University Library, pp. 157–64.Google Scholar
Clark, S. R. 2003. Representing the Indus body: Sex, gender, sexuality, and the anthropomorphic terracotta figurines from Harappa. Asian Perspectives 42, 304–28.CrossRefGoogle Scholar
Clark, S. R. 2011. The Social Lives of Figurines: Recontextualizing the Third Millennium BC Terracotta Figurines from Harappa (Pakistan). Oxford: Oxbow Books.Google Scholar
Clayton, W. D., Vorontsova, M. S., Harman, K. T., Williamson, H. 2006 onwards. GrassBase: The Online World Grass Flora. www.kew.org/data/grasses-db.html.Google Scholar
Cleuziou, S., Méry, S. 2002. In between the great powers, in Tosi, M., Cleuziou, S., Zairns, J. (eds.), Essays on the Late Prehistory of the Arabian Peninsula. Serie Orientale Roma. Rome: Instituto Italian per l’Africa e l’Oriente, pp. 265308.Google Scholar
Cleuziou, S., Tosi, M. 2000. Ra’s al-Jinz and the prehistoric coastal cultures of the Ja’alan. Journal of Oman Studies 11, 1973.Google Scholar
Cleuziou, S., Tosi, M., Frenez, D., Garba, R. 2020. In the Shadow of the Ancestors: The Prehistoric Foundations of the Early Arabian Civilization in Oman, 2nd expanded edition. Oxford: Archaeopress.Google Scholar
Clift, P. D., Carter, A., Giosan, L. et al. 2012. U-Pb zircon dating evidence for a Pleistocene Sarasvati River and capture of the Yamuna River. Geology 40, 211–14.CrossRefGoogle Scholar
Clift, P. D., Plumb, R. A. 2008. The Asian Monsoon: Causes, History and Effects. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Clift, P. D., Plumb, R. A. 2014. The Asian Monsoon: Causes, History and Effects, 1st paperback edition. Cambridge: Cambridge University Press.Google Scholar
Colledge, S. 2004. Reappraisal of the archaeobotanical evidence for the emergence and dispersal of the ‘founder crops’, in Peltenberg, E., Wasse, A. (eds.), Neolithic Revolution: New Perspectives on South-West Asia in the Light of Recent Discoveries in Cyprus. Oxford: Oxbow Books, pp. 4960.Google Scholar
Collins, M. J., Copeland, L. 2011. Ancient starch: Cooked or just old? Proceedings of the National Academy of Sciences USA 108, E145, author reply E146. https://doi.org/10.1073/pnas.1103241108.CrossRefGoogle ScholarPubMed
Coningham, R. A. E. 1995. Dark age or continuum? An archaeological analysis of the second emergence of urbanism in South Asia, in Allchin, F. R. (ed.), The Archaeology of Early Historic South Asia. Cambridge: Cambridge University Press, pp. 5472.Google Scholar
Cook, E. R., Anchukaitis, K. J., Buckley, B. M. et al. 2010. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–9. https://doi.org/10.1126/science.1185188.CrossRefGoogle ScholarPubMed
Cooke, M., Fuller, D. Q., Rajan, K. 2005. Early historic agriculture in southern Tamil Nadu: Archaeobotanical research at Mangudi, Kodumanal and Perur, in Franke-Vogt, U., Weisshaar, J. (eds.), South Asian Archaeology 2003: Proceedings of the European Association for South Asian Archaeology Conference, Bonn, Germany, 7th–11th July 2003. Aachen: Linden Soft, pp. 329–34.Google Scholar
Copeland, L., Hardy, K. 2018. Archaeological starch. Agronomy 8, 4. https://doi.org/10.3390/agronomy8010004.CrossRefGoogle Scholar
Cork, E. 2011. Rethinking the Indus: A Comparative Re-evaluation of the Indus Civilisation as an Alternative Paradigm in the Organisation and Structure of Early Complex Societies. British Archaeological Reports International Series. Oxford: Archaeopress.Google Scholar
Cortello, M. R., Pochettina, M. L. 1994. Starch grain analysis as a microscopic diagnostic feature in the identification of plant material. Economic Botany 48, 171–81.Google Scholar
Cortesi, E., Tosi, M., Lazzari, A., Vidale, M. 2008. Cultural relationships beyond the Iranian Plateau: The Helmand Civilization, Baluchistan and the Indus Valley in the 3rd millennium BCE. Paléorient 34, 535.CrossRefGoogle Scholar
Costantini, L. 1979a. Plant remains at Pirak, in Jarrige, J.-F., Santoni, M. (eds.), Fouilles de Pirak. Paris: Diffusion de Boccard, pp. 326–33.Google Scholar
Costantini, L. 1979b. Notes on the palaeoethnobotany of proto-historical Swat, in Taddei, M. (ed.), South Asian Archaeology 1977. Naples: Instituto Universitario Orientale, pp. 703–8.Google Scholar
Costantini, L. 1979c. Wood remains from Shahr-i-Shokta: A source of information for the ancient environment and technology in protohistoric Sistan, in Taddei, M. (ed.), South Asian Archaeology 1977. Naples: Instituto Universitario Orientale, pp. 87121.Google Scholar
Costantini, L. 1981. Palaeoethnobotany at Pirak: A contribution to the 2nd millenium BC of the Sibi-Kacchi Plain, Pakistan, in Hartel, H. (ed.), South Asian Archaeology 1979. Berlin: Dietrich Reimer, pp. 271–8.Google Scholar
Costantini, L. 1984. The beginnings of agriculture in the Kachi Plain: The evidence from Mehrgarh, in Allchin, B. (ed.), South Asian Archaeology 1981. Cambridge: Cambridge University Press, pp. 2933.Google Scholar
Costantini, L. 1987. Appendix B: Vegetal remains, in Stacul, G. (ed.), Prehistoric and Protohistoric Swat, Pakistan. Rome: Instituto Italiano per il Medio es Estremo Oriente, pp. 155–65.Google Scholar
Costantini, L. 1989. The beginning of agriculture in the Kachi Plain: The evidence from Mehrgarh, in Allchin, B. (ed.), South Asian Archaeology 1981. Cambridge: Cambridge University Press.Google Scholar
Costantini, L. 1990a. Harappan agriculture in Pakistan: The evidence from Nausharo, in Taddei, M. (ed.), South Asian Archaeology 1987. Rome: Instituto Italiano per il Medio es Estremo Oriente, pp. 321–32.Google Scholar
Costantini, L. 1990b. Ecology and farming of the protohistoric communities in the central Yemen highlands, in De Maigret, A. (ed.), The Bronze Age Culture of Hawlan At-Tiyal and Al-Hada (Republic of Yemen). Rome: Ismeo, pp. 187204.Google Scholar
Costantini, L. 2008. The first farmers in western Pakistan: The evidence of the Neolithic agro-pastoral settlement of Mehrgarh. Pragdhara 18, 167–78.Google Scholar
Costantini, L., Costantini-Biasini, L. 1985. Agriculture in Baluchistan between the 7th and the 3rd millennium B.C. Newsletter of Baluchistan Studies 2, 1630.Google Scholar
Costantini, L., Costantini-Biasini, L. 1986. Laboratory of bioarchaeology. East and West 36, 354–65.Google Scholar
Costantini, L., Dyson, R. H. Jr. 1990. The ancient agriculture of the Damghan Plain: The archaeological evidence from Tepe Hissar, in Miller, N. F. (ed.), Economy and Settlement in the Near East: Analyses of Ancient Sites and Materials. MASCA Research Papers in Science and Archaeology 7 Supplement. Philadelphia: University of Pennsylvania, pp. 4668.Google Scholar
Costea, M., Tardif, F. J. 2002. Taxonomy of the most common weedy European Echinochloa species (Poaceae: Panicoideae) with special emphasis on characters of the lemma and caryopsis. Sida 20, 525–48.Google Scholar
Coster, A. C. F., Field, J. H. 2015. What starch grain is that? A geometric morphometric approach to determining plant species origin. Journal of Archaeological Science 58, 925. https://doi.org/10.1016/j.jas.2015.03.014.CrossRefGoogle Scholar
Costin, C. L. 1991. Craft specialisation: Issues in defining, documenting and explaining the organization of production, in Schiffer, M. B. (ed.), Archaeological Method and Theory. Tuscon: University of Arizona Press, pp. 151.Google Scholar
Courty, M. A. 1995. Late Quaternary environmental changes and natural constraints to ancient land use (northwest India), in Johnson, E. (ed.), Ancient Peoples and Landscapes. Lubbock: Museum of Texas Tech University, pp. 105–26.Google Scholar
Cowgill, G. L. 2004. Origins and development of urbanism: Archaeological perspectives. Annual Review of Anthropology 33, 525–49. https://doi.org/10.1146/annurev.anthro.32.061002.093248.CrossRefGoogle Scholar
Crawford, G. W., Chen, X., Luan, F., Wang, J. 2016. People and plant interaction at the Houli Culture Yuezhuang site in Shandong Province, China. The Holocene 26, 15941604. https://doi.org/10.1177/0959683616650269.CrossRefGoogle Scholar
Crowther, A., Haslam, M., Oakden, N., Walde, D., Mercader, J. 2014. Documenting contamination in ancient starch laboratories. Journal of Archaeological Science 49, 90104. https://doi.org/10.1016/j.jas.2014.04.023.CrossRefGoogle Scholar
Crumley, C. L. 1995. Heterarchy and the analysis of complex societies. Archeological Papers of the American Anthropological Association 6, 15.CrossRefGoogle Scholar
Cui, Y. X., Xu, G. W., Magill, C. W., Schertz, K. F., Hart, G. E. 1995. RFLP-based assay of Sorghum bicolor (L.) Moench genetic diversity. Theoretical and Applied Genetics 90, 787–96.CrossRefGoogle ScholarPubMed
Curet, L. A., Pestle, W. J. 2010. Identifying high-status foods in the archeological record. Journal of Anthropological Archaeology 29, 413–31. https://doi.org/10.1016/j.jaa.2010.08.003.CrossRefGoogle Scholar
Czaja, A. Th. 1978. Structure of starch grains and the classification of vascular plant families. Taxon 27, 463–70. https://doi.org/10.2307/1219895.CrossRefGoogle Scholar
Dahlberg, J. A., Wasylikowa, K. 1996. Image and statistical analyses of early sorghum remains (8000 B. P.) from the Nabta Playa archaeological site in the Western Desert, southern Egypt. Vegetation History and Archaeobotany 5, 293–9. https://doi.org/10.1007/BF00195297.CrossRefGoogle Scholar
Dai, F., Nevo, E., Wu, D. et al. 2012. Tibet is one of the centers of domestication of cultivated barley. Proceedings of the National Academy of Sciences USA 109, 16969–73. https://doi.org/10.1073/pnas.1215265109.CrossRefGoogle ScholarPubMed
Dales, G. 1964. The mythical massacre at Mohenjo-daro. Expedition 6, 3643.Google Scholar
Dales, G. 1986. Some fresh approaches to old problems in Harappan archaeology, in Jacobsen, J. (ed.), Studies in the Archaeology of India and Pakistan. New Delhi: Oxford and IBH, pp. 117–36.Google Scholar
Dales, G., Kenoyer, J. M. 1991. Summaries of five seasons of research at Harappa (District Sahiwal, Punjab, Pakistan) 1986–1990, in Meadow, R. H. (ed.), Harappa Excavations 1986–1990. Madison, WI: Prehistory Press, pp. 185262.Google Scholar
d’Alpoim Guedes, J. 2011. Millets, rice, social complexity, and the spread of agriculture to the Chengdu Plain and southwest China. Rice 4, 104–13. https://doi.org/10.1007/s12284-011-9071-1.CrossRefGoogle Scholar
d’Alpoim Guedes, J. 2018. Did foragers adopt farming? A perspective from the margins of the Tibetan Plateau. Quaternary International 489, 91100. https://doi.org/10.1016/j.quaint.2016.12.010.CrossRefGoogle Scholar
d’Alpoim Guedes, J., Lu, H., Li, Y. et al. 2014. Moving agriculture onto the Tibetan Plateau: The archaeobotanical evidence. Archaeological and Anthropological Sciences 6, 255–69. https://doi.org/10.1007/s12520-013-0153-4.CrossRefGoogle Scholar
d’Alpoim Guedes, J., Manning, S. W., Bocinsky, R. K. 2016. A 5,500-year model of changing crop niches on the Tibetan Plateau. Current Anthropology 57, 517–22. https://doi.org/10.1086/687255.CrossRefGoogle Scholar
d’Alpoim Guedes, J., Spengler, R. 2015. Sampling strategies in paleoethnobotanical analysis, in Marston, J. M., d’Alpoim Guedes, J., Warinner, C. (eds.), Method and Theory in Paleoethnobotany. Denver: University Press of Colorado, pp. 7794. https://doi.org/10.5876/9781607323167.c005.Google Scholar
d’Andrea, A. C. 2008. T’ef (Eragrostis tef) in ancient agricultural systems of highland Ethiopia. Economic Botany 62, 547–66. https://doi.org/10.1007/s12231-008-9053-4.CrossRefGoogle Scholar
d’Andrea, A. C., Kahlheber, S., Logan, A. L., Watson, D. J. 2007. Early domesticated cowpea (Vigna unguiculata) from central Ghana. Antiquity 81, 686–98. https://doi.org/10.1017/S0003598X00095661.Google Scholar
d’Andrea, A. C., Klee, M., Casey, J. 2001. Archaeobotanical evidence for pearl millet (Pennisetum glaucum) in sub-Saharan West Africa. Antiquity 75, 341–8.Google Scholar
Danino, M. 2010. The Lost River: On the Trail of the Saraswati. Delhi: Penguin.Google Scholar
Das, S., Mishra, R. C., Rout, G. R., Aparajita, S. 2007. Genetic variability and relationships among thirty genotypes of finger millet (Eleusine coracana L. Gaertn.) using RAPD markers. Zeitschrift für Naturforschung C 62, 116–22. https://doi.org/10.1515/znc-2007-1-220.CrossRefGoogle ScholarPubMed
de Alencar Figueiredo, L. F., Calatayud, C., Dupuits, C. et al. 2008. Phylogeographic evidence of crop neodiversity in Sorghum.Genetics 179, 9971008. https://doi.org/10.1534/genetics.108.087312.CrossRefGoogle ScholarPubMed
Dekker, J. 2003. The foxtail (Setaria) species-group. Weed Science 51, 641–56. https://doi.org/10.1614/P2002-IR.CrossRefGoogle Scholar
Delhon, C., Alexandre, A., Berger, J.-F. et al. 2003. Phytolith assemblages as a promising tool for reconstructing Mediterranean Holocene vegetation. Quaternary Research 59, 4860.CrossRefGoogle Scholar
DeMarrais, E. 2013. Understanding heterarchy: Crafting and social projects in pre-Hispanic northwest Argentina. Cambridge Archaeological Journal 23, 345–62. https://doi.org/10.1017/S0959774313000474.CrossRefGoogle Scholar
de Moulins, D., Phillips, C. S., Durrani, N. 2003. The archaeobotanical record of Yemen and the question of Afro-Asian contacts, in Neumann, K., Butler, A., Kahlheber, S. (eds.), Food, Fuel and Fields: Progress in African Archaeobotany. Africa Praehistorica 15. Cologne: Heinrich–Barth Institute, pp. 213–28.Google Scholar
Demske, D., Tarasov, P. E., Wünnemann, B., Riedel, F. 2009. Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeography, Palaeoclimatology, Palaeoecology 279, 172–85. https://doi.org/10.1016/j.palaeo.2009.05.008.CrossRefGoogle Scholar
Deng, Z., Qin, L., Gao, Y. et al. 2015. From early domesticated rice of the Middle Yangtze Basin to millet, rice and wheat agriculture: Archaeobotanical macro-remains from Baligang, Nanyang Basin, Central China (6700–500 BC). PLoS One 10, e0139885. https://doi.org/10.1371/journal.pone.0139885.CrossRefGoogle ScholarPubMed
Denham, T. 2005. Envisaging early agriculture in the highlands of New Guinea: Landscapes, plants and practices. World Archaeology 37, 290306. https://doi.org/10.1080/00438240500095447.CrossRefGoogle Scholar
Deotare, B. C., Kajale, M. D., Rajaguru, S. N., Basavaiah, N. 2004. Late Quaternary geomorphology, palynology and magnetic susceptibility of playas in western margin of the Indian Thar Desert. Journal of the Indian Geophysical Union 8, 1525.Google Scholar
Department of Revenue, Rehabilitation and Disaster Management, Government of Punjab, India. www.revenue.punjab.gov.in.Google Scholar
Deveraj, D. V., Shaffer, J. G., Patil, C. S., Balasubramanya, . 1995. The Watgal excavations: An interim report. Man and Environment 20, 5774.Google Scholar
Devos, K. M., Hanna, W. W., Ozias-Akins, P. 2006. Pearl millet, in Kole, C. (ed.), Cereals and Millets: Genome Mapping and Molecular Breeding in Plants. Berlin: Springer, pp. 303–23. https://doi.org/10.1007/978-3-540-34389-9_8.Google Scholar
De Wet, J. M. J. D. 1978. Systematics and evolution of Sorghum Sect. Sorghum (Gramineae). American Journal of Botany 65, 477–84. https://doi.org/10.1002/j.1537-2197.1978.tb06096.x.CrossRefGoogle Scholar
De Wet, J. M. J. D. 1992. The three phases of cereal domestication, in Chapman, G. P. (ed.), Grass Evolution and Domestication. Cambridge: Cambridge University Press, pp. 176–98.Google Scholar
De Wet, J. M. J. D. 1995. Minor cereals, in Smartt, J., Simmonds, N. W. (eds.), Evolution of Crop Plants. Essex: Longman Scientific and Technical, pp. 202–7.Google Scholar
De Wet, J. M. J. D. 2000. Millets, in Kiple, K. F., Ornelas, K. C. (eds.), The Cambridge World History of Food. Cambridge: Cambridge University Press, pp. 112–21.Google Scholar
De Wet, J. M. J. D., Harlan, J. R. 1975. Weeds and domesticates: Evolution in the man-made habitat. Economic Botany 29, 99107.CrossRefGoogle Scholar
De Wet, J. M. J. D., Harlan, J. R., Price, E. G. 1970. Origin of variability in the spontanea complex of Sorghum bicolor. American Journal of Botany 57, 704. https://doi.org/10.2307/2441294.CrossRefGoogle Scholar
De Wet, J. M. J. D., Harlan, J. R., Price, E. G. 1976. Variability in Sorghum bicolor, in Harlan, J. R. (ed.), Origins of African Plant Domestication. The Hague: Mouton, pp. 453–63.Google Scholar
De Wet, J. M. J. D., Oestry-Stidd, L. L., Cunero, J. I. 1979. Origins and evolution of foxtail millets. Journal d’Agriculture Traditionelle et de Botanique Appliquee 26, 5464.Google Scholar
De Wet, J. M. J. D., Prasada Rao, K. E., Brink, D. E. 1983a. Systematics and domestication of Panicum sumatrense (Graminae). Journal d’Agriculture Traditionelle et de Botanique Appliquee 30, 159–68.Google Scholar
De Wet, J. M. J. D., Prasada Rao, K. E., Mengesha, M. H., Brink, D. E. 1983b. Domestication of sawa millet (Echinochloa colona). Economic Botany 37, 283–91.CrossRefGoogle Scholar
Dhavalikar, M. K. 1996. Kuntasi and the Indus Civilisation in Kuntasi: A Harappan Emporium on West Coast. Pune: Deccan College Postgraduate and Research Institute, pp. 371–4.Google Scholar
Dida, M. M., Wanyera, N., Harrison Dunn, M. L., Bennetzen, J. L., Devos, K. M. 2008. Population structure and diversity in finger millet (Eleusine coracana) Germplasm. Tropical Plant Biology 1, 131–41. https://doi.org/10.1007/s12042-008-9012-3.CrossRefGoogle Scholar
Diehl, M. W. 2017. Paleoethnobotanical sampling adequacy and ubiquity: An example from the American Southwest. Advances in Archaeological Practice 5, 196205. https://doi.org/10.1017/aap.2017.5.CrossRefGoogle Scholar
Dietrich, O., Heun, M., Notroff, J., Schmidt, K., Zarnkow, M. 2012. The role of cult and feasting in the emergence of Neolithic communities: New evidence from Gobekli Tepe, south-eastern Turkey. Antiquity 86, 674–95. https://doi.org/10.1017/S0003598X00047840.CrossRefGoogle Scholar
Diffey, C., Neef, R., Seeher, J., Bogaard, A. 2020. The agroecology of an early state: New results from Hattusha. Antiquity 94, 1204–23. https://doi.org/10.15184/aqy.2020.172.CrossRefGoogle Scholar
Dikshit, K. N. 2013. Origin of early Harappan cultures in the Sarsvati Valley: Recent archaeological evidence and radiometric dates. Journal of Indian Ocean Archaeology 9, 87141.Google Scholar
Dikshit, K. N. 2020. Excavations at Hulas. Memoirs of the Archaeological Survey of India 113.Google Scholar
di Lernia, S. 2001. Dismantling dung: Delayed use of food resources among early Holocene foragers of the Libyan Sahara. Journal of Anthropological Archaeology 20, 408–41. https://doi.org/10.1006/jaar.2000.0384.CrossRefGoogle Scholar
Dillon, S. L., Lawrence, P. K., Henry, R. J. 2001. The use of ribosomal ITS to determine phylogenetic relationships within Sorghum. Plant Systematics and Evolution 230, 97110. https://doi.org/10.1007/s006060170007.CrossRefGoogle Scholar
Dillon, S. L., Lawrence, P. K., Henry, R. J., Price, H. J. 2007a. Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses. Plant Systematics and Evolution 268, 2943. https://doi.org/10.1007/s00606-007-0571-9.CrossRefGoogle Scholar
Dillon, S. L., Shapter, F. M., Henry, R. J. et al. 2007b. Domestication to crop improvement: Genetic resources for Sorghum and Saccharum (Andropogoneae). Annals of Botany 100, 975–89. https://doi.org/10.1093/aob/mcm192.CrossRefGoogle ScholarPubMed
Dixit, A., Dixit, S. S., Vishnu-Mittre, . 1987. The occurence of Eleusine africana Kennedy-O’Byrne in India and its signifiance in the origin of Eleusine coranana. Proceedings of the Indian Academy of Sciences: Plant Sciences 85, 110.Google Scholar
Dixit, S., Bera, S. K. 2013. Pollen-inferred vegetation vis-á-vis climate dynamics since Late Quaternary from western Assam, Northeast India: Signal of global climatic events. Quaternary International 286, 5668. https://doi.org/10.1016/j.quaint.2012.06.010.CrossRefGoogle Scholar
Dixit, Y. 2013. Holocene monsoon variability inferred from paleolake sediments in northwestern India (PhD). University of Cambridge, Cambridge.Google Scholar
Dixit, Y., Hodell, D. A., Giesche, A. et al. 2018. Intensified summer monsoon and the urbanization of Indus Civilization in northwest India. Scientific Reports 8, 4225. https://doi.org/10.1038/s41598-018-22504-5.CrossRefGoogle ScholarPubMed
Dixit, Y., Hodell, D. A., Petrie, C. A. 2014. Abrupt weakening of the summer monsoon in northwest India 4100 yr ago. Geology 42, 339–42. https://doi.org/10.1130/G35236.1.CrossRefGoogle Scholar
Doggett, H. 1988. Sorghum. Harlow: Longman Scientific and Technical.Google Scholar
Dong, J. L., Wang, H. G., Chen, L. et al. 2015. Analysis of genetic diversity and structure of proso millet core germplasm. Scientia Agricultura Sinica 48, 3121–31.Google Scholar
Donges, J. F., Donner, R. V., Marwan, N. et al. 2014. Nonlinear regime shifts in Holocene Asian monsoon variability: Potential impacts on cultural change and migratory patterns (preprint). Atmospheric Dynamics/Terrestrial Archives/Holocene. https://doi.org/10.5194/cpd-10-895-2014.CrossRefGoogle Scholar
Dorn, R. I. 1998. Rocking Coatings. New York: Elsevier.Google Scholar
Doumani, P. N., Frachetti, M. D., Beardmore, R. et al. 2015. Burial ritual, agriculture, and craft production among Bronze Age pastoralists at Tasbas (Kazakhstan). Archaeological Research in Asia 1–2, 1732. https://doi.org/10.1016/j.ara.2015.01.001.CrossRefGoogle Scholar
Doust, A. N., Kellogg, E. A., Devos, K. M., Bennetzen, J. L. 2009. Foxtail millet: A sequence-driven grass model system. Figure 1. Plant Physiology 149, 137–41. https://doi.org/10.1104/pp.108.129627.CrossRefGoogle Scholar
Dozier, C. A. 2016. Airborne starch dispersal from stone grinding: Experimental results and implications. Journal of Archaeological Science: Reports 8, 112–15. https://doi.org/10.1016/j.jasrep.2016.05.057.Google Scholar
Duistermaat, H. 1987. A revision of Oryza (Gramineae) in Malaysia and Australia. Blumea 32, 157–93.Google Scholar
Dumont, L. 1980. Homo Hierarchicus, 2nd edition. Chicago, IL: University of Chicago Press.Google Scholar
Dwiveda, S. L., Upadhayaya, H. D., Senthilvel, S. et al. 2012. Millets: Genetic and genomic resources, in Janick, J. (ed.), Plant Breeding Reviews. Hoboken, NJ: Wiley Blackwell, pp. 247375.Google Scholar
Eichhorn, B., Neumann, K., Garnier, A. 2010. Seed phytoliths in West African Commelinaceae and their potential for palaeoecological studies. Palaeogeography, Palaeoclimatology, Palaeoecology 298, 300–10. https://doi.org/10.1016/j.palaeo.2010.10.004.CrossRefGoogle Scholar
Eksambekar, S. P., Kajale, M. D. 2007. Phytolith analysis for understanding formation processes at Neolithic Budhial, district Gulbarga, South India, in Paddayya, K., Jhaldiyal, R., Sushama, G. D. (eds.), Formation Processes and Indian Archaeology. Pune: Deccan College Postgraduate and Research Institute, pp. 267–77.Google Scholar
Eksambekar, S. P., Sainkar, S. R., Kajale, M. 1998. Phytolith study using scanning electron microscope (SEM): Some intial considerations. Bulletin of the Deccan College Research Institute 58/59, 8592.Google Scholar
Ellenberg, H. 1950. Landwirtschaftliche Pflanzensoziologie I: Unkrautgemeinschaften als Zeiger fur Klima und Boden. Stuttgart: Ulmer.Google Scholar
Ellenberg, H. 1974. Zeigerwerte der Gefasspflanzen Mitteleuropas. Scripta Geobotanica 9, 197.Google Scholar
Ellenberg, H. 1988. Vegetation Ecology of Central Europe, 4th edition. Cambridge: Cambridge University Press.Google Scholar
Ellerton, S. 1939. The origin and geographical distribution of Triticum sphaerococcum perc. and its cytogenetical behaviour in crosses with T. vulgare VILL. Journal of Genetics 38, 307–24.CrossRefGoogle Scholar
Ellickson, R. C., Thorland, C. D. 1995. Ancient land law: Mesopotamia, Egypt, Israel. Chicago-Kent Law Review 71, 321411.Google Scholar
Eltsov, P. A. 2008. From Harappa to Hastinapura: A Study of the Earliest South Asian City and Civilization. American School of Prehistoric Research Monograph Series. Boston, MA: Brill.Google Scholar
Emerson, R. A. 1953. A preliminary survey of the Milpa system of maize culture as practiced by the Maya Indians of the northern part of the Yucatan Peninsula. Annals of the Missouri Botanical Gardens 40, 5162.CrossRefGoogle Scholar
Enzel, Y., Ely, L., Mishra, S. et al. 1999. High resolution Holocene environmental changes in the Thar Desert, northwestern India. Science 284, 125–7.CrossRefGoogle ScholarPubMed
Esteban, I., Marean, C. W., Cowling, R. M. et al. 2020. Palaeoenvironments and plant availability during MIS 6 to MIS 3 on the edge of the Palaeo-Agulhas Plain (south coast, South Africa) as indicated by phytolith analysis at Pinnacle Point. Quaternary Science Reviews 235. https://doi.org/10.1016/j.quascirev.2019.02.022.CrossRefGoogle Scholar
Fairbairn, A., Omura, S. 2005. Archaeological identification and significance of ÉSAG (agricultural storage pits) at Kaman-Kalehöyük, central Anatolia. Anatolian Studies 55, 1523. https://doi.org/10.1017/S0066154600000636.CrossRefGoogle Scholar
Fairservis, W. A. 1961. The Harappan civilization: New evidence and more theory. American Museum Novitates no. 2055.Google Scholar
Fairservis, W. A. 1967. The origin, character and decline of an early civilisation. American Museum Novitates no. 2302.Google Scholar
Fairservis, W. A. 1971. The Roots of Indian Civilisation. New York: Macmillan.Google Scholar
Fairservis, W. A. 1982. Allahdino: An excavations of a small Harappan site, in Possehl, G. L. (ed.), Harappan Civilisation: A Contemporary Perspective. New Delhi: Oxford and IBH, pp. 107–12.Google Scholar
Farhan, S. B., Zhang, Y., Ma, Y., Guo, Y., Ma, N. 2015. Hydrological regimes under the conjunction of westerly and monsoon climates: A case investigation in the Astore Basin, northwestern Himalaya. Climate Dynamics 44, 3015–32. https://doi.org/10.1007/s00382-014-2409-9.CrossRefGoogle Scholar
Farmer, V. C., Delbos, E., Miller, J. D. 2005. The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127, 71–9.CrossRefGoogle Scholar
Farooqui, A., Gaur, A. S., Prasad, V. 2013. Climate, vegetation and ecology during the Harappan period: Excavations at Kanjetar and Kaj, mid-Saurashtra coast, Gujarat. Journal of Archaeological Science 40, 2631–47. https://doi.org/10.1016/j.jas.2013.02.005.CrossRefGoogle Scholar
Farquhar, G. D., O’Leary, M. H., Berry, J. A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant Biology 9, 121–37.CrossRefGoogle Scholar
Feinman, G. M. 2011. Size, complexity, and organizational variation: A comparative approach. Cross-Cultural Research 45, 3758. https://doi.org/10.1177/1069397110383658.CrossRefGoogle Scholar
Feinman, G. M., Carballo, D. M. 2018. Collaborative and competitive strategies in the variability and resiliency of large-scale societies in Mesoamerica. Economic Anthropology 5, 719. https://doi.org/10.1002/sea2.12098.CrossRefGoogle Scholar
Feinman, G. M., Marcus, J. (eds.). 1998. Archaic States. Santa Fe, NM: School of American Research Press.Google Scholar
Feldman, M. W. 2001. The origin of cultivated wheat, in Bonjean, A. P., Angus, W. J. (eds.), The World Wheat Book. Paris: Lavoisier Tech & Doc, pp. 356.Google Scholar
Fentress, M. A. 1977. Resource access, exchange systems and regional interaction in the Indus Valley: An investigation of archaeological variability at Harappa and Mohenjo Daro (PhD). University of Pennsylvania, Philadelphia.Google Scholar
Fiorentino, G., Caracuta, V., Casiello, G., Longobardi, F., Sacco, A. 2012. Studying ancient crop provenance: Implications from δ13C and δ15N values of charred barley in a Middle Bronze Age silo at Ebla(NW Syria). Rapid Communications in Mass Spectrometry 26, 327–35. https://doi.org/10.1002/rcm.5323.CrossRefGoogle Scholar
Fishkis, O., Ingwersen, J., Lamers, M., Denysenko, D., Streck, T. 2010. Phytolith transport in soil: A field study using fluorescent labelling. Geoderma 157, 2736.CrossRefGoogle Scholar
Flam, L. 1993. Excavations at Ghazi Shah, Sindh, Pakistan, in Possehl, G. L. (ed.), Harappan Civilisation. New Delhi: Oxford University Press, pp. 457–67.Google Scholar
Flam, L. 1999. Ecology and population mobility in the prehistoric settlement of Lower Indus Valley Sindh, Pakistan, in Meadows, A., Meadows, P. S. (eds.), The Indus River: Biodiversity, Resources, Humankind. Oxford: Oxford University Press, pp. 313–23.Google Scholar
Flannery, K. V. 1998. The ground plans of archaic states, in Feinman, G. M., Marcus, J. (eds.), Archaic States. Santa Fe, NM: School of American Research Press, pp. 1557.Google Scholar
Ford, A., Nigh, R. 2009. Origins of the Maya forest garden: Maya resource management. Journal of Ethnobiology 29, 213–36. https://doi.org/10.2993/0278-0771-29.2.213.CrossRefGoogle Scholar
Ford, A., Nigh, R. 2010. The Milpa cycle and the making of the Maya forest garden. Research Reports in Belizean Archaeology 7, 183–90.Google Scholar
Fox, C. L., Juan, J., Albert, R. M. 1996. Phytolith analysis on dental calculus, enamel surface, and burial soil: Information about diet and paleoenvironment. American Journal of Biological Anthropology 101, 101–13. https://doi.org/10.1002/(SICI)1096-8644(199609)101:1<101::AID-AJPA7>3.0.CO;2-Y.Google ScholarPubMed
Frachetti, M. D., Spengler, R. N., Fritz, G. J., Mar’yashev, A. N. 2010. Earliest direct evidence for broomcorn millet and wheat in the central Eurasian steppe region. Antiquity 84, 9931010. https://doi.org/10.1017/S0003598X0006703XCrossRefGoogle Scholar
Francfort, H. P. 1992. Evidence for Harappan irrigation. Eastern Anthropologist 45, 87103.Google Scholar
Francis, C. A. 1986. Multiple Cropping Systems. New York: Macmillan.Google Scholar
Franke-Vogt, U. 1991. Stratigraphy and cultural process at Mohenjo-Daro. South Asian Archaeology 87100.Google Scholar
Franke-Vogt, U. 1995. Cultural ecology of the greater Indus Valley and beyond. Archaeological Review (Karachi) 4, 1364.Google Scholar
Franke-Vogt, U. 2015. Natural landscape, population and economy, in Franke-Vogt, U., Cortesi, E. (eds.), Lost and Found: Prehistoric Pottery Treasures from Baluchistan. Berlin: Museum of Islamic Art, pp. 1132.Google Scholar
French, C., Sulas, F., Petrie, C. 2014. Expanding the research parameters of geoarchaeology: Case studies from Aksum in Ethiopia and Haryana in India. Archaeological and Anthropological Sciences 9, 1613–26. https://doi.org/10.1007/s12520-014-0186-3.Google Scholar
Frenez, D. 2018. The Indus Civilization trade with the Oman Peninsula, in Cleuziou, S., Tosi, M. (eds.), In the Shadow of the Ancestors: The Prehistoric Foundations of the Early Arabian Civilization in Oman. Sultanate of Oman: Ministry of Heritage and Culture, pp. 385–96.Google Scholar
Frenez, D., Esposti, M. D., Méry, S., Kenoyer, J. M. 2016. Bronze Age Salūt (STI) and the Indus Civilisation: Recent discoveries and new insights on regional interaction, in Starkey, J. (ed.), Proceedings of the Seminar for Arabian Studies vol. 46. Oxford: Archaeopress, pp. 107–24.Google Scholar
Fried, M. H. 1967. The Evolution of Political Society: An Essay in Political Anthropology. New York: Random House.Google Scholar
Fritz, G. J., Bruno, M. C., Langlie, B. S., Smith, B. D., Kistler, L. 2017. Cultigen chenopods in the Americas: A hemispherical perspective, in Sayre, M. P., Bruno, M. C. (eds.), Social Perspectives on Ancient Lives from Paleoethnobotanical Data. Cham: Springer International, pp. 5575. https://doi.org/10.1007/978-3-319-52849-6_3.CrossRefGoogle Scholar
Fujiwara, H. 1993. Research into the history of rice cultivation using plant opal analysis, in Pearsall, D. M., Piperno, D. R. (eds.), Current Research in Phytolith Analysis: Applications in Archaeology and Palaeoecology. Philadelphia: University of Pennsylvania Museum, pp. 147–58.Google Scholar
Fujiwara, H., Mughal, M. R., Sasaki, A., Matano, T. 1992. Rice and ragi at Harappa: Preliminary results by plant opal analysis. Pakistan Archaeology 27, 129–42.Google Scholar
Fukunaga, K., Ichitani, K., Kawase, M. 2006. Phylogenetic analysis of the rDNA intergenic spacer subrepeats and its implication for the domestication history of foxtail millet, Setaria italica. Theoretical and Applied Genetics 113, 261–9. https://doi.org/10.1007/s00122-006-0291-5.CrossRefGoogle ScholarPubMed
Fukunaga, K., Kato, K. 2003. Mitochondrial DNA variation in foxtail millet, Setaria italica (L.) P. Beauv. Euphytica 129, 713. https://doi.org/10.1023/A:1021589019323.CrossRefGoogle Scholar
Fukunaga, K., Wang, Z., Kato, K., Kawase, M. 2002. Geographical variation of nuclear genome RFLPs and genetic differentiation in foxtail millet, Setaria italica (L.) P. Beauv. Genetic Resources and Crop Evolution 49, 95101. https://doi.org/10.1023/A:1013852007770.CrossRefGoogle Scholar
Fuller, D. Q. 2000. The emergence of agricultural societies in South India: Botanical and archaeological perspectives (PhD). University of Cambridge, Cambridge.Google Scholar
Fuller, D. Q. 2002. Fifty years of archaeobotanical studies in India: Laying a solid foundation, in Settar, S., Korisettar, R. (eds.), Indian Archaeology in Retrospect III: Archaeology and Interactive Disciplines. New Delhi: Manohar, pp. 247364.Google Scholar
Fuller, D. Q. 2003a. Indus and non-Indus agricultural traditions: Local developments and crop adoptions on the Indian Peninsula, in Weber, S. A., Belcher, W. R. (eds.), Indus Ethnobiology: New Persepctives from the Field. Lanham, MD: Lexington Books, pp. 343–96.Google Scholar
Fuller, D. Q. 2003b. African crops in prehistoric South Asia: A critical review, in Neumann, K., Butler, A., Kahlheber, S. (eds.), Food, Fuel and Fields: Progress in African Archaeobotany. Cologne: Heinrich–Barth Institut, pp. 239–71.Google Scholar
Fuller, D. Q. 2005. Farming: Stone Age farmers of the savanna, in Shillington, K. (ed.), Encyclopedia of African History. New York: Fitzroy Dearborn, pp. 521–2.Google Scholar
Fuller, D. Q. 2006. Agricultural origins and frontiers in South Asia: A working synthesis. Journal of World Prehistory 20, 186. https://doi.org/10.1007/s10963-006-9006-8.CrossRefGoogle Scholar
Fuller, D. Q. 2007. Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the Old World. Annals of Botany 100, 903–24. https://doi.org/10.1093/aob/mcm048.CrossRefGoogle ScholarPubMed
Fuller, D. Q. 2011a. Finding plant domestication in the Indian Subcontinent. Current Anthropology 52, S347–62. https://doi.org/10.1086/658900.CrossRefGoogle Scholar
Fuller, D. Q. 2011b. Pathways to Asian civilizations: Tracing the origins and spread of rice and rice cultures. Rice 4, 7892. https://doi.org/10.1007/s12284-011-9078-7.CrossRefGoogle Scholar
Fuller, D. Q. 2014a. Agricultural innovation and state collapse in Meroitic Nubia, in Stevens, C. J., Nixon, S., Murray, M., Fuller, D. Q. (eds.), The Archaeology of African Plant Use. Walnut Creek, CA: Left Coast Press, pp. 165–78.Google Scholar
Fuller, D. Q. 2014b. Charred remains from Tappeh Sang-e Chakhmaq, and a consideration of early wheat diversity on the eastern margins of the Fertile Crescent, in Tsuneki, A. (ed.), The First Farming Village in Northeast Iran and Turan: Tappeh Sang-e Chakhmaq and Beyond. Tsukuba: Research Center for West Asian Civilization, University of Tsukuba, pp. 33–6.Google Scholar
Fuller, D. Q. 2020. Transitions in productivity: Rice intensification from domestication to urbanisation. Archaeology International 23. https://doi.org/10.14324/111.444.ai.2020.08.CrossRefGoogle Scholar
Fuller, D. Q., Boivin, N. 2009. Crops, cattle and commensals across the Indian Ocean: Current and potential archaeobiological evidence. Etudes Ocean Indien 42–3, 1346.Google Scholar
Fuller, D. Q., Boivin, N., Korisettar, R. 2007a. Dating the Neolithic of South India: New radiometric evidence for key economic, social and ritual transformations. Antiquity 81, 755–78. https://doi.org/10.1017/S0003598X00095715.CrossRefGoogle Scholar
Fuller, D. Q., Denham, T., Arroyo-Kalin, M. et al. 2014. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proceedings of the National Academy of Sciences USA 111, 6147–52. https://doi.org/10.1073/pnas.1308937110.CrossRefGoogle Scholar
Fuller, D. Q., Gonzalez Carretero, L. 2018. The archaeology of Neolithic cooking traditions: Archaeobotanical approaches to baking, boiling and fermenting. Archaeology International 21, 109. https://doi.org/10.5334/ai-391.CrossRefGoogle Scholar
Fuller, D. Q., Harvey, E. L. 2006. The archaeobotany of Indian pulses: Identification, processing and evidence for cultivation. Environmental Archaeology 11, 219–46. https://doi.org/10.1179/174963106x123232.CrossRefGoogle Scholar
Fuller, D. Q., Hildebrand, E. 2013. Domesticating plants in Africa, in Mitchell, P., Land, P. (eds.), The Oxford Handbook of African Archaeology. Oxford: Oxford University Press, pp. 507–25.Google Scholar
Fuller, D., Korisettar, R. 2004. The vegetational context of early agriculture in South India. Man and Environment 29, 727.Google Scholar
Fuller, D. Q., Korisettar, R., Venkatasubbaiah, P. C. 2001a. Southern Neolithic cultivation systems: A reconstruction based on archaeobotanical evidence. South Asian Studies 17, 171–87. https://doi.org/10.1080/02666030.2001.9628599.CrossRefGoogle Scholar
Fuller, D., Korisettar, R., Venkatasubbaiah, P. C., Jones, M. K. 2004. Early plant domestications in southern India: Some preliminary archaeobotanical results. Vegetation History and Archaeobotany 13, 115–29. https://doi.org/10.1007/s00334-004-0036-9.CrossRefGoogle Scholar
Fuller, D. Q., Lucas, L. 2014. Wheats: Origins and development, in Smith, C. (ed.), Encyclopedia of Global Archaeology. New York: Springer, pp. 7812–17.Google Scholar
Fuller, D. Q., MacDonald, K., Vernet, R. 2007b. Early domesticated pearl millet in Dhar Nema (Mauritania): Evidence of crop processing waste as ceramic temper, in Cappers, R. T. J. (ed.), Field of Change: Proceedings of the 4th International Workshop for African Archaeobotany. Groningen: Barkhuis & Groningen University Library, pp. 71–6.Google Scholar
Fuller, D. Q., Madella, M. 2002. Issues in Harappan archaeobotany: Retrospect and prospect, in Settar, S., Korisettar, R. (eds.), Indian Archaeology in Retrospect II: Protohistory. New Delhi: Manohar, pp. 317–90.Google Scholar
Fuller, D. Q., Madella, M. 2009. Banana cultivation in South Asia and East Asia: A review of the evidence from archaeology and linguistics. Ethnobotany Research and Applications 7, 333. https://doi.org/10.17348/era.7.0.333-351.CrossRefGoogle Scholar
Fuller, D. Q., Murphy, C. 2014. Overlooked but not forgotten: India as a center for agricultural domestication. General Anthropology 21, 18. https://doi.org/10.1111/gena.01001.CrossRefGoogle Scholar
Fuller, D. Q., Murphy, C. 2018. The origins and early dispersal of horsegram (Macrotyloma uniflorum), a major crop of ancient India. Genetic Resources and Crop Evolution 65, 285305. https://doi.org/10.1007/s10722-017-0532-2.CrossRefGoogle Scholar
Fuller, D. Q., Qin, L. 2008. Immature rice and its archaeobotanical recognition: A reply to Pan. Antiquity Project Gallery 82.Google Scholar
Fuller, D. Q., Qin, L. 2009. Water management and labour in the origins and dispersal of Asian rice. World Archaeology 41, 88111. https://doi.org/10.1080/00438240802668321.CrossRefGoogle Scholar
Fuller, D. Q., Qin, L., Zheng, Y. et al. 2009a. The domestication process and domestication rate in rice: Spikelet bases from the Lower Yangtze. Science 323, 1607–10. https://doi.org/10.1126/science.1166605.CrossRefGoogle ScholarPubMed
Fuller, D. Q., Rowlands, M. 2011. Ingestion and food technologies: Maintaining differences over the long-term in West, South and East Asia, in Bennet, J., Sherratt, S., Wilkinson, T. C. (eds.), Interweaving Worlds: Systematic Interactions in Eurasia, 7th to 1st Millennia BC. Essays from a Conference in Memory of Professor Andrew Sherratt. Oxford: Oxbow Books, pp. 3760.CrossRefGoogle Scholar
Fuller, D. Q., Sato, Y.-I., Castillo, C. et al. 2010. Consilience of genetics and archaeobotany in the entangled history of rice. Archaeological and Anthropological Sciences 2, 115–31. https://doi.org/10.1007/s12520-010-0035-y.CrossRefGoogle Scholar
Fuller, D. Q., Stevens, C. J. 2009. Agriculture and the development of complex societies, in Fairburn, A., Weiss, E. (eds.), From Foragers to Farmers: Papers in Honour of Gordon C. Hillman. Oxford: Oxbow Books, pp. 3757.Google Scholar
Fuller, D. Q., Stevens, C. J. 2018. Sorghum domestication and diversification: A current archaeobotanical perspective, in Mercuri, A. M., D’Andrea, A. C., Fornaciari, R., Höhn, A. (eds.), Plants and People in the African Past. Cham: Springer International, pp. 427–52. https://doi.org/10.1007/978-3-319-89839-1_19.Google Scholar
Fuller, D. Q., Stevens, C. J. 2019. Between domestication and civilization: The role of agriculture and arboriculture in the emergence of the first urban societies. Vegetation History and Archaeobotany 28, 263–82. https://doi.org/10.1007/s00334-019-00727-4.CrossRefGoogle ScholarPubMed
Fuller, D. Q., Stevens, C. J., Lucas, L., Murphy, C., Qin, L. 2016. Entanglements and entrapment on the pathway toward domestication, in Der, L., Fernandini, F. (eds.), Archaeology of Entanglement. Walnut Creek, CA: Left Coast Press, pp. 151–72.Google Scholar
Fuller, D. Q., Stevens, C. J., McClatchie, M. 2014a. Routine activities, tertiary refuse and labour organisation: Social inferences from everyday archaeobotany, in Madella, M., Lancelotti, C., Savard, M. (eds.), Ancient Plants and People: Contemporary Trends in Archaeology. Tuscon: University of Arizona Press, pp. 174217.Google Scholar
Fuller, D., Venkatasubbaiah, P. C., Korisettar, R. 2001b. The beginnings of agriculture in the Kunderu River Basin: Evidence from archaeological survey and archaeobotany. Puratattva 31, 18.Google Scholar
Fuwa, H., Nakajima, M., Hamada, A., Glover, D. V. 1977. Comparative susceptibility to amylases of starches from different plant species and several single endosperm mutants and their double-mutant combinations with opaque-2 inbred Oh43 maize. Cereal Chemistry 54, 230–7.Google Scholar
Gadekar, C. S., Ajithprasad, P., Madella, M. et al. 2014a. Continuation of a tradition over five thousand years: Lithic assemblage from Loteshwar, North Gujarat, western India. Heritage 2, 283304.Google Scholar
Gadekar, C. S., Rajesh, S. V., Ajithprasad, P. 2014b. Shikarpur lithic assemblage: New questions regarding Rohri chert blade production. Journal of Lithic Studies 1, 137–49.CrossRefGoogle Scholar
Gallagher, D. E. 2014. Formation processes of the macrobotanical record, in Marston, J. M., d’Alpoim Guedes, J., Warriner, C. (eds.), Method and Theory in Paleoethnobotany. Boulder: University Press of Colorado, pp. 1934.Google Scholar
Gallaher, R. N. 2009. Multiple cropping systems, in Hudson, R. J. (ed.), Management of Agricultural, Forestry, and Fisheries Enterprises. Oxford: Eolss, pp. 254–64.Google Scholar
Gammie, G. A. 1911. Millets of the genus Setaria in the Bombay Presidency and Sind. Memoirs of the Department of Agriculture in India: Botanical Series 4, 18.Google Scholar
Gangal, K., Vahia, M., Adhikari, R. 2010. Spatiotemporal analysis of the Indus urbanisation. Current Science 98, 846–52.Google Scholar
Gansu Provincial Institute of Cultural Relics and Archaeology (GPICRA). 2006. Dadiwan in Qin’an: Report on Excavations at a Neolithic Site. Beijing: Cultural Relics.Google Scholar
Garazhian, O. 2009. Darestan: A group of pre-pottery neolithic (PPN) sites in south-eastern Iran. Antiquity Project Gallery 319.Google Scholar
García-Granero, J. J., Arias-Martorell, J., Madella, M., Lancelotti, C. 2016a. Geometric morphometric analysis of Setaria italica (L.) P. Beauv. (foxtail millet) and Brachiaria ramosa (L.) Stapf. (browntop millet) and its implications for understanding the biogeography of small millets. Vegetation History and Archaeobotany 25, 303–10.CrossRefGoogle Scholar
García-Granero, J. J., Gadekar, C. S., Esteban, I. et al. 2017a. What is on the craftsmen’s menu? Plant consumption at Datrana, a 5000-year-old lithic blade workshop in North Gujarat, India. Archaeological and Anthropological Sciences 9, 251–63.CrossRefGoogle Scholar
García-Granero, J. J., Lancelotti, C., Madella, M. 2015. A tale of multi-proxies: Integrating macro- and microbotanical remains to understand subsistence strategies. Vegetation History and Archaeobotany 24, 121–33. https://doi.org/10.1007/s00334-014-0486-7.CrossRefGoogle Scholar
García-Granero, J. J., Lancelotti, C., Madella, M. 2017b. A methodological approach to the study of microbotanical remains from grinding stones: A case study in northern Gujarat (India). Vegetation History and Archaeobotany 26, 4357. https://doi.org/10.1007/s00334-016-0557-z.CrossRefGoogle Scholar
García-Granero, J. J., Lancelotti, C., Madella, M., Ajithprasad, P. 2016b. Millets and herders: The origins of plant cultivation in semiarid North Gujarat (India). Current Anthropology 57, 149–73.CrossRefGoogle Scholar
García-Granero, J. J., Suryanarayan, A., Cubas, M. et al. 2022. Integrating lipid and starch grain analyses from pottery vessels to explore prehistoric foodways in northern Gujarat, India. Frontiers in Ecology and Evolution 10, 840199. https://doi.org/10.3389/fevo.2022.840199.CrossRefGoogle Scholar
Garris, A. J., Tai, T. H., Coburn, J., Kresovich, S., McCouch, S. 2005. Genetic structure and diversity in Oryza sativa L. Genetics 169, 1631–8. https://doi.org/10.1534/genetics.104.035642.CrossRefGoogle ScholarPubMed
Gasse, F., Fontes, J. Ch., Van Campo, E., Wei, K. 1996. Holocene environmental changes in Bangong Co basin (Western Tibet). Part 4: Discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 7992. https://doi.org/10.1016/0031-0182(95)00035-6.CrossRefGoogle Scholar
Gazetteer of the Bombay Presidency. 1880. Delhi: Government Central Press.Google Scholar
Gazetteer of the Montgomery District 1883–4. 1900. Punjab: Punjab Government Press.Google Scholar
Ge, Y., Jie, D., Guo, J., Liu, H., Shi, L. 2010. Response of phytoliths in Leymus chinensis to the simulation of elevated global CO2 concentrations in Songnen Grassland, China. Chinese Science Bulletin 55, 3703–8. https://doi.org/10.1007/s11434-010-4123-2.CrossRefGoogle Scholar
Gentelle, P. 1985. Paysages, environment et irrigation, in Francfort, H. P. (ed.), Prospections Archéologiques Au Nord-Ouest de l’Inde: Rapport Préliminaire 1983–84. Éditions Recherche sur les Civilizations. Mémoire No. 62. Paris: Traveaux de la Mission Archaeologique Française en Inde No. 1, pp. 3342.Google Scholar
Ghafoor, A., Ahmad, Z., Qureshi, A. S., Bashir, M. 2002. Genetic relationship in Vigna mungo (L.) Hepper and V. radiata (L.) R. Wilczek based on morphological traits and SDS-PAGE. Euphytica 123, 367–78. https://doi.org/10.1023/A:1015092502466.CrossRefGoogle Scholar
Ghosh, A. 1952. The Rajputana Desert: Its archaeological aspect. Bulletin of the National Institute of Sciences in India 1, 3742.Google Scholar
Ghosh, A. 1982. Deurbanisation of the Harappan Civilisation, in Possehl, G. L. (ed.), Harappan Civilization. New Delhi: Oxford and IBH, pp. 321–3.Google Scholar
Ghosh, S. S., Lal, K. 1963. Plant remains from Rangpur and other explorations in Gujarat. Ancient India 18–19, 161–75.Google Scholar
Giblin, J. D., Fuller, D. Q. 2011. First and second millennium AD agriculture in Rwanda: Archaeobotanical finds and radiocarbon dates from seven sites. Vegetation History and Archaeobotany 20, 253–65. https://doi.org/10.1007/s00334-011-0288-0.Google Scholar
Giesche, A., Hodell, D. A., Petrie, C. A. et al. 2023. Recurring summer and winter droughts from 4.2–3.97 thousand years ago in north India. Communications Earth & Environment 4, 103. https://doi.org/10.1038/s43247-023-00763-z.CrossRefGoogle Scholar
Giesche, A., Staubwasser, M., Petrie, C. A., Hodell, D. A. 2019. Indian winter and summer monsoon strength over the 4.2BP event in foraminifera isotope records from the Indus River delta in the Arabian Sea. Climate of the Past 15, 7390. https://doi.org/10.5194/cp-15-73-2019.CrossRefGoogle Scholar
Giosan, L., Clift, P. D., Macklin, M. G. et al. 2012. Fluvial landscapes of the Harappan civilization. Proceedings of the National Academy of Sciences USA 109, E1688–94. https://doi.org/10.1073/pnas.1112743109.CrossRefGoogle ScholarPubMed
Giussani, L. M., Cota-Sánchez, J. H., Zuloaga, F. O., Kellogg, E. A. 2001. A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. American Journal of Botany 88, 19932012.CrossRefGoogle ScholarPubMed
Glazmann, J. C. 1986. A varietal classification of Asian cultivated rice (Oryza sativa L.) based on isozyme polymorphism. Rice Genetics 1, 8390.CrossRefGoogle Scholar
Gleba, M., Harris, S. 2019. The first plant bast fibre technology: Identifying splicing in archaeological textiles. Archaeological and Anthropological Sciences 11, 2329–46. https://doi.org/10.1007/s12520-018-0677-8.CrossRefGoogle Scholar
Glick, T. E. 1970. Irrigation and Society in Medieval Valencia. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Goddard, J., Nesbitt, M. 1997. Why draw seeds? Illustrating archaeobotany. Graphic Archaeology 1997, 1321.Google Scholar
Golubic, S., Schneider, J. 2003. Microbial endoliths as internal biofilms, in Krumbein, W. E., Paterson, D. M., Zavarzin, G. A. (eds.), Fossil and Recent Biofilms: A Natural History of Life on Earth. Dordrecht: Springer, pp. 249–63.Google Scholar
González Carretero, L., Wollstonecroft, M., Fuller, D. Q. 2017. A methodological approach to the study of archaeological cereal meals: A case study at Çatalhöyük East (Turkey). Vegetation History and Archaeobotany 26, 415–32. https://doi.org/10.1007/s00334-017-0602-6.CrossRefGoogle Scholar
Good, I. 2001. Archaeological textiles: A review of current research. Annual Review of Anthropology 30, 209–26.CrossRefGoogle Scholar
Good, I. 2007. Invisible exports in Aratta: Enmerkar and the three tasks, in Gillis, C., Nosch, M.-L. (eds.), Ancient Textiles: Production, Craft and Society. Oxford: Oxbow Books, pp. 168–73.Google Scholar
Good, I. L., Kenoyer, J. M., Meadow, R. H. 2009. New evidence for early silk in the Indus Civilization. Archaeometry 51, 457–66. https://doi.org/10.1111/j.1475-4754.2008.00454.x.CrossRefGoogle Scholar
Goody, J. 1982. Cooking, Cuisine and Class: A Study in Comparative Sociology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gopala Reddy, P., Vinayak, K. 1990. Effect of domestication on seed packing cost in legumes. Proceedings of the Indian Academy of Sciences: Plant Sciences 100, 337–42.Google Scholar
Gopalan, C., Rama Sastri, B. V., Balasubramanian, S. C. 1980. Nutritive Value of Indian Foods. Hyderabad: National Institute of Nutrition.Google Scholar
Goron, T. L., Raizada, M. N. 2015. Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Frontiers in Plant Science 6. https://doi.org/10.3389/fpls.2015.00157.CrossRefGoogle ScholarPubMed
Gouin, P. 1990. Rapes, jarres et faisselles: La production et l’exportation des produits laitiers dans l’Indus du 3e millénaire. Paléorient 16, 3754.CrossRefGoogle Scholar
Goyal, P., Pokharia, A. K., Kharakwal, J. S. et al. 2013. Subsistence system, paleoecology, and 14C chronology at Kanmer, a Harappan site in Gujarat, India. Radiocarbon 55, 141–50.CrossRefGoogle Scholar
Gray, R. F. 1963. The Sonjo of Tanganyika: An Anthropological Study of an Irrigation-Based Society. Oxford: Oxford University Press.Google Scholar
Green, A. S. 2017. Finding Harappan seal carvers: An operational sequence approach to identifying people in the past. Journal of Archaeological Science 72, 128–41. https://doi.org/10.1016/j.jas.2016.06.008.Google Scholar
Green, A. S. 2020. Killing the priest-king: Addressing the egalitarianism in the Indus Civilization. Journal of Archaeological Research 29, 153202. https://doi.org/10.1007/s10814-020-09147-9.CrossRefGoogle Scholar
Green, A. S. 2022. Of revenue without rulers: Public goods in the egalitarian cities of the Indus Civilization. Frontiers in Political Science 4, 823071. https://doi.org/10.3389/fpos.2022.823071.CrossRefGoogle Scholar
Green, A. S., Petrie, C. A. 2018. Landscapes of urbanization and de-urbanization: A large-scale approach to investigating the Indus Civilization’s settlement distributions in Northwest India. Journal of Field Archaeology 43, 284–99. https://doi.org/10.1080/00934690.2018.1464332.CrossRefGoogle ScholarPubMed
Grubben, G. J. H., Partohardjono, S. (eds.), 1996. Plant Resources of South-East Asia. No. 10: Cereals. Leiden: Backhuys.Google Scholar
Gu, H. B. 2009. An overview of the methods distinguishing the rice phytolith between Oryza sativa subsp. Hsien and Oryza sativa subsp. Keng. Journal of Human Archaeology, The Institute of Archaeology of Hunan Province (Changsha: Yuelu Publishing House), pp. 268–76.Google Scholar
Gu, Y., Zhao, Z., Pearsall, D. M. 2013. Phytolith morphology research on wild and domesticated rice species in East Asia. Quaternary International 287, 141–8. https://doi.org/10.1016/j.quaint.2012.02.013.CrossRefGoogle Scholar
Guinet, Ph. 1963. VII. Apports récents de la palynologie à l’étude du quaternaire en Inde. Befeo 51, 195201. https://doi.org/10.3406/befeo.1963.1571.CrossRefGoogle Scholar
Guinet, Ph. 1966. What may afford palynology to archaeology and ancient history of India. Journal of the Maharaja Sayoji Rao University 15, 1519.Google Scholar
Gulati, A. N., Turner, A. J. 1929. A note on the early history of cotton. Journal of the Textile Institute Transactions 20, T1T9.CrossRefGoogle Scholar
GumermanIV, G. 1997. Food and complex societies. Journal of Archaeological Method and Theory 4, 105–39.CrossRefGoogle Scholar
Guo, L., Qiu, J., Ye, C. et al. 2017. Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nature Communications 8, 1031. https://doi.org/10.1038/s41467-017-01067-5.CrossRefGoogle ScholarPubMed
Gupta, A. K., Anderson, D. M., Overpeck, J. T. 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 354–7. https://doi.org/10.1038/nature01340.CrossRefGoogle ScholarPubMed
Gupta, S. K., Deshpande, R. D. 2003. Synoptic hydrology of India from the data of isotopes in precipitation. Current Science 85, 1591–5.Google Scholar
Gupta, V. S., Ranjekar, P. K. 1981. DNA sequence organization in finger millet (Eleusine coracana). Journal of Bioscience 3, 417–30.CrossRefGoogle Scholar
Gutaker, R. M., Weiß, C. L., Ellis, D. et al. 2019. The origins and adaptation of European potatoes reconstructed from historical genomes. Nature Ecology and Evolution 3, 10931101. https://doi.org/10.1038/s41559-019-0921-3.CrossRefGoogle ScholarPubMed
Haaland, R. 1995. Sedentism, cultivation, and plant domestication in the Holocene Middle Nile region. Journal of Field Archaeology 22, 157–74. https://doi.org/10.1179/009346995791547868.CrossRefGoogle Scholar
Haaland, R. 1999. The puzzle of the late emergence of domesticated sorghum in the Nile Valley, in Gosden, C., Hather, J. (eds.), The Prehistory of Food: Appetites for Change. London: Routledge, pp. 397418.Google Scholar
Habib, I. 1999. The Agrarian System of Mughal India, 1556–1707, 2nd edition. Oxford India Paperbacks. New Delhi: Oxford University Press.Google Scholar
Hall, D. 1982. Medieval Fields: Shire Archaeology. Aylesbury: Shire.Google Scholar
Halstead, P. 1992. Agriculture in the Bronze Age Aegean: Towards a model of a palatial economy, in Wells, B. (ed.), Agriculture in Ancient Greece. Stockholm: Åström, pp. 105–16.Google Scholar
Halstead, P. 2014. Two Oxen Ahead: Pre-mechanized Farming in the Mediterranean. Chichester: Wiley. https://doi.org/10.1002/9781118819333.CrossRefGoogle Scholar
Hamoud, M. A., Haroun, S. A., MacLeod, R. D., Richards, A. J. 1994. Cytological relationships of selected species of Panicum L. Biologia plantarum 36. https://doi.org/10.1007/BF02921265.CrossRefGoogle Scholar
Hanf, M. 1983. The Arable Weeds of Europe. Ludwigshafen: BASF Aktiengesellshaft.Google Scholar
Hansen, J., Renfrew, J. M. 1978. Palaeolithic–Neolithic seed remains at Franchthi Cave, Greece. Nature 271, 349–52. https://doi.org/10.1038/271349a0.CrossRefGoogle Scholar
Harding, A. F. 1976. Bronze agricultural implements in Bronze Age Europe, in Sieveking, G. de G., Longworth, I. H., Wilson, K. A. (eds.), Problems in Economic and Social Archaeology. London: Duckworth, pp. 513–22.Google Scholar
Hardy, K., Blakeney, T., Copeland, L. et al. 2009. Starch granules, dental calculus and new perspectives on ancient diet. Journal of Archaeological Science 36, 248–55. https://doi.org/10.1016/j.jas.2008.09.015.CrossRefGoogle Scholar
Hariprasanna, K., Patil, J. V. 2015. Sorghum: Origin, classification, biology and improvement, in Madhusudhana, R., Rajendrakumar, P., Patil, J. V. (eds.), Sorghum Molecular Breeding. New Delhi: Springer India, pp. 320. https://doi.org/10.1007/978-81-322-2422-8_1.CrossRefGoogle Scholar
Harlan, J. R. 1992. Crops and Man, 2nd edition. Madison, WI: American Society of Agronomy.CrossRefGoogle Scholar
Harlan, J. R. 1995. The Living Fields. Cambridge: Cambridge University Press.Google Scholar
Harlan, J. R., De Wet, J. M. J. D. 1972. A simplified classification of cultivated Sorghum 1. Crop Science 12, 172–6. https://doi.org/10.2135/cropsci1972.0011183X001200020005x.CrossRefGoogle Scholar
Harlan, J. R., De Wet, J. M. J. D., Price, E. G. 1973. Comparative evolution of cereals. Evolution 27, 311–25.CrossRefGoogle ScholarPubMed
Harlan, J. R., De Wet, J. M. J. D., Stemler, A. B. L. 1972 (eds.). Origins of African Plant Domestication. The Hague: Mouton, pp 409–52, footnote p. 417.Google Scholar
Harlan, J. R., Stemler, A. 1976. The races of sorghum in Africa, in Harlan, J. R. (ed.), Origins of African Plant Domestication. The Hague: De Gruyter Mouton, pp. 465–78. https://doi.org/10.1515/9783110806373.465.CrossRefGoogle Scholar
Harris, D. R. 1989. An evolutionary continuum of people–plant interaction, in Harris, D. R., Hillman, G. C. (eds.), Foraging and Farming: The Evolution of Plant Exploitation. London: Unwin and Hyman, pp. 1126.Google Scholar
Harris, D. R. 2007. Agriculture, cultivation and domestication: Exploring the conceptual framework of early food production, in Denham, T., Iriarte, J., Vrydaghs, L. (eds.), Rethinking Agriculture: Archaeological and Ethnoarchaeological Perspectives. Walnut Creek, CA: Left Coast Press, pp. 1635.Google Scholar
Harris, M. 2000. India’s sacred cow, in Goodman, A. H., Dufur, A. H., Pelto, G. H. (eds.), Nutritional Anthropology: Biocultural Perspectives on Food and Nutrition. Mountain View, CA: Mayfield, pp. 113–18.Google Scholar
Hart, T. C. 2011. Evaluating the usefulness of phytoliths and starch grains found on survey artifacts. Journal of Archaeological Science 38, 3244–53. https://doi.org/10.1016/j.jas.2011.06.034.CrossRefGoogle Scholar
Harvey, E. L. 2006. Early agricultural communities in northern and eastern India: An archaeobotanical investigation (PhD). University College London, London.Google Scholar
Harvey, E. L., Fuller, D. Q. 2005. Investigating crop processing using phytolith analysis: The example of rice and millets. Journal of Archaeological Science 32, 739–52. https://doi.org/10.1016/j.jas.2004.12.010.CrossRefGoogle Scholar
Harvey, E. L., Fuller, D. Q., Pal, J. N., Gupta, M. C. 2003. Early agriculture of the Neolithic Vindhyas (North Central India), in Franke-Vogt, U., Weisshaar, H.-J. (eds.), South Asian Archaeology 2003. Aachen: Deutsches Archaeologishes Institut, pp. 329–34.Google Scholar
Haslam, M. 2004. The decomposition of starch grains in soils: Implications for archaeological residue analyses. Journal of Archaeological Science 31, 1715–34. https://doi.org/10.1016/j.jas.2004.05.006.CrossRefGoogle Scholar
Hassan, M., Du, P., Jia, S. et al. 2015. An assessment of the South Asian summer monsoon variability for present and future climatologies using a high resolution regional climate model (RegCM4.3) under the AR5 scenarios. Atmosphere 6, 1833–57. https://doi.org/10.3390/atmos6111833.CrossRefGoogle Scholar
Hastorf, C. A. 2003. Andean luxury foods: Special food for the ancestors, deities and the élite. Antiquity 77, 545–54. https://doi.org/10.1017/S0003598X00092607.CrossRefGoogle Scholar
Hastorf, C. A. 2016. The Social Archaeology of Food: Thinking about Eating from Prehistory to the Present. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hastorf, C. A., Wright, M. F. 1998. Interpreting wild seeds from archaeological sites: A dung charring experiment from the Andes. Journal of Ethnobiology 18, 211–27.Google Scholar
Hayashizaki, J., Ban, S., Nakagaki, H. et al. 2008. Site specific mineral composition and microstructure of human supra-gingival dental calculus. Archives of Oral Biology 53, 168–74. https://doi.org/10.1016/j.archoralbio.2007.09.003.CrossRefGoogle ScholarPubMed
Hayden, B. 2001. Fabulous feasts: A prolegomenon to the importance of feasting, in Dietler, M., Hayden, B. (eds.), Feasts: Archaeological and Ethnographic Perspectives on Food, Politics and Power. Washington, DC: Smithsonian Institute Press, pp. 2364.Google Scholar
Hayden, B., Villeneuve, S. 2011. A century of feasting studies. Annual Review of Anthropology 40, 433–49. https://doi.org/10.1146/annurev-anthro-081309-145740.CrossRefGoogle Scholar
Heiss, A. G., Antolín, F., Bleicher, N. et al. 2017. State of the (t)art: Analytical approaches in the investigation of components and production traits of archaeological bread-like objects, applied to two finds from the Neolithic lakeshore settlement Parkhaus Opéra (Zürich, Switzerland). PloS One 12, e0182401. https://doi.org/10.1371/journal.pone.0182401.CrossRefGoogle ScholarPubMed
Heiss, A. G., Azorín, M. B., Antolín, F. et al. 2020. Mashes to mashes, crust to crust: Presenting a novel microstructural marker for malting in the archaeological record. PloS One 15, e0231696. https://doi.org/10.1371/journal.pone.0231696.CrossRefGoogle ScholarPubMed
Helbaek, H. 1952. Spelt (Triticum spelta L.) in Bronze Age Denmark. Acta Archaeologica (Copenhagen) 23, 97107.Google Scholar
Helbaek, H. 1969. Plant-collecting, dry-farming and irrigation agriculture in prehistoric Deh Luhran, in Hole, F., Flannery, K. V., Neeley, J. A. (eds.), Prehistory and Human Ecology of the Deh Luhran Plain. Ann Arbor: University of Michigan Museum of Anthropology, pp. 383426.Google Scholar
Henry, A. G. 2015. Formation and taphonmic processes affecting starch granules, in Marston, J. M., Warriner, C. (eds.), Method and Theory in Palaeoethnobotany. Denver: University Press of Colorado, pp. 3550.Google Scholar
Henry, A. G., Piperno, D. R. 2008. Using plant microfossils from dental calculus to recover human diet: A case study from Tell Raqā’i, Syria. Journal of Archaeological Science 35, 1943–50. https://doi.org/10.1016/j.jas.2007.12.005.CrossRefGoogle Scholar
Hillman, G. C. 1981. Reconstructing crop husbandry practices from charred remains of crops, in Mercer, R. (ed.), Farming Practice in British Prehistory. Edinburgh: Edinburgh University Press, pp. 123–61.Google Scholar
Hillman, G. C. 1984. Interpretation of archaeological plant remains: The application of ethnographic models from Turkey, in Van Zeist, W., Casparie, W. A. (eds.), Plants and Ancient Man: Studies in Paleaoethnobotany. Rotterdam: A. A. Balkema.Google Scholar
Hillman, G. C. 1985. Traditional husbandry and processing of archaic cereals in modern times. Part II: The free-threshing wheats. Bulletin on Sumerian Agriculture 2, 131.Google Scholar
Hillman, G., Hedges, R., Moore, A., Colledge, S., Pettitt, P. 2001. New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates. The Holocene 11, 383–93. https://doi.org/10.1191/095968301678302823.CrossRefGoogle Scholar
Hillman, G. C., Mason, S., de Moulins, D., Nesbitt, M. 1996. Identification of archaeological remains of wheat, the 1992 London Workshop. Circea 12, 195209.Google Scholar
Hilu, K. W. 1988. Identification of the ‘A’ genome of finger millet using chloroplast DNA. Genetics 118, 163–7.CrossRefGoogle ScholarPubMed
Hilu, K. W. 1995. Evolution of finger millet: Evidence from random amplified polymorphic DNA. Genome 38, 232–8. https://doi.org/10.1139/g95-028.CrossRefGoogle ScholarPubMed
Hilu, K. W., De Wet, J. M. J. D. 1976a. Domestication of Eleusine coracana. Economic Botany 30, 199208.CrossRefGoogle Scholar
Hilu, K. W., De Wet, J. M. J. D. 1976b. Racial evolution in Eleusine coracana ssp. coracana (finger millet). American Journal of Botany 63, 1311–18. https://doi.org/10.1002/j.1537-2197.1976.tb13216.x.CrossRefGoogle Scholar
Hilu, K. W., De Wet, J. M. J. D., Harlan, J. R. 1979. Archaeobotanical studies of Eleusine coracana ssp. coracana (finger millet). American Journal of Botany 66, 330–3.CrossRefGoogle Scholar
Hirano, R., Naito, K., Fukunaga, K. et al. 2011. Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet. Genome 54, 498506. https://doi.org/10.1139/g11-015.CrossRefGoogle ScholarPubMed
Holm, L. G., Plucknett, D., Pancho, J., Herberger, J. 1977. World Weeds: Natural Histories and Distribution. Honolulu: University of Hawaii Press.Google Scholar
Hong, Y. T., Hong, B., Lin, Q .H. et al. 2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth and Planetary Science Letters 211, 371–80. https://doi.org/10.1016/S0012-821X(03)00207-3.CrossRefGoogle Scholar
Hooker, J. D. 1875. Flora of British India I. London: Reeve & Company.Google Scholar
Hopf, M. 1968. Das jungsteinzeitliche Dorf Ehrenstein (Kreis Ulm). Veröff Staat Amt Denkmalpfl Stuttgart A10, 777.Google Scholar
Huan, X., Lu, H., Wang, C. et al. 2015. Bulliform phytolith research in wild and domesticated rice paddy soil in south China. PLoS One 10, e0141255. https://doi.org/10.1371/journal.pone.0141255.CrossRefGoogle ScholarPubMed
Huang, X., Kurata, N., Wei, X. et al. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497501. https://doi.org/10.1038/nature11532.CrossRefGoogle ScholarPubMed
Hubbard, R. N. L. B., al Azm, A. 1990. Quantifying preservation and distortion in carbonized seeds and investigating the history of friké production. Journal of Archaeological Science 17, 103–6. https://doi.org/10.1016/0305-4403(90)90017-Y.CrossRefGoogle Scholar
Hubbard, R. N. L. B., Clapham, A. 1992. Quantifying macroscopic plant remains. Review of Palaeobotany and Palynology 73, 117–32.CrossRefGoogle Scholar
Hulse, J. H., Laing, J. M., Pearson, O. E. 1980. Sorghum and the Millets: Their Composition and Nutritive Value. New York: Academic Press.Google Scholar
Hung, L. Y., Cui, J. F., Chen, H. H. 2014. Emergence of Neolithic communities on the north-eastern Tibetan Plateau: Evidence from the Zongri cultural sites, in Hein, A. (ed.), The ‘Crescent-Shaped Cultural-Communication Belt’: Tong Enzheng’s Model in Retrospect. An Examination of Methodological, Theoretical and Material Concerns of Long-Distance Interactions in East Asia. British Archaeology Reports International Series 2674. Oxford: British Archaeological Reports, pp. 6578.Google Scholar
Hunt, H. V., Badakshi, F., Romanova, O. et al. 2014. Reticulate evolution in Panicum (Poaceae): The origin of tetraploid broomcorn millet, P. miliaceum.Journal of Experimental Botany 65, 3165–75. https://doi.org/10.1093/jxb/eru161.CrossRefGoogle ScholarPubMed
Hunt, H. V., Campana, M. G., Lawes, M. C. et al. 2011. Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Molecular Ecology 20, 4756–71. https://doi.org/10.1111/j.1365-294X.2011.05318.x.CrossRefGoogle ScholarPubMed
Hunt, H. V., Rudzinski, A., Jiang, H. et al. 2018. Genetic evidence for a western Chinese origin of broomcorn millet (Panicum miliaceum). The Holocene 28, 1968–78. https://doi.org/10.1177/0959683618798116.CrossRefGoogle ScholarPubMed
Hunt, H. V., Vander Linden, M., Liu, X. et al. 2008. Millets across Eurasia: Chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Vegetation History and Archaeobotany 17, 518. https://doi.org/10.1007/s00334-008-0187-1.CrossRefGoogle ScholarPubMed
Huntley, B. 1990. Dissimilarity mapping between fossil and contemporary pollen spectra in Europe for the last 13,000 years. Quaternary Research 33, 360–76.CrossRefGoogle Scholar
Hutchinson, J., Allchin, F. R., Vishnu-Mittre, . 1976. India: Local and introduced crops [and discussion]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 275, 129–41.Google Scholar
Hutschenreuther, A., Watzke, J., Schmidt, S., Büdel, T., Henry, A. G. 2017. Archaeological implications of the digestion of starches by soil bacteria: Interaction among starches leads to differential preservation. Journal of Archaeological Science: Reports 15, 95108. https://doi.org/10.1016/j.jasrep.2017.07.006.Google Scholar
Indian Archaeology: A Review. 1968–9.Google Scholar
Indian Archaeology: A Review. 1970–1.Google Scholar
Indian Archaeology: A Review. 1971–2.Google Scholar
Indian Archaeology: A Review. 1974–5.Google Scholar
Indian Archaeology: A Review 1976#x2013;7.Google Scholar
Indian Archaeology: A Review. 1977–8.Google Scholar
Indian Archaeology: A Review. 1978–9.Google Scholar
Indian Archaeology: A Review. 1982–3.Google Scholar
Indian Archaeology: A Review. 1983–4.Google Scholar
Indian Archaeology: A Review. 1984–5.Google Scholar
Indian Archaeology: A Review. 1986–7.Google Scholar
Indian Archaeology: A Review. 1990–1.Google Scholar
Indian Archaeology: A Review. 1992–3.Google Scholar
Indian Archaeology: A Review. 1998–9.Google Scholar
Inomata, T. 2008. Knowledge and belief in artistic production by Classic Maya elites, in Hruby, Z., Flad, R. K., Bennet, G. (eds.), Rethinking Craft Specialization in Complex Societies: Archaeological Analyses of the Social Meaning of Production. Archaeological Papers No. 17. Arlington, VA: American Anthropological Association, pp. 129–41.Google Scholar
International Committee for Phytolith Taxonomy (ICPT), Neumann, K., Strömberg, C. A. E. et al. 2019. International Code for Phytolith Nomenclature (ICPN) 2.0. Annals of Botany 124.2, 189–99. https://doi.org/10.1093/aob/mcz064.Google Scholar
Issaharou-Matchi, I., Barboni, D., Meunier, J.-D. et al. 2016. Intraspecific biogenic silica variations in the grass species Pennisetum pedicellatum along an evapotranspiration gradient in South Niger. Flora: Morphology, Distribution, Functional Ecology of Plants 220, 8493. https://doi.org/10.1016/j.flora.2016.02.008.CrossRefGoogle Scholar
Jacomet, S. 2006. Identification of Cereal Remains from Archaeological Sites, 2nd edition. Basel: Integrative Prehistory and Archeological Science.Google Scholar
Jane, J.-L., Kasemsuwan, T., Leas, S., Zobel, H., Robyt, J. F. 1994. Anthology of starch granule morphology by scanning electron microscopy. Starch/Stärke 46, 121–9. https://doi.org/10.1002/star.19940460402.CrossRefGoogle Scholar
Jansen, M. 1989. Water supply and sewage disposal at Mohenjo‐Daro. World Archaeology 21, 177–92. https://doi.org/10.1080/00438243.1989.9980100.CrossRefGoogle ScholarPubMed
Jansen, M. 1993. Mohenjo-Daro: City of Wells and Drains. Water Splendor 4500 Years Ago. Bonn: Bergisch Gladbach Frontinus-Gesellchaft.Google Scholar
Jansen, M. 2014. Mohenjo-Daro, Indus Valley Civilization: Water supply and water use in one of the largest Bronze Age cities of the third millennium BC, in Tvedt, T., Oestigaard, T. (eds.), A History of Water. Series 3, Vol. 1: Water and Urbanization. London: I. B. Tauris, pp. 5270.Google Scholar
Jarrige, C. 2005. Human figurines from the Neolithic levels at Mehrgarh (Balochistan, Pakistan), in Franke-Vogt, U., Weisshaar, H.-J. (eds.), South Asian Archaeology. Aachen: Linden Soft, pp. 2737.Google Scholar
Jarrige, C., Jarrige, J.-F., Meadow, R. H., Quivron, G. 1995. Mehgarh: Field Reports 1974–1985 from Neolithic Times to the Indus Civilisation. Karachi: Department of Culture and Tourism.Google Scholar
Jarrige, J.-F. 1985. Continuity and change in the North Kachi Plain (Baluchistan, Pakistan) at the beginning of the second millennium BC, in Schotmans, J., Taddei, M. (eds.), South Asian Archaeology 1983. Naples: Instituto Universitario Orientale, pp. 3568.Google Scholar
Jarrige, J.-F. 1989. Excavation at Nausharo. Pakistan Archaeology 24, 2168.Google Scholar
Jarrige, J.-F. 1997. From Nausharo to Pirak: Continuity and change in the Kachi/Bolan region from the 3rd to 2nd millennium BC, in Allchin, F. R., Allchin, B. (eds.), South Asian Archaeology 1995. New Delhi: Oxford and IBH, pp. 1132.Google Scholar
Jarrige, J.-F. 2000. Mehrgarh Neolithic: New excavations, in Taddei, M., de Marco, G. (eds.), South Asian Archaeology 1997. Rome: Instituto Italian per l’Africa e l’Oriente, pp. 259–83.Google Scholar
Jarrige, J.-F. 2008. Mehrgarh Neolithic. Pragdhara 18, 135–54.Google Scholar
Jarrige, J.-F., Jarrige, C. 2006. Premiers Pasteurs et Agriculteurs dans le Sous-Continent Indo-Pakistanais. Palevol 5, 463–72.CrossRefGoogle Scholar
Jarrige, J.-F., Jarrige, C., Quivron, G. 2005. Mehrgarh Neolithic: The updated sequence, in Jarrige, C., Lefevre, V. (eds.), South Asian Archaeology 2001. Paris: Editions Recherche sur les Civilisations, pp. 129–42.Google Scholar
Jarrige, J.-F., Quivron, G., Jarrige, C. 2011. Nindowari, Pakistan: La culture de Kulli. Ses origines et ses relations avec la civilisation de l’Indus = The Kulli Culture, Its Origins and Its Relations with the Indus Civilization. Paris: Ginkgo.Google Scholar
Jauhar, P. P., Hanna, W. W. 1998. Cytogenetics and genetics of pearl millet. Advances in Agronomy 64, 126. https://doi.org/10.1016/S0065-2113(08)60501-5.CrossRefGoogle Scholar
Jenkins, E., Jamjoum, K., al Nuimat, S. 2011. Irrigation and phytolith formation: An experimental study, in Mithen, S., Black, E. (eds.), Water, Life and Civilisation: Climate, Environment and Society in the Jordan Valley. Cambridge: Cambridge University Press, pp. 347–72.Google Scholar
Jin, J., Huang, W., Gao, J.-P. et al. 2008. Genetic control of rice plant architecture under domestication. Nature Genetics 40, 1365–9. https://doi.org/10.1038/ng.247.CrossRefGoogle ScholarPubMed
Joglekar, P. P., Misra, V. D., Pal, J. N., Gupta, M. C. 2003. Mesolithic Mahadaha: The Faunal Remains. Allahabad: University of Allahabad.Google Scholar
Johnson, A. 1980. The limits of formalism in agricultural decision research, in Bartlett, P. F. (ed.), Agricultural Decision Making: Anthropological Contributions to Rural Development. New York: Academic Press, pp. 1944.CrossRefGoogle Scholar
Jones, A. K. G., Hutchinson, A. R., Nicholson, C. 1988. The worms of Roman horses and other finds of intestinal parasite eggs from unpromising deposits. Antiquity 62, 275–6. https://doi.org/10.1017/S0003598X00074007.CrossRefGoogle Scholar
Jones, G. E. M. 1983. The use of ethnographic and ecological models in the interpretation of archaeological plant remains: Case studies from Greece (PhD). University of Cambridge, Cambridge.Google Scholar
Jones, G. E. M. 1984. Interpretation of archaeological plant remains: Ethnographic models from Greece, in Van Zeist, W., Casparie, W. A. (eds.), Plants and Ancient Man: Studies in Paleoethnobotany. Rotterdam: A. A. Balkema.Google Scholar
Jones, G. E. M. 2005. Garden cultivation of staple crops and its implications for settlement location and continuity. World Archaeology 37, 164–76. https://doi.org/10.1080/00438240500094564.CrossRefGoogle Scholar
Jones, G. E. M., Bogaard, A., Charles, M., Hodgson, J. G. 2000. Distinguishing the effects of agricultural practices relating to fertility and disturbance: A functional ecological approach in archaeobotany. Journal of Archaeological Science 27, 1073–84.CrossRefGoogle Scholar
Jones, G. E. M., Bogaard, A., Halstead, P., Charles, M., Smith, H. 1999. Identifying the intensity of crop husbandry practices on the basis of weed floras. Annual of the British School at Athens 94, 167–89. https://doi.org/10.1017/S0068245400000563.CrossRefGoogle Scholar
Jones, G. E. M., Charles, M., Bogaard, A., Hodgson, J. G. 2010. Crops and weeds: The role of weed functional ecology in the identification of crop husbandry methods. Journal of Archaeological Science 37, 70–7.CrossRefGoogle Scholar
Jones, G. E. M., Halstead, P. 1995. Maslins, mixtures and monocrops: On the interpretation of archaeobotanical crop samples of heterogeneous composition. Journal of Archaeological Science 22, 103–14. https://doi.org/10.1016/S0305-4403(95)80168-5.CrossRefGoogle Scholar
Jones, G. E. M., Valamoti, S. M., Charles, M. 2000. Early crop diversity: A ‘new’ glume wheat from northern Greece. Vegetation History and Archaeobotany 9, 133–46.CrossRefGoogle Scholar
Jones, M. K. 1981. The development of crop husbandry, in Jones, M. K., Dimbleby, G. (eds.), The Environment of Man: The Iron Age to the Anglo-Saxon Period. Oxford: British Archaeological Reports, pp. 95127.Google Scholar
Jones, M. K. 1984. The ecological and cultural implications of carbonised seed assemblages from selected archaeological contexts in southern Britain (DPhil). University of Oxford, Oxford.Google Scholar
Jones, M. K. 1985. Archaeobotany beyond subsistence reconstruction, in Barker, G., Gamble, C. (eds.), Beyond Domestication in Prehistoric Europe: Investigations in Subsistence Archaeology and Social Complexity. London: Academic Press, pp. 107–28.Google Scholar
Jones, M. K. 1986. The carbonised plant remains, in Miles, D. (ed.), Archaeology at Barton Court Farm, Abingdon, Oxon. Research Report 50, Fische 9. London: Council for British Archaeology, pp. A1–9:B5.Google Scholar
Jones, M. K. 2004. Between fertile crescents: Minor grain crops and agricultural origins, in Jones, M. K. (ed.), Traces of Ancestry: Studies in Honour of Colin Renfrew. Cambridge: Cambridge University Press, pp. 127–35.Google Scholar
Jones, M. K. 2008. Feast: Why Humans Share Food, 1st paperback edition. Oxford: Oxford University Press.Google Scholar
Jones, P. 2017. Climate change, water stress and agriculture in the Indus Civilisation, 30001500 BC (PhD). University of Cambridge, Cambridge.Google Scholar
Jones, P. J., O’Connell, T. C., Jones, M. K., Singh, R., Petrie, C. A. 2021. Crop water status from plant stable carbon isotope values: A test case for monsoonal climates. The Holocene 31, 9931004. https://doi.org/10.1177/0959683621994649.CrossRefGoogle Scholar
Joshi, J. P. 1984. Harappa culture: Emergence of a new picture. Puratattva 13–14, 51–4.Google Scholar
Joshi, J. P., Bala, M., Ram, J. 1984. The Indus Civilisation: A reconsideration on the basis of distribution maps, in Lal, B. B., Gupta, S. P. (eds.), Frontiers of the Indus Civilisation: Sir Mortimer Wheeler Commemoration Volume. New Delhi: Books & Books, pp. 511–30.Google Scholar
Jupe, M. 2003. The effects of charring on pulses and implications for using size change to identify domestication in Eurasia (BA). University College London, London.Google Scholar
Jusuf, M., Pernes, J. 1985. Genetic variability of foxtail millet (Setaria italica P. Beauv.): Electrophoretic study of five isoenzyme systems. Theoretical and Applied Genetics 71, 385–91. https://doi.org/10.1007/BF00251177.CrossRefGoogle ScholarPubMed
Kadam, S. S., Salunkhe, D. K., Maga, J. A. 1985. Nutritional composition, processing, and utilization of horse gram and moth bean. C R C Critical Reviews in Food Science and Nutrition 22, 126. https://doi.org/10.1080/10408398509527407.CrossRefGoogle ScholarPubMed
Kaga, A., Tomooka, N., Egawa, Y., Hosaka, K., Kamijima, O. 1996. Species relationships in the subgenus Ceratotropis (genus Vigna) as revealed by RAPD analysis. Euphytica 88, 1724. https://doi.org/10.1007/BF00029261.CrossRefGoogle Scholar
Kahlheber, S., Neumann, K. 2007. The development of plant cultivation in semi-arid West Africa, in Denham, T. P., Iriarte, J., Vrydaghs, L. (eds.), Rethinking Agriculture: Archaeological and Ethnoarchaeological Perspectives. Walnut Creek, CA: Left Coast Press, pp. 320–46.Google Scholar
Kaiser, T., Voytek, B. 1983. Sedentism and economic change in the Balkan Neolithic. Journal of Anthropological Research 2, 323–53.Google Scholar
Kajale, M. D. 1977a. On the botanical findings from excavations at Daimabad: A Chalcolithic site in western Maharashtra. Current Science 46, 818–19.Google Scholar
Kajale, M. D. 1977b. Plant economy at Inamgaon. Man and Environment 1, 54–6.Google Scholar
Kajale, M. D. 1982. First report of ancient grains from megalithic habitational site of Naikund, District Nagpur, Maharashtra, in Deo, S. B., Jamkhedkar, A. P. (eds.), Naikund Excavations 1978–80. Pune: Government of Maharashtra and Deccan College, pp. 60–3.Google Scholar
Kajale, M. D. 1988. Plant economy, in Dhavalikar, M. K., Sankalia, H. D., Ansari, Z. D. (eds.), Excavations at Inamgaon: Vol. 1, Part II. Pune: Deccan College Postgraduate and Research Institute, pp. 727821.Google Scholar
Kajale, M. D. 1989. Palaeobotanical findings from excavations at Hallur (second season), District Dharwar, Karnataka. Bulletin of the Deccan College Research Institute 47–8, 123–8.Google Scholar
Kajale, M. D. 1990. Some initial observations on palaeobotanical evidence for Mesolithic plant economy from excavations at Damdama, Pratapgarh, Uttar Pradesh, in Ghosh, N. C., Chakrabarti, S. (eds.), Adaptation and Other Essays. Santiniketan: Visva Bharati Research Publications, pp. 98102.Google Scholar
Kajale, M. D. 1991. Current status of Indian palaeoethnobotany: Introduced and indigenous food plants with a discussion of the historical and evolutionary development of Indian agriculture and agricultural systems in general, in Renfrew, J. M. (ed.), New Light on Early Farming: Recent Developments in Palaeoethnobotany. Edinburgh: Edinburgh University Press, pp. 155–89.Google Scholar
Kajale, M. D. 2003. Antiquity of native African millets and associated plants with some observations on prehistoric plant introductions into the Indian sub-continent, in Kajale, M. D., Misra, V. D. (eds.), Introduction of African Crops into South Asia. Pune: Deccan College Postgraduate and Research Institute, pp. 2348.Google Scholar
Kajale, M., Eksambekar, S. P. 2001. Phytolith approach for investigating ancient occupations at Balathal, Rajasthan, India, in Meunier, J.-D., Colin, F. (eds.), Phytoliths: Applications in Earth Sciences and Human History. Lisse: Swets & Zeitlinger, pp. 199212.CrossRefGoogle Scholar
Kashyap, A. 2006. Use-wear and starch grain analysis: An integrated approach to understanding the transition to food production at Bagor, Rajasthan (Doctoral). Michigan State University, East Lansing.Google Scholar
Kashyap, A., Weber, S. A. 2010. Harappan plant use revealed by starch grains from Farmana, India. Antiquity Project Gallery 84, 326.Google Scholar
Kashyap, A., Weber, S. A. 2013. Starch grain analysis and experiments provide insights into Harappan cooking practices, in Abraham, S. A., Gullapalli, P., Raczek, T. P., Rizvi, U.Z. (eds.), Connections and Complexity: New Approaches to the Archaeology of South Asia. London: Routledge, pp. 177–94.Google Scholar
Kashyap, A., Weber, S. A. 2016. Preliminary analysis of starch from cattle tooth at Farmana: Implications for Indus ethnobotany, in Wright, R. P. (ed.), The Harappa Archaeological Research Project 2001–2007: Documentation, Analysis and New Excavations. Oxford: British Archaeological Reports.Google Scholar
Kathju, S., Lahiri, A. N. 1981. Physiological aspects, in Mann, H. S., Saxena, S. K. (eds.), Bordi (Ziziphus Nummularia), a Shrub of the Indian Arid Zone: Its Role in Silvipasture. Jodhpur: ICAR Central Arid Zone Research Institute, pp. 1924.Google Scholar
Kato, S., Kosaka, H., Hara, S. 1928. On the affinity of rice varieties as shown by the fertility of rice plants. Science Bulletin, Faculty of Agriculture, Kyushu Imperial University 3, 132–42.Google Scholar
Kaufman, P. B., Dayanandan, P., Franklin, C. I., Takeoka, Y. 1985. Structure and function of silica bodies in the epidermal system of grass shoots. Annals of Botany 55, 487507. https://doi.org/10.1093/oxfordjournals.aob.a086926.CrossRefGoogle Scholar
Kawase, M., Sakamoto, S. 1982. Geographical distribution and genetic analysis of phenol color reaction in foxtail millet, Setaria italica (L.) P. Beauv.Theoretical and Applied Genetics 63, 117–19. https://doi.org/10.1007/BF00303690.CrossRefGoogle Scholar
Kawase, M., Sakamoto, S. 1984. Variation, geographical distribution and genetical analysis of esterase isozymes in foxtail millet, Setaria italica (L.) P. Beauv. Theoretical and Applied Genetics 67, 529–33. https://doi.org/10.1007/BF00264899.CrossRefGoogle Scholar
Kawase, M., Sakamoto, S. 1987. Geographical distribution of landrace groups classified by hybrid pollen sterility in foxtail millet, Setaria italica (L.) P. Beauv. Japan Journal of Breeding 37, 19.Google Scholar
Kenoyer, J. M. 1984. Shell working industries of the Indus Civilization: A summary. Paleorient 10, 4963.CrossRefGoogle Scholar
Kenoyer, J. M. 1994. The Harappan state: Was it or wasn’t it? in Kenoyer, J. M. (ed.), From Sumer to Meluhha: Contributions to the Archaeology of South West Asia in Memory of George F. Dales, Jr. Madison: Department of Anthropology, University of Wisconsin, Madison, pp. 7180.Google Scholar
Kenoyer, J. M. 1997a. Early city-states in South Asia: Comparing the Harappan phase and the Early Historic period, in Nichols, D. L., Charlton, T. H. (eds.), The Archaeology of City-States: Cross-Cultural Approaches. Washington, DC: Smithsonian Institute Press, pp. 5170.Google Scholar
Kenoyer, J. M. 1997b. Trade and technology of the Indus Valley: New insights from Harappa, Pakistan. World Archaeology 29, 262–80.CrossRefGoogle Scholar
Kenoyer, J. M. 1998. Ancient Cities of the Indus Valley. Karachi: Oxford University Press.Google Scholar
Kenoyer, J. M. 2000. Wealth and socio-economic hierarchies of the Indus Valley Civilisation, in Richards, J., Van Buren, M. (eds.), Order, Legitimacy and Wealth in Early States. Cambridge: Cambridge University Press, pp. 90112.Google Scholar
Kenoyer, J. M. 2006. Cultures and societies of the Indus tradition, in Thapar, R. (ed.), Historical Roots in the Making of the Aryan. New Delhi: National Book Trust, pp. 2149.Google Scholar
Kenoyer, J. M. 2008. Indus urbanism: New perspectives on its origin and character, in Marcus, J., Sabloff, J. A. (eds.), The Ancient City: New Perspectives in the Old and New World. Santa Fe, NM: SAR Press/National Academy of Sciences, pp. 85109.Google Scholar
Kenoyer, J. M., Meadow, R. H. 2000. The Ravi Phase: A new cultural manifestation at Harappa, in Taddei, M., de Marco, G. (eds.), South Asian Archaeology 1997. Rome: Instituto Italian per l’Africa e l’Oriente, pp. 5576.Google Scholar
Khadkikar, A. S., Rajshekhar, C., Kumaran, K. P. N. 2004. Palaeogeography around the Harappan port of Lothal, Gujarat, western India. Antiquity 78, 896903. https://doi.org/10.1017/S0003598X00113535.CrossRefGoogle Scholar
Khan, F., Cartwright, C., Joyner, L., Petrie, C. (eds.). 2010. Sheri Khan Tarakai and Early Village Life in the Borderlands of North-West Pakistan. Bannu Archaeological Project Monograph Series. Oxford: Oxbow Books.Google Scholar
Khanna, K. K. 2002. Ethnobotany of five districts of Terai Region, Uttar Pradesh, in Trivedi, P. C. (ed.), Ethnobotany. Jaipur: Aavishkar, pp. 128–45.Google Scholar
Kharakwal, J. S., Rawat, Y. S., Osada, T. 2008. Excavations at Kanmer: A Harappan site in Kachchh, Gujarat.Puratattva 39, 147–64.Google Scholar
Kharakwal, J. S., Rawat, Y. S., Osada, T. 2011. Annual report of excavation at Kanmer 2007–8 and 2008–9. Occasional Paper 10, 71104.Google Scholar
Kihara, H., Kishimoto, E. 1942. Bastarde zwischen Setaria italica und S. viridis. The Botanical Magazine TOKYO 56, 62–7.CrossRefGoogle Scholar
Kimata, M., Ashok, E. G., Seetharam, A. 2000. Domestication, cultivation and utilization of two small millets, Brachiaria Ramosa and Setaria glauca (Poaceae), in South India. Economic Botany 54, 217–27. https://doi.org/10.1007/BF02907825.Google Scholar
Kimata, M., Fuke, S., Seetharam, A. 1999. The physical and nutritional effects of the parboiling process on the grains in small millets. Environmental Education Studies, Tokyo Gakugei University 9, 2540.Google Scholar
Kimata, M., Sakamoto, S. 1992. Utilization of Several Species of Millet in Eurasia. Bulletin of the Field Studies Institute 3. Koganei: Tokyo Gakugei University, pp. 112.Google Scholar
Kingwell-Banham, E. 2019. Dry, rainfed or irrigated? Reevaluating the role and development of rice agriculture in Iron Age–Early Historic South India using archaeobotanical approaches. Archaeological and Anthropological Sciences 11, 64856500. https://doi.org/10.1007/s12520-019-00795-7.CrossRefGoogle ScholarPubMed
Kingwell-Banham, E., Fuller, D. Q. 2012. Shifting cultivators in South Asia: Expansion, marginalisation and specialisation over the long term. Quaternary International 249, 8495. https://doi.org/10.1016/j.quaint.2011.05.025.CrossRefGoogle Scholar
Kingwell-Banham, E., Fuller, D. Q. 2014. Brown top millet: Origins and development, in Smith, C. (ed.), Encyclopedia of Global Archaeology. New York: Springer, pp. 1021–4. https://doi.org/10.1007/978-1-4419-0465-2_2318.Google Scholar
Kingwell-Banham, E., Harvey, E. K., Mohanty, R. K., Fuller, D. Q. 2018. Archaeobotanical investigations into Golbai Sasan and Gopalpur, two Neolithic–Chalcolithic settlements of Odisha. Ancient Asia 9, 5. https://doi.org/10.5334/aa.164.CrossRefGoogle Scholar
Kingwell-Banham, E., Petrie, C. A., Fuller, D. Q. 2015. Early agriculture in South Asia, in Barker, G., Goucher, C. (eds.), The Cambridge World History. Cambridge: Cambridge University Press, pp. 261–88. https://doi.org/10.1017/CBO9780511978807.011.Google Scholar
Kirkbride, D. 1972. Umm Dabaghiyah, 1971: A preliminary report. An early ceramic farming settlement in marginal north central Jazirah. Iraq 34, 319.CrossRefGoogle Scholar
Kislev, M. E. 1984. Emergence of wheat agriculture. Paleorient 10–12, 6170.CrossRefGoogle Scholar
Klee, M., Zach, B., Neumann, K. 2000. Four thousand years of plant exploitation in the Chad Basin of northeast Nigeria I: The archaeobotany of Kursakata. Vegetation History and Archaeobotany 9, 223–37.CrossRefGoogle Scholar
Klee, M., Zach, B., Stika, H. P. 2004. Four thousand years of plant exploitation in the Lake Chad Basin (Nigeria), part III: Plant impressions in potsherds from the Final Stone Age Gajiganna Culture. Vegetation History and Archaeobotany 13, 131–42.CrossRefGoogle Scholar
Konecky, B., Russell, J., Vuille, M., Rehfeld, K. 2014. The Indian Ocean Zonal Mode over the past millennium in observed and modeled precipitation isotopes. Quaternary Science Reviews 103, 118. https://doi.org/10.1016/j.quascirev.2014.08.019.CrossRefGoogle Scholar
Konishi, S., Izawa, T., Lin, S. Y. et al. 2006. An SNP caused loss of seed shattering during rice domestication. Science 312, 1392–6. https://doi.org/10.1126/science.1126410.CrossRefGoogle ScholarPubMed
Korisettar, R., Joglekar, P. P., Fuller, D., Venkatasubbaiah, P. C. 2001. Archaeological re-investigation and archaeozoology of seven southern Neolithic sites in Karnataka and Andhra Pradesh. Man and Environment 26, 4766.Google Scholar
Kotlia, B. S., Singh, A. K., Joshi, L. M., Dhaila, B. S. 2015. Precipitation variability in the Indian Central Himalaya during last ca. 4,000 years inferred from a speleothem record: Impact of Indian Summer Monsoon (ISM) and westerlies. Quaternary International 371, 244–53. https://doi.org/10.1016/j.quaint.2014.10.066.CrossRefGoogle Scholar
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F. 2006. World map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift 15, 259–63. https://doi.org/10.1127/0941-2948/2006/0130.CrossRefGoogle Scholar
Kraehmer, H., Jabran, K., Mennan, H., Chauhan, B. S. 2016. Global distribution of rice weeds: A review. Crop Protection 80, 7386. https://doi.org/10.1016/j.cropro.2015.10.027.CrossRefGoogle Scholar
Krishnamurthy, V., Kinter, J. L. 2003. The Indian monsoon and its relation to global climate variability, in Rodó, X., Comín, F. A. (eds.), Global Climate. Berlin: Springer, pp. 186236. https://doi.org/10.1007/978-3-662-05285-3_10.CrossRefGoogle Scholar
Kroll, H. 1999. Vor- und fruhgeschichtliche Weinreben: Wild oder angebaut? Trierer Zeitschrift 62, 151–3.Google Scholar
Kröpelin, S., Verschuren, D., Lézine, A.-M. et al. 2008. Climate-driven ecosystem succession in the Sahara: The past 6000 years. Science 320, 765–8. https://doi.org/10.1126/science.1154913.CrossRefGoogle ScholarPubMed
Kuijt, I., Finlayson, B. 2009. Evidence for food storage and predomestication granaries 11,000 years ago in the Jordan Valley. Proceedings of the National Academy of Sciences USA 106, 10966–70. https://doi.org/10.1073/pnas.0812764106.CrossRefGoogle ScholarPubMed
Kumar, B., Rai, S. P., Kumar, U. S., et al. 2010. Isotopic characteristics of Indian precipitation. Water Resources Research 46. https://doi.org/10.1029/2009WR008532.CrossRefGoogle Scholar
Kumar, S. 2001. Flora of Haryana: Materials. Dehra Dun: Bishen Singh Mahendra Pal Singh.Google Scholar
Kumar, S. 2006. Climate change and crop breeding objectives in the twenty first century. Current Science 90, 1053–4.Google Scholar
Kumar, S., Bahl, J. R., Bansal, R. P. et al. 2002. High economic returns from companion and relay cropping of bread wheat and menthol mint in the winter–summer season in north Indian plains. Industrial Crops and Products 15, 103–14. https://doi.org/10.1016/S0926-6690(01)00100-5.CrossRefGoogle Scholar
Kumari, R., Dikshit, N., Sharma, D., Bhat, K. V. 2011. Analysis of molecular genetic diversity in a representative collection of foxtail millet [Setaria italica (L.) P. Beauv.] from different agro-ecological regions of India. Physiology and Molecular Biology of Plants 17, 363–74. https://doi.org/10.1007/s12298-011-0085-3.CrossRefGoogle Scholar
Ladizinsky, G. 1987. Pulse domestication before cultivation. Economic Botany 41, 60–5.CrossRefGoogle Scholar
Ladizinsky, G. 1993. Lentil domestication: On the quality of evidence and arguments. Economic Botany 47, 60–4. https://doi.org/10.1007/BF02862206.CrossRefGoogle Scholar
Ladizinsky, G., Oss, H. V. 1984. Genetic relationships between wild and cultivated Vicia ervilia (L.) Willd. Botanical Journal of the Linnean Society 89, 97100. https://doi.org/10.1111/j.1095-8339.1984.tb01003.x.CrossRefGoogle Scholar
Lahiri, N. (ed.), 2000. The Decline and Fall of the Indus Civilization. Delhi; Bangalore: Permanent Black; Orient Longman.Google Scholar
Lal, B. B. 1970. Perhaps the earliest ploughed field so far excavated anywhere in the world. Puratattva 4, 13.Google Scholar
Lal, B. B. 1994. The chronological horizon of the mature Indus Civilisation, in Kenoyer, J. M. (ed.), From Sumer to Meluhha: Contributions to the Archaeology of South West Asia in Memory of George F. Dales, Jr. Madison: Department of Anthropology, University of Wisconsin, Madison, pp. 1526.Google Scholar
Lal, B. B. 1997. The Earliest Civilisation of South Asia. Delhi: Aryan Books.Google Scholar
Lal, B. B. 2002. The Sarasvati Flows On: The Continuity of Indian Culture. New Delhi: Aryan Books.Google Scholar
Lal, B. B. 2003. The agricultural field, in Lal, B. B., Joshi, J. P., Thapar, B. K., Bala, M. (eds.), Excavations at Kalibangan: The Early Harappans (1960–1969). New Delhi: Archaeological Survey of India, pp. 95100.Google Scholar
Lancelotti, C. 2010. Fueling Harappan hearths: Human–environment interactions as revealed by fuel exploitation and use (PhD). University of Cambridge, Cambridge.Google Scholar
Lancelotti, C. 2018. ‘Not all that burns is wood’: A social perspective on fuel exploitation and use during the Indus urban period (2600–1900 BC). PLoS One 13, e0192364. https://doi.org/10.1371/journal.pone.0192364.CrossRefGoogle Scholar
Lancelotti, C., Madella, M. 2012. The ‘invisible’ product: Developing markers for identifying dung in archaeological contexts. Journal of Archaeological Science 39, 953–63. https://doi.org/10.1016/j.jas.2011.11.007.CrossRefGoogle Scholar
Lancelotti, C., Ruiz-Pérez, J., García-Granero, J. J. 2017. Investigating fuel and fireplaces with a combination of phytoliths and multi-element analysis: An ethnographic experiment. Vegetation History and Archaeobotany 26, 7583. https://doi.org/10.1007/s00334-016-0574-y.CrossRefGoogle Scholar
Langejans, G. H. J. 2010. Remains of the day: Preservation of organic micro-residues on stone tools. Journal of Archaeological Science 37, 971–85. https://doi.org/10.1016/j.jas.2009.11.030.CrossRefGoogle Scholar
Langlie, B. S. 2019. Morphological analysis of late pre-Hispanic Peruvian Chenopodium spp. Vegetation History and Archaeobotany 28, 5163. https://doi.org/10.1007/s00334-018-0677-8.CrossRefGoogle Scholar
Langlie, B. S., Hastorf, C. A., Bruno, M. C. et al. 2011. Diversity in Andean Chenopodium domestication: Describing a new morphological type from La Barca, Bolivia 1300–1250 B.C. Journal of Ethnobiology 31, 7288. https://doi.org/10.2993/0278-0771-31.1.72.CrossRefGoogle Scholar
Langlie, B. S., Mueller, N. G., Spengler, R. N., Fritz, G. J. 2014. Agricultural origins from the ground up: Archaeological approaches to plant domestication. American Journal of Botany 101, 1601–17. https://doi.org/10.3732/ajb.1400145.CrossRefGoogle ScholarPubMed
Lansing, J. S., Miller, J. H. 2005. Cooperation, games, and ecological feedback: Some insights from Bali. Current Anthropology 46, 328–34. https://doi.org/10.1086/428790.CrossRefGoogle Scholar
Larson, G., Piperno, D. R., Allaby, R. G. et al. 2014. Current perspectives and the future of domestication studies. Proceedings of the National Academy of Sciences USA 111, 6139–46. https://doi.org/10.1073/pnas.1323964111.CrossRefGoogle ScholarPubMed
Lata, C., Gupta, S., Prasad, M. 2013. Foxtail millet: A model crop for genetic and genomic studies in bioenergy grasses. Critical Reviews in Biotechnology 33, 328–43. https://doi.org/10.3109/07388551.2012.716809.CrossRefGoogle Scholar
Laurence, A. R., Thoms, A. V., Bryant, V. M., McDonough, C. 2011. Airborne starch granules as a potential contamination source at archaeological sites. Journal of Ethnobiology 31, 213–32. https://doi.org/10.2993/0278-0771-31.2.213.CrossRefGoogle Scholar
Law, R. 2011. Inter-regional interaction and urbanism in the ancient Indus Valley: A geological provenience study of Harappa’s rock and mineral assemblage. Linguistics, Archaeology and the Human Past: Occasional Paper 11, 1800.Google Scholar
Lawn, R. 1995. The Asiatic Vigna species, in Smartt, J., Simmonds, N. W. (eds.), Evolution of Crop Plants, 2nd edition. London: Longman, pp. 321–6.Google Scholar
Leach, H. M. 1997. The terminology of agricultural origins and food production systems: A horticultural perspective. Antiquity 71, 135–48. https://doi.org/10.1017/S0003598X00084623.CrossRefGoogle Scholar
Leach, H., Schoch, T. J. 1961. Structure of the starch granule II: Action of various amylases on granular starches. Cereal Chemistry 38, 3446.Google Scholar
Lechevallier, M., Quivron, G. 1981. The Neolithic in Baluchistan: New evidences from Mehrgarh, in Hartel, H. (ed.), South Asian Archaeology 1979. Berlin: Dietrich Reimer, pp. 7192.Google Scholar
Lee, G. A. 2012. Taphonomy and sample size estimation in paleoethnobotany. Journal of Archaeological Science 39, 648–55.CrossRefGoogle Scholar
Lee, G. A., Crawford, G. W., Liu, L., Sasaki, Y., Chen, X. 2011. Archaeological soybean (Glycine max) in East Asia: Does size matter? PLoS One 6, e26720. https://doi.org/10.1371/journal.pone.0026720.CrossRefGoogle ScholarPubMed
Leipe, C., Demske, D., Tarasov, P. E. 2014. A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: Implications for palaeoclimatic and archaeological research. Quaternary International 348, 93112. https://doi.org/10.1016/j.quaint.2013.05.005.CrossRefGoogle Scholar
Leitch, I. J., Johnston, E., Pellicer, J., Hidalgo, O., Bennett, M. D. 2019. Plant DNA C-values Database (release 7.1, April 2019). https://cvalues.science.kew.org.Google Scholar
Lennstrom, H. A., Hastorf, C. A. 1995. Interpretation in context: Sampling and analysis in paleoethnobotany. American Antiquity 60, 701–21. https://doi.org/10.2307/282054.CrossRefGoogle Scholar
Le Thierry d’Ennequin, M., Panaud, O., Toupance, B., Sarr, A. 2000. Assessment of genetic relationships between Setaria italica and its wild relative S. viridis using AFLP markers. Theoretical and Applied Genetics 100, 1061–6.CrossRefGoogle Scholar
Levi Strauss, C. 1968. L’Origine des maniéres de table. In Mythologiques IV. Paris: Seuil.Google Scholar
Li, C., Pao, W. K., Li, H. W. 1942. Interspecific crosses in Setaria. II. Cytological studies of interspecific hybrids involving 1, S. faberii and S. italica, and 2, a three way cross, F2 of S. italica, S. viridis and S. faberii. Journal of Heredity 33, 351–5.Google Scholar
Li, C., Zhou, A., Sang, T. 2006a. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytology 170, 185–94. https://doi.org/10.1111/j.1469-8137.2005.01647.x.CrossRefGoogle ScholarPubMed
Li, C., Zhou, A., Sang, T. 2006b. Rice domestication by reducing shattering. Science 311, 1936–9. https://doi.org/10.1126/science.1123604.CrossRefGoogle ScholarPubMed
Li, H. W., Li, C. H., Pao, W. K. 1945. Cytological and genetical studies of the interspecific cross of the cultivated foxtail millet, Setaria italica (L.) Beauv. and the green foxtail millet, S. viridis L. America Society of Agronomy 37, 3254.CrossRefGoogle Scholar
Li, P., Brutnell, T. P. 2011. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. Journal of Experimental Botany 62, 3031–7. https://doi.org/10.1093/jxb/err096.CrossRefGoogle ScholarPubMed
Li, Y., Wu, S. 1996. Traditional maintenance and multiplication of foxtail millet (Setaria italica (L.) P. Beauv.) landraces in China. Euphytica 87, 33–8. https://doi.org/10.1007/BF00022961.CrossRefGoogle Scholar
Li, Y., Wu, S. Z., Cao, Y. S. 1995. Cluster analysis of an international collection of foxtail millet [Setaria italica (L.) P. Beauv.]. Euphytica 83, 7985.CrossRefGoogle Scholar
Lightfoot, E., Jones, P. J., Joglekar, P. P. et al. 2020. Feeding the herds: Stable isotope analysis of animal diet and its implication for understanding social organisation in the Indus Civilisation, northwest India. Archaeological Research in Asia 24, 100212. https://doi.org/10.1016/j.ara.2020.100212.CrossRefGoogle Scholar
Lightfoot, E., Liu, X., Jones, M. K. 2013. Why move starchy cereals? A review of the isotopic evidence for prehistoric millet consumption across Eurasia. World Archaeology 45, 574623. https://doi.org/10.1080/00438243.2013.852070.CrossRefGoogle Scholar
Lin, Z., Griffith, M. E., Li, X. et al. 2007. Origin of seed shattering in rice (Oryza sativa L.). Planta 226, 1120. https://doi.org/10.1007/s00425-006-0460-4.CrossRefGoogle ScholarPubMed
Lin, Z., Li, X., Shannon, L. M. et al. 2012. Parallel domestication of the Shattering1 genes in cereals. Nature Genetics 44, 720–4. https://doi.org/10.1038/ng.2281.CrossRefGoogle ScholarPubMed
Linnaeus, C. 1753. Species plantarum: Exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Stockholm: Impensis Laurentii Salvii.Google Scholar
Lisitsyna, G. N., Prishepenko, L. V. 1977. Paleoethnobotamicheskie nachodki Kavkaza i Blijnego Vostoka [Palaeoethnobotanical Finds of the Caucasus and the Near East]. Moscow: Nauka.Google Scholar
Lister, D. L., Jones, H., Oliveira, H. R. et al. 2018. Barley heads east: Genetic analyses reveal routes of spread through diverse Eurasian landscapes. PLoS One 13, e0196652. https://doi.org/10.1371/journal.pone.0196652.CrossRefGoogle ScholarPubMed
Liu, C., Kong, Z. 2004. Morphological comparison of foxtail millet and broomcorn millet and its significance in archaeological identification. Kaogu (Archaeology) 8, 748–55.Google Scholar
Liu, C. Z., Kong, Z. C., Lang, S. D. 2004. Plant remains at the Dadiwan site and a discussion of human adaptation to the environment. Zhongyan Wenwu 4, 2630.Google Scholar
Liu, M., Xu, Y., He, J. et al. 2016. Genetic diversity and population structure of broomcorn millet (Panicum miliaceum L.) cultivars and landraces in China based on microsatellite markers. International Journal of Molecular Sciences 17, 370. https://doi.org/10.3390/ijms17030370.CrossRefGoogle Scholar
Liu, M., Zhang, Z., Wu, B., Lu, P. 2012. Evaluation of mixed salt-tolerance at germination stage and seedling stage and the related physiological characteristics of Panicum miliaceum L. Scientia Agricultura Sinica 45, 3733–43.Google Scholar
Liu, X., Hunt, H. V., Jones, M. K. 2009. River valleys and foothills: Changing archaeological perceptions of North China’s earliest farms. Antiquity 83, 8295. https://doi.org/10.1017/S0003598X00098100.CrossRefGoogle Scholar
Liu, X., Lister, D. L., Zhao, Z. et al. 2016. The virtues of small grain size: Potential pathways to a distinguishing feature of Asian wheats. Quaternary International 426, 107–19. https://doi.org/10.1016/j.quaint.2016.02.059.CrossRefGoogle Scholar
Liu, X., Motuzaite Matuzeviciute, G., Hunt, H. V. 2018. From a fertile idea to a fertile arc: The origins of broomcorn millet 15 years on, in Lightfoot, E., Liu, X., Fuller, D. Q. (eds.), Far from the Hearth: Essays in Honour of Martin K. Jones. Cambridge: McDonald Institute for Archaeological Research, University of Cambridge, pp. 155–64.Google Scholar
Lodwick, L. 2019. Agendas for archaeobotany in the 21st century: Data, dissemination and new directions. Internet Archaeology 53. https://doi.org/10.11141/ia.53.7.Google Scholar
Logothetis, V. 1974. The contribution of the vine and the wine to the civilization of Greece and Eastern Mediterranean. Epistimoniki Epetiris tis Geoponikis kai Dasologikis Sholis, University of Thessaloniki 17, 5286.Google Scholar
Londo, J. P., Chiang, Y.-C., Hung, K.-H., Chiang, T.-Y., Schaal, B. A. 2006. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proceedings of the National Academy of Sciences USA 103, 9578–83. https://doi.org/10.1073/pnas.0603152103.CrossRefGoogle ScholarPubMed
Lone, F. A., Khan, M., Buth, G. M. 1987. Plant remains from Banawali, Haryana. Current Science 56, 837–8.Google Scholar
Lone, F. A., Maqsooda, K., Buth, G. M. 1993. Palaeoethnobotany: Plants and Ancient Man in Kashmir. Rotterdam: A. A. Balkema.Google Scholar
Longvah, T., Ananthan, R., Bhaskarachary, R., Venkaiah, K. 2017. Indian Food Composition Tables. Hyderabad: National Institute of Nutrition.Google Scholar
Lovell, N. C. 2014. Additional data on trauma at Harappa. International Journal of Paleopathology 6, 14.CrossRefGoogle ScholarPubMed
Loy, T. 1994. Methods in the analysis of starch residues on prehistoric stone tools, in Hather, J. (ed.), Tropical Archaeobotany: Applications and New Developments. London: Routledge, pp. 86113.Google Scholar
Loy, T., Barton, H. 2006. Post-excavation contamination and measures for prevention, in Torrence, R., Barton, H. (eds.), Ancient Starch Research. Walnut Creek, CA: Left Coast Press, pp. 165–7.Google Scholar
Lu, H., Liu, Z., Wu, N. et al. 2008. Rice domestication and climatic change: Phytolith evidence from East China. Boreas 31, 378–85. https://doi.org/10.1111/j.1502-3885.2002.tb01081.x.Google Scholar
Lu, H., Zhang, J., Liu, K.-B. et al. 2009a. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences USA 106, 7367–72. https://doi.org/10.1073/pnas.0900158106.CrossRefGoogle ScholarPubMed
Lu, H., Zhang, J., Wu, N. et al. 2009b. Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS One 4, e4448. https://doi.org/10.1371/journal.pone.0004448.CrossRefGoogle ScholarPubMed
Lu, T. L.-D. 1999. The Transition from Foraging to Farming and the Origin of Agriculture in China. Oxford: British Archaeological Reports.Google Scholar
Luef, B., Frischkorn, K. R., Wrighton, K. C. et al. 2015. Diverse uncultivated ultra-small bacterial cells in groundwater. Nature Communications 6. https://doi.org/10.1038/ncomms7372.CrossRefGoogle ScholarPubMed
Lukacs, J. R. 2016. Mesolithic foragers of the Ganges Plain and adjoining Hilly, in Schug, G. R., Walimbe, S. R., Kennedy, K. A. R. (eds.), A Companion to South Asia in the Past. Blackwell Companions to Anthropology. Chichester: Wiley, pp. 101–24.Google Scholar
Lukoki, L., Marechal, R., Otoul, E. 1980. Les Ancestres Sauvages des Haricots Cultivees: Vigna radiata (L.) Wilczek et V. mungo (L.) Hepper. Bulletin du Jardin Botanique de Belgique 50, 385–91.Google Scholar
Lundström-Baudais, K., Rachoud-Schneider, A. M., Baudais, D., Poissonnier, B. 2002. Le Broyage dans la Chaine de Transformation du Millet (Panicum miliaceum): Outils, gestes et ecofacts, in Procopiou, H., Treuil, R. (eds.), Moudre et Broyer Vol. I Methodes. Paris: Comite des Travaus Historiues et Scientifiques, pp. 155–80.Google Scholar
Luo, W., Yang, Y., Yao, L. et al. 2016. Phytolith records of rice agriculture during the Middle Neolithic in the middle reaches of Huai River region, China. Quaternary International 426, 133–40. https://doi.org/10.1016/j.quaint.2016.03.010.CrossRefGoogle Scholar
Luthra, J. C. 1936. Ancient wheat and its viability. Current Science 4, 489–90.Google Scholar
Luthra, J. C. 1941. Letter Quoted in Excavations at Harappa (M.S. Vats), p. 467. Delhi: Manohar.Google Scholar
Ma, J., Bennetzen, J. L. 2004. Rapid recent growth and divergence of rice nuclear genomes. Proceedings of the National Academy of Sciences USA 101, 12404–10. https://doi.org/10.1073/pnas.0403715101.CrossRefGoogle ScholarPubMed
Ma, Y., Yang, X., Huan, X. et al. 2016. Rice bulliform phytoliths reveal the process of rice domestication in the Neolithic Lower Yangtze River region. Quaternary International 426, 126–32. https://doi.org/10.1016/j.quaint.2016.02.030.CrossRefGoogle Scholar
Maass, B. L. 2006. Changes in seed morphology, dormancy and germination from wild to cultivated hyacinth bean germplasm (Lablab purpureus: Papilionoideae). Genetic Resources and Crop Evolution 53, 1127–35. https://doi.org/10.1007/s10722-005-2782-7.CrossRefGoogle Scholar
Maass, B. L., Jamnadass, R. H., Hanson, J., Pengelly, B. C. 2005. Determining sources of diversity in cultivated and wild Lablab purpureus related to provenance of germplasm by using amplified fragment length polymorphism. Genetic Resources and Crop Evolution 52, 683–95. https://doi.org/10.1007/s10722-003-6019-3.CrossRefGoogle Scholar
Maass, B. L., Knox, M. R., Venkatesha, S. C. et al. 2010. Lablab purpureus: A crop lost for Africa? Tropical Plant Biology 3, 123–35. https://doi.org/10.1007/s12042-010-9046-1.CrossRefGoogle ScholarPubMed
Maass, B. L., Usongo, M. F. 2007. Changes in seed characteristics during the domestication of the lablab bean (Lablab purpureus (L.) Sweet: Papilionoideae). Australian Journal of Agricultural and Resource Economics 58, 9. https://doi.org/10.1071/AR05059.CrossRefGoogle Scholar
Mackay, E. J. H. 1931. Plain and painted pottery with tabulation, in Marshall, J. (ed.), Mohenjo-Daro and the Indus Civilisation. London: Arthur Probsthain, pp. 287337.Google Scholar
Mackay, E. J. H. 1938. Further Excavations at Mohenjo Daro. New Delhi: Archaeological Survey of India.Google Scholar
Mackay, E. J. H. 1943. Chanhu-Daro Excavations, 1935–1936. New Haven, CT: American Oriental Society.Google Scholar
MacLeod, N., O’Neill, M., Walsh, S. A. 2007. A comparison between morphometric and artificial neural net approaches to the automated species-recognition problem in systematics, in Curry, G., Humphries, C. (eds.), Biodiversity Databases: From Cottage Industry to Industrial Network. Boca Raton, FL: CRC Press, pp. 3762.CrossRefGoogle Scholar
Madella, M. 1997. Phytolith analysis from the Indus Valley site of Kot Diji, Sindh, Pakistan, in Sinclair, A., Slater, E., Gowlett, J. (eds.), Archaeological Sciences 1995: Proceedings of a Conference on the Application of Scientific Techniques to the Study of Archaeology. Oxford: Oxbow Books, pp. 294302.Google Scholar
Madella, M. 2003. Investigating agriculture and environment in South Asia: Present and future contributions of opal phytoliths, in Weber, S. A., Belcher, W. R. (eds.), Indus Ethnobiology: New Perspectives from the Field. Oxford: Lexington Books, pp. 199249.Google Scholar
Madella, M. 2014. Of crops and food: A social perspective on rice in the Indus Civilisation, in Madella, M., Lancelotti, C., Savard, M. (eds.), Ancient Plants and People: Contemporary Trends in Archaeology. Tuscon: University of Arizona Press, pp. 218–36.Google Scholar
Madella, M., Ajithprasad, P., Lancelotti, C. et al. 2010. Social and environmental transitions in arid zones: The North Gujarat Archaeological Project – NoGAP. Antiquity Project Gallery 84, 14.Google Scholar
Madella, M., Balbo, A., Rondelli, B. et al. 2011. Projecto Arqueológivo Norte del Gujarat [North Gujarat Archaeological Project, in Spanish], in Informes y Trabajos 5. Excavaciones En El Exterior 2009. Madrid: Secretaría General Técnica, Ministerio de Cultura, pp. 114–19.Google Scholar
Madella, M., Fuller, D. Q. 2006. Palaeoecology and the Harappan civilisation of South Asia: A reconsideration. Quaternary Science Reviews 25, 12831301.CrossRefGoogle Scholar
Madella, M., Jones, M. K., Echlin, P., Powers-Jones, A., Moore, M. 2009. Plant water availability and analytical microscopy of phytoliths: Implications for ancient irrigation in arid zones. Quaternary International 193, 3240. https://doi.org/10.1016/j.quaint.2007.06.012.CrossRefGoogle Scholar
Madella, M., Lancelotti, C. 2012. Taphonomy and phytoliths: A user manual. Quaternary International 275, 7683. https://doi.org/10.1016/j.quaint.2011.09.008.CrossRefGoogle Scholar
Madella, M., Lancelotti, C. 2022. Archaeobotanical perspectives on water supply and water management in the Indus Valley Civilization, in Rost, S. (ed.), Irrigation in Early States: New Directions. Chicago, IL: The Oriental Institute of the University of Chicago, pp. 113–36.Google Scholar
Madella, M., Lancelotti, C., García-Granero, J. J. 2013. Millet microremains: An alternative approach to understand cultivation and use of critical crops in prehistory. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-013-0130-y.CrossRefGoogle Scholar
Maemoku, H., Shitaoka, Y., Nagatomo, T., Yagi, H. 2013. Geomorphological constraints on the Ghaggar River regime during the Mature Harappan Period, in Giosan, L., Fuller, D. Q., Nicoll, K., Flad, R. K., Clift, P. D. (eds.), Geophysical Monograph Series. Washington, DC: American Geophysical Union, pp. 97106. https://doi.org/10.1029/2012GM001218.Google Scholar
Maheshwari, P., Singh, U. 1965. Dictionary of Economic Plants in India. New Delhi: Indian Council for Agricultural Research.Google Scholar
Majumdar, G. G., Rajaguru, S. N. 1966. Ashmound Excavations at Kupgal. Poona: Deccan College Postgraduate and Research Institute.Google Scholar
Mal, B., Padulosi, S., Bala Ravi, S. 2010. Minor Millets in South Asia: Learnings from the IFAD–NUS Project in India and Nepal. Chennai: Bioversity International and the M. S. Swaminathan Research Foundation.Google Scholar
Malik, N., Bookhagen, B., Marwan, N., Kurths, J. 2012. Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Climate Dynamics 39, 971–87. https://doi.org/10.1007/s00382-011-1156-4.CrossRefGoogle Scholar
Malleshi, N. 1989. Processing of small millets for food and industrial uses, in Seetharam, K., Riley, G., Harinarayana, G. (eds.), Small Millets in Global Agriculture. New Delhi: Oxford and IBH, pp. 325–40.Google Scholar
Mangafa, M., Kotsakis, K. 1996. A new method for the identification of wild and cultivated charred grape seeds. Journal of Archaeological Science 23, 409–18. https://doi.org/10.1006/jasc.1996.0036.CrossRefGoogle Scholar
Mani, B. R. 2008. Kashmir Neolithic and Early Harappan: A linkage. Pragdhara 18, 229–47.Google Scholar
Mann, S., Perry, C. C., Williams, R. J. P. et al. 1983. The characterisation of the nature of silica in biological systems. Journal of the Chemical Society, Chemical Communications 168. https://doi.org/10.1039/c39830000168.Google Scholar
Manning, K. 2010. A developmental history for early West African agriculture, in Allsworth-Jones, P. (ed.), West African Archaeology: New Developments, New Perspectives. Oxford: British Archaeological Reports, pp. 4352.Google Scholar
Manning, K., Fuller, D. Q. 2014. Early millet farmers in the Lower Tilemsi Valley, northeastern Mali, in Stevens, C. J., Nixon, S., Murray, N., Fuller, D. Q. (eds.), The Archaeology of African Plant Use. Walnut Creek, CA: Left Coast Press, pp. 7382.Google Scholar
Manning, K., Pelling, R., Higham, T., Schwenninger, J.-L., Fuller, D. Q. 2011. 4500-year old domesticated pearl millet (Pennisetum glaucum) from the Tilemsi Valley, Mali: New insights into an alternative cereal domestication pathway. Journal of Archaeological Science 38, 312–22. https://doi.org/10.1016/j.jas.2010.09.007.CrossRefGoogle Scholar
Manning, K., Timpson, A. 2014. The demographic response to Holocene climate change in the Sahara. Quaternary Science Reviews 101, 2835. https://doi.org/10.1016/j.quascirev.2014.07.003.CrossRefGoogle Scholar
Marcus, J., Feinman, G. M. 1998. Introduction, in Feinman, G. M., Marcus, J. (eds.), Archaic States. Santa Fe, NM: School of American Research Press, pp. 313.Google Scholar
Marechal, R., Mascherpa, J. M., Stainer, F. 1978. Etude taxono-mique d’un group complexe d’especes des genres Pha-seolus et Vigna (Papillionaceae) sur la base de donnees morphologiques et polliniques traitees par l’analyse in-formatique. Boissiera 28:1273.Google Scholar
Margaritis, E., Jones, M. 2006. Beyond cereals: Crop processing and Vitis vinifera L. ethnography, experiment and charred grape remains from Hellenistic Greece. Journal of Archaeological Science 33, 784805. https://doi.org/10.1016/j.jas.2005.10.021.CrossRefGoogle Scholar
Marshall, F., Hildebrand, E. 2002. Cattle before crops: The beginnings of food production in Africa. Journal of World Prehistory 16, 99143. https://doi.org/10.1023/A:1019954903395.CrossRefGoogle Scholar
Marshall, J. (ed.). 1931. Mohenjo-Daro and the Indus Civilisation. London: Arthur Probsthain.Google Scholar
Marston, J. M., d’Alpoim Guedes, J., Warinner, C. (eds.). 2015. Method and Theory in Paleoethnobotany. Denver: University Press of Colorado. https://doi.org/10.5876/9781607323167.c005.CrossRefGoogle Scholar
Martinoli, D. 2004. Food plant use, temporal changes and site seasonality at Epipalaeolithic Öküzini and Karain B caves, southwest Anatolia, Turkey.Paleo 30, 6180. https://doi.org/10.3406/paleo.2004.1011.CrossRefGoogle Scholar
Masson, V. M., Sarianidi, V. I. 1972. Central Asia and Turkmenia before the Achaemenids. Southampton: Praeger.Google Scholar
Mattingly, D. 1997. Beyond Belief? Drawing a line beneath the consumer city, in Parkins, H. M. (ed.), Roman Urbanisation beyond the Consumer City. London: Routledge, pp. 210–18.Google Scholar
Mayr, E. 1942. Systematics and the Origin of Species. New York: Columbia University Press.Google Scholar
Mbida Mindzie, C., de Langhe, E., Vrydaghs, L. et al. 2006. Phytolith evidence for the early presence of domesticated banana (Musa) in Africa, in Zeder, M. A., Bradley, D. G., Emshwiller, E., Smith, B. D. (eds.), Documenting Domestication: New Genetic and Archaeological Paradigms. Berkeley: University of California Press, pp. 6881.Google Scholar
Mbida Mindzie, C., Van Neer, W., Doutrelepont, H., Vrydaghs, L. 2000. Evidence for banana cultivation and animal husbandry during the first millennium BC in the forest of southern Cameroon. Journal of Archaeological Science 27, 151–62.Google Scholar
McGovern, P. E. 2003. Ancient Wine: The Search for the Origins of Viniculture. Princeton, NJ: Princeton University Press.Google Scholar
McIntosh, R. J. 2005. Ancient Middle Niger. Cambridge: Cambridge University Press.Google Scholar
McIntosh, R. J., Tainter, J. A., McIntosh, S. K. 2000. The Way the Wind Blows: Climate, History, and Human Action. Historical Ecology Series. New York: Columbia University Press.Google Scholar
McNally, K. L., Childs, K. L., Bohnert, R. et al. 2009. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proceedings of the National Academy of Sciences USA 106, 12273–8. https://doi.org/10.1073/pnas.0900992106.CrossRefGoogle ScholarPubMed
Meadow, R. H. 1984. Notes on the faunal remains from Mehrgarh, with a focus on cattle (Bos), in Allchin, B. (ed.), South Asian Archaeology 1981. Cambridge: Cambridge University Press, pp. 3440.Google Scholar
Meadow, R. 1989. Continuity and change in the agriculture of the greater Indus Valley: The palaeoethnobotanical and zooarchaeological evidence, in Kenoyer, J. M. (ed.), Old Problems and New Perspectives in the Archaeology of South Asia. Madison: University of Wisconsin Press, pp. 6174.Google Scholar
Meadow, R. H. 1991. Faunal remains and urbanism at Harappa, in Meadow, R. H. (ed.), Harappa Excavations 1986–1990. Madison, WI: Prehistory Press, pp. 89106.Google Scholar
Meadow, R. 1996. The origins and spread of agriculture and pastoralism in northwestern South Asia, in Harris, D. (ed.), The Origins and Spread of Agriculture and Pastoralism in Eurasia. London: UCL Press, pp. 390412.Google Scholar
Meadow, R. 1998. Pre- and proto-Historic agricultural and pastoral transformations in Northwestern and South Asia. Review of Archaeology 19, 1221.Google Scholar
Meadow, R., Kenoyer, J. M. 1997. Excavations at Harappa 1994–1995: New perspectives on the Indus script, craft activities, and city organisation, in Allchin, F. R., Allchin, B. (eds.), South Asian Archaeology 1995. New Delhi: Oxford and IBH, pp. 139–72.Google Scholar
Meadow, R., Kenoyer, J. M. 2005. Excavations at Harappa 2000–2001: New insights on chronology and city organisation, in Jarrige, C., Lefevre, V. (eds.), South Asian Archaeology 2001. Paris: Editions Recherche sur les Civilisations, pp. 207–25.Google Scholar
Meadow, R., Kenoyer, J. M. 2008. Harappa excavations 1998–1999: New evidence for the development and manifestation of the Harappan phenomenon, in Raven, E. M. (ed.), South Asian Archaeology 1999. Groningen: Egbert Forsten, pp. 85109.Google Scholar
Meadow, R. H., Patel, A. K. 2002. From Mehrgarh to Harappa and Dholavira: Prehistoric pastoralism in north-western South Asia through the Harappan Period, in Settar, S., Korisettar, R. (eds.), Indian Archaeology in Retrospect. Volume II. Protohistory: Archaeology of the Harappan Civilization. New Delhi: Manohar, pp. 391408.Google Scholar
Meadow, R. H., Patel, A. K. 2003. Prehistoric pastoralism in northwestern South Asia from the Neolithic through the Harappan Period, in Weber, S. A., Belcher, W. (eds.), Indus Ethnobiology: New Perspectives from the Field. Lanham, MD: Lexington Books, pp. 6593.Google Scholar
Mehra, K. L. 1962. Natural hydridization between Eleusine coracana and E. africana in Uganda. Journal of Indian Botanical Society 41, 531–9.Google Scholar
Mehra, K. L. 1963. Differentiation of the cultivated and wild Eleusine species. Phyton 20, 189–98.Google Scholar
Mehta, R. N. 1993. Some rural Harappan settlements in Gujarat, in Possehl, G. L. (ed.), Harappan Civilisation. New Delhi: Oxford and IBH, pp. 167–74.Google Scholar
Mehta, D., Satyanarayana, T. 2016. Bacterial and archaeal α-Amylases: Diversity and amelioration of the desirable characteristics for industrial applications. Frontiers in Microbiology 7. https://doi.org/10.3389/fmicb.2016.01129.CrossRefGoogle ScholarPubMed
Mercader, J., Abtosway, M., Baquedano, E. et al. 2017. Starch contamination landscapes in field archaeology: Olduvai Gorge, Tanzania. Boreas 46, 918–34. https://doi.org/10.1111/bor.12241.CrossRefGoogle Scholar
Mercader, J., Abtosway, M., Bird, R. et al. 2018b. Morphometrics of starch granules from sub-Saharan plants and the identification of ancient starch. Federated Research Data. https://doi.org/10.20383/101.017.CrossRefGoogle Scholar
Mercader, J., Akeju, T., Brown, M. et al. 2018a. Exaggerated expectations in ancient starch research and the need for new taphonomic and authenticity criteria. FACETS 3, 777–98. https://doi.org/10.1139/facets-2017-0126.CrossRefGoogle Scholar
Mercuri, A. M., Fornaciari, R., Gallinaro, M., Vanin, S., di Lernia, S. 2018. Plant behaviour from human imprints and the cultivation of wild cereals in Holocene Sahara. Nature Plants 4, 7181. https://doi.org/10.1038/s41477-017-0098-1.CrossRefGoogle ScholarPubMed
Méry, S. 2000. Les Céramiques d’Oman et l’Asie Moyenne: Une archéologie des échanges á l’Âge du Bronze, Monographies du CRA. Paris: CNRS Éditions.Google Scholar
Méry, S., Esposti, M. D., Frenez, D., Kenoyer, J. M. 2017. Indus potters in central Oman in the second half of the third millennium BC: First results of a tecnological and archaeometric study. Proceedings of the Seminar for Arabian Studies 47, 163–83.Google Scholar
Meyer, A. 1895. Untersuchangen Über die Stäkekorner. Jena: Fisher.Google Scholar
Middleton, G. D. 2017. Understanding Collapse: Ancient History and Modern Myths. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316584941.CrossRefGoogle Scholar
Miksicek, C. H. 1987. Formation processes of the archaeobotanical record. Advances in Archaeological Method and Theory 10, 211–47.CrossRefGoogle Scholar
Miller, H. 1988. Preliminary Analysis of the Plant Remains from Tarakai Qila: Confessions of a Law Consumer. London: University of London.Google Scholar
Miller, H. M.-L. 2006. Water supply, labor requirements, and land ownership in Indus floodplain agricultural systems, in Marcus, J., Stannish, C. (eds.), Agricultural Strategies. Los Angeles: Cotsen Institute of Archaeology, University of California, Los Angeles, pp. 92128.CrossRefGoogle Scholar
Miller, H. M.-L. 2015. Surplus in the Indus Civilisation: Agricultural choices, social relations, political effects, in Morehart, C. T., de Lucia, K. (eds.), Surplus: The Politics of Production and the Strategies of Everyday Life. Denver: University Press of Colorado, pp. 97120.CrossRefGoogle Scholar
Miller, L. J. 2003. Secondary products and urbanism in South Asia: The evidence for traction at Harappa, in Weber, S. A., Belcher, W. R. (eds.), Indus Ethnobiology: New Perspectives from the Field. Lanham, MD: Lexington Books, pp. 251326.Google Scholar
Miller, L. J. 2004. Urban economies in early states: The secondary products revolution in the Indus Civilization (PhD). New York University, New York.Google Scholar
Miller, N. F. 1993. Preliminary archaeobotanical results from the 1989 excavation at the Central Asian site of Gonur Depe,Turkmenistan: International Association for the Study of the Cultures of Central Asia. Information Bulletin 19, 149–63.Google Scholar
Miller, N. F. 1984. The use of dung as fuel: An ethnographic example and an archaeological application. paleo 10, 71–9. https://doi.org/10.3406/paleo.1984.941.CrossRefGoogle Scholar
Miller, N. F. 1996. Seed eaters of the ancient Near East: Human or herbivore? Current Anthropology 37, 521–8. https://doi.org/10.1086/204514.CrossRefGoogle Scholar
Miller, N. F. 2008. Sweeter than wine? The use of the grape in early western Asia. Antiquity 82, 937–46. https://doi.org/10.1017/S0003598X00097696.CrossRefGoogle Scholar
Miller, N. F. 2011. Managing predictable unpredictability: Agricultural sustainability at Gordion, Turkey, in Miller, N. F., Moore, K. M. (eds.), Sustainable Lifeways: Cultural Persistence in an Ever-Changing Environment. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology, pp. 310–24.Google Scholar
Miller, N. F., Gleason, K. L. 1994. The Archaeology of Garden and Field. Philadelphia: University of Pennsylvania Press.Google Scholar
Miller, N. F., Smart, T. L. 1984. Intentional burning of dung as fuel: A mechanism for the incorporation of charred seeds into the archaeological record. Journal of Ethnobiology 4, 1528.Google Scholar
Miller, N. F., Spengler, R. N., Frachetti, M. 2016. Millet cultivation across Eurasia: Origins, spread, and the influence of seasonal climate. The Holocene 26, 1566–75. https://doi.org/10.1177/0959683616641742.CrossRefGoogle Scholar
Miller, T. E. 1992. A cautionary note on the use of morphological characters for recognising taxa in wheat (genus Triticum), in Anderson, P. C. (ed.), Prehistoire de l’Agriculture: Nouvelles Appreoaches Experimentales et Ethnographiques. Paris: Editions CNRS, pp. 249–53.Google Scholar
Minis, P. E. 1981. Seeds in archaeological sites: Sources and some interpretive problems. American Antiquity 46, 143–52.Google Scholar
Mishra, P. K., Anoop, A., Schettler, G. et al. 2015. Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya. Quaternary International 371, 7686. https://doi.org/10.1016/j.quaint.2014.11.040.CrossRefGoogle Scholar
Misra, R. 1969. Ecological Study of Noxious Weeds Common to India and America, Which Are Becoming an Increasing Problem in the Upper Gangetic Plains: PL/480 Final Tech Report Part I & II Botany Dept. Varanasi: Banaras Hindu University.Google Scholar
Misra, V. N. 1984. Climate: A factor in the rise and fall of the Indus Civilisation, in Lal, B. B., Gupta, S. P. (eds.), Frontiers of the Indus Civilisation: Sir Mortimer Wheeler Commemoration Volume. New Delhi: Books & Books, pp. 461–89.Google Scholar
Misra, V. N., Kajale, M. 2003. Antiquity and native African millets and associated plants with some observations on prehistoric plant introductions into the Indian Subcontinent, in Misra, V. N., Kajale, M. (eds.), Introduction of African Crops into South Asia. Pune: Indian Society for Prehistoric and Quaternary Studies, pp. 2348.Google Scholar
Miyazaki, S. 1982. Classification and phylogenetic relationships of the Vigna radiata-mungo-sublobata complex. Bulletin of the National Institute of Agricultural Science 33, 161.Google Scholar
Molina-Cano, J.-L., Russell, J. R., Moralejo, M. A. et al. 2005. Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley. Theoretical and Applied Genetics 110, 613–19. https://doi.org/10.1007/s00122-004-1878-3.CrossRefGoogle ScholarPubMed
Mondal, S., Jeganathan, C., Sinha, N. K. et al. 2014. Extracting seasonal cropping patterns using multi-temporal vegetation indices from IRS LISS-III data in Muzaffarpur District of Bihar, India. Egyptian Journal of Remote Sensing and Space Science 17, 123–34. https://doi.org/10.1016/j.ejrs.2014.09.002.CrossRefGoogle Scholar
Moody, K. 2021. Applying bioarchaeological data to assess the evidence for trade in foodstuffs and pastoral nomadic camps in Harappan Gujarat (BA). University of Glasgow, Glasgow.Google Scholar
Morales, J., Rodríguez-Rodríguez, A., González-Marrero, M. et al. 2014. The archaeobotany of long-term crop storage in northwest African communal granaries: A case study from pre-Hispanic Gran Canaria (cal. AD 1000–1500). Vegetation History and Archaeobotany 23, 789804. https://doi.org/10.1007/s00334-014-0444-4.CrossRefGoogle Scholar
Mori, N., Ohta, S., Chiba, H. et al. 2013. Rediscovery of Indian dwarf wheat (Triticum aestivum L. ssp. sphaerococcum (Perc.) MK.) an ancient crop of the Indian subcontinent. Genetic Resources and Crop Evolution 60, 1771–5. https://doi.org/10.1007/s10722-013-9994-z.CrossRefGoogle Scholar
Morley, N. 1997. Cities in context: Urban systems in Roman Italy, in Parkins, H. M. (ed.), Roman Urbanisation: Beyond the Consumer City. London: Routledge, pp. 4258.Google Scholar
Morrell, P. L., Clegg, M. T. 2007. Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proceedings of the National Academy of Sciences USA 104, 3289–94. https://doi.org/10.1073/pnas.0611377104.CrossRefGoogle Scholar
Morrison, K. D. 1992. Transforming the Agricultural Landscape: Intensification of Production at Vijayanagara, India. Ann Arbor: University of Michigan Press.Google Scholar
Morrison, K. D. 1994. The intensification of production: Archaeological approaches. Journal of Archaeological Method and Theory 1, 111–59. https://doi.org/10.1007/BF02231414.CrossRefGoogle Scholar
Morrison, K. D. 2016. From millets to rice (and back again?): Cuisine, cultivation and health in early South India, in Robbins Schug, G., Walimbe, S. R. (eds.), A Companion to South Asia in the Past. New York: Wiley Blackwell, pp. 358–73.Google Scholar
Motuzaite-Matuzeviciute, G., Staff, R. A., Hunt, H. V., Liu, X., Jones, M. K. 2013. The early chronology of broomcorn millet Panicum miliaceum in Europe. Antiquity 87, 1073–85. https://doi.org/10.1017/S0003598X00049875.CrossRefGoogle Scholar
Moulherat, C., Tengberg, M., Haquet, J.-F., Mille, B. 2002. First evidence of cotton at Neolithic Mehrgarh, Pakistan: Analysis of mineralized fibres from a copper bead. Journal of Archaeological Science 29, 13931401. https://doi.org/10.1006/jasc.2001.0779.CrossRefGoogle Scholar
Moulik, S. 1997. The Grasses and Bamboos of India vol. 1. Jodhpur: Scientific Publishers.Google Scholar
Mueller-Bieniek, A., Bogucki, P., Pyzel, J. et al. 2019. The role of Chenopodium in the subsistence economy of pioneer agriculturalists on the northern frontier of the Linear Pottery culture in Kuyavia, central Poland. Journal of Archaeological Science 111, 105027. https://doi.org/10.1016/j.jas.2019.105027.CrossRefGoogle Scholar
Mughal, M. R. 1971. The early Harappan Period in the greater Indus Valley and northern Baluchistan (ca. 3000–2400 BC) (PhD). University of Pennsylvania, Philadelphia.Google Scholar
Mughal, M. R. 1972. Excavations at Sarai Khola Part II: The pottery. Pakistan Archaeology 8, 3394.Google Scholar
Mughal, M. R. 1982. Recent archaeological research in the Cholistan Desert, in Possehl, G. L. (ed.), Harappan Civilisation: A Contemporary Perspective. New Delhi: Oxford and IBH.Google Scholar
Mughal, M. R. 1997. Ancient Cholistan: Archaeology and Architecture. Lahore: Ferozsons.Google Scholar
Mulholland, S. C., Rapp, G. 1992. A morphological classification of grass silica-bodies, in Rapp, G., Mulholland, S. C. (eds.), Phytolith Systematics: Emerging Issues. New York: Plenum.Google Scholar
Murphy, C., Fuller, D. Q. 2016. Food production in India: South Asian entanglements of domestication, in Schug, G. R., Walimbe, S. R. (eds.), A Companion to South Asia in the Past. Oxford: Wiley Blackwell, pp. 344–57.Google Scholar
Murphy, C., Fuller, D. Q. 2017. Seed coat thinning during horsegram (Macrotyloma uniflorum) domestication documented through synchrotron tomography of archaeological seeds. Scientific Reports 7, 5369. https://doi.org/10.1038/s41598-017-05244-w.CrossRefGoogle ScholarPubMed
Mutegi, E., Sagnard, F., Labuschagne, M. et al. 2012. Local scale patterns of gene flow and genetic diversity in a crop–wild–weedy complex of sorghum (Sorghum bicolor (L.) Moench) under traditional agricultural field conditions in Kenya. Conservation Genetics 13, 1059–71. https://doi.org/10.1007/s10592-012-0353-y.CrossRefGoogle Scholar
Mutegi, E., Sagnard, F., Muraya, M. et al. 2010. Ecogeographical distribution of wild, weedy and cultivated Sorghum bicolor (L.) Moench in Kenya: Implications for conservation and crop-to-wild gene flow. Genetic Resources and Crop Evolution 57, 243–53. https://doi.org/10.1007/s10722-009-9466-7.CrossRefGoogle Scholar
Muthamilarasan, M., Dhaka, A., Yadav, R., Prasad, M. 2016. Exploration of millet models for developing nutrient rich graminaceous crops. Plant Science 242, 8997. https://doi.org/10.1016/j.plantsci.2015.08.023.CrossRefGoogle ScholarPubMed
Muthamilarasan, M., Prasad, M. 2020. Small millets for enduring food security amidst pandemics. Trends in Plant Science S1360138520302557. https://doi.org/10.1016/j.tplants.2020.08.008.CrossRefGoogle Scholar
Muza, F. R., Lee, D. J., Andrews, D. J., Gupta, S. C. 1995. Mitochondrial DNA variation in finger millet (Eleusine coracana L. Gaertn). Euphytica 81, 199205. https://doi.org/10.1007/BF00025434.CrossRefGoogle Scholar
Nageli, C., Nageli, K. W. 1858. Die stärkekörner: Morphologische, physiologische, chemisch-physicalische und systematisch-botanische. Zurich: Nomographie.Google Scholar
Nakamoto, T., Matsuzaki, A., Shimoda, K. 1992. Root spatial distribution of field-grown maize and millets. Japanese Journal of Crop Science 61, 304–9. https://doi.org/10.1626/jcs.61.304.CrossRefGoogle Scholar
Nakamura, A., Yokoyama, Y., Maemoku, H. et al. 2016. Weak monsoon event at 4.2 ka recorded in sediment from Lake Rara, Himalayas. Quaternary International 397, 349–59. https://doi.org/10.1016/j.quaint.2015.05.053.CrossRefGoogle Scholar
Nakayama, H., Namai, H., Okuno, K. 1999. Geographical variation of the alleles at the two prolamin loci, Pro1 and Pro2, in foxtail millet, Setaria italica (L.) P. Beauv. Genes and Genetic Systems 74, 293–7. https://doi.org/10.1266/ggs.74.293.Google Scholar
Nanda, P. C. 1967. Interrelationship of habitat to growth and composition of Zizyphus nummularia (Burm. f.) W & A. Annals of Arid Zone 6, 6673.Google Scholar
Nasu, H., Momohara, A., Yasuda, Y., He, J. 2007. The occurrence and identification of Setaria italica (L.) P. Beauv. (foxtail millet) grains from the Chengtoushan site (ca. 5800 cal B.P.) in central China, with reference to the domestication centre in Asia. Vegetation History and Archaeobotany 16, 481–94. https://doi.org/10.1007/s00334-006-0068-4.CrossRefGoogle Scholar
Nath, A. 2018. Chrono-cultural clue to the rise of the Harappans in the Satluj-Yamuna Plain. Puratattva 48, 93129.Google Scholar
Nayak, A., Basa, K. K., Boivin, N. L. et al. 2022. A stable isotope perspective on archaeological agricultural variability and Neolithic experimentation in India. Journal of Archaeological Science 141, 105591. https://doi.org/10.1016/j.jas.2022.105591.CrossRefGoogle Scholar
Nayar, N. M. 2014. Origins and Phylogeny of Rices. Amsterdam: Academic Press.Google Scholar
Neelam, S., Kumar, V., Natarajan, S., Venkateswaran, K., Pandravada, S. R. 2014. Evaluation and diversity observed in horsegram (Macrotyloma uniflorum (Lam) Verdc.) germplasm from Andhra Pradesh, India. International Journal of Plant Research 4, 1722.Google Scholar
Neogi, S., French, C. A. I., Durcan, J. A., Singh, R. N., Petrie, C. A. 2019. Geoarchaeological insights into the location of Indus settlements on the plains of northwest India. Quaternary Research 119. https://doi.org/10.1017/qua.2019.70.CrossRefGoogle Scholar
Neumann, K. 2003. The late emergence of agriculture in sub-Saharan Africa: Archaeobotanical evidence and ecological considerations, in Neumann, K., Butler, A., Kahlheber, S. (eds.), Fuel, Foods and Fields: Progress in African Archaeobotany. Cologne: Heinrich-Barth Institut, pp. 7192.Google Scholar
Neumann, K. 2005. The romance of farming: Plant cultivation and domestication in Africa, in Stahl, A. (ed.), Africa Archaeology: A Critical Introduction. Oxford: Blackwell, pp. 249–75.Google Scholar
Neumann, K., Chevalier, A., Vrydaghs, L. 2017. Phytoliths in archaeology: Recent advances. Vegetation History and Archaeobotany 26, 13. https://doi.org/10.1007/s00334-016-0598-3.CrossRefGoogle Scholar
Netting, R. M. 1993. Smallholders, Householders: Farm Families and the Ecology of Intensive, Sustainable Agriculture. Stanford, CA: Stanford University Press.CrossRefGoogle Scholar
Nezamuddin, S. 1970. Pulse Crops of India. New Delhi: Indian Council for Agricultural Research.Google Scholar
Ng, Q., Padulosi, S. (1988) Cowpea gene pool distribution and crop improvement. In Ng, Q., Perrino, P., Attere, F., Zedan, H. (eds.), Crop Genetic Resources of Africa, Vol II. Rome: International Board for Plant Genetic Resources, pp. 161–74.Google Scholar
Nisbet, R. 1985. Evidence of sorghum at Site RH 5, Qurm, Muscat. East and West 35, 415–17.Google Scholar
Nishikawa, T., Vaughan, D. A., Kadowaki, K. 2005. Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochondrial and chloroplast genomes. Theoretical and Applied Genetics 110, 696705. https://doi.org/10.1007/s00122-004-1895-2.CrossRefGoogle ScholarPubMed
Ohtsubo, H., Cheng, C., Ohsawa, I., Tsuchimoto, S., Ohtsubo, E. 2004. Rice retroposon p-SINE1 and origin of cultivated rice. Breed Science 54, 111. https://doi.org/10.1270/jsbbs.54.1.CrossRefGoogle Scholar
Oka, H. I. 1958. Intervarietal variation and classification of cultivated rice. Indian Journal of Genetics and Plant Breeding 18, 7989.Google Scholar
Oka, H. I. 1988. Origins of Cultivated Rice. Tokyo: Japan Scientific Societies Press.Google Scholar
Oldham, R. D. 1887. On probable changes in the geography of the Punjab and its rivers. Journal of the Asiatic Society of Bengal 55, 305–67.Google Scholar
Olsen, K. M. 2012. One gene’s shattering effects. Nature Genetics 44, 616–17. https://doi.org/10.1038/ng.2289.CrossRefGoogle ScholarPubMed
Olsen, M. 1965. The Logic of Collective Action: Public Goods and the Theory of Group. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Orengo, H. A., Conesa, F. C., Garcia-Molsosa, A. et al. 2020. Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data. Proceedings of the National Academy of Sciences USA 202005583. https://doi.org/10.1073/pnas.2005583117.CrossRefGoogle Scholar
Orengo, H., Petrie, C. 2017. Large-scale, multi-temporal remote sensing of palaeo-river networks: A case study from northwest India and its implications for the Indus Civilisation. Remote Sensing 9, 735. https://doi.org/10.3390/rs9070735.CrossRefGoogle Scholar
Orengo, H., Petrie, C. 2018. Multi-scale relief model (MSRM): A new algorithm for the visualization of subtle topographic change of variable size in digital elevation models. Earth Surface Processes and Landforms 43, 1361–9. https://doi.org/10.1002/esp.4317.CrossRefGoogle ScholarPubMed
Orrù, M., Grillo, O., Lovicu, G., Venora, G., Bacchetta, G. 2013. Morphological characterisation of Vitis vinifera L. seeds by image analysis and comparison with archaeological remains. Vegetation History and Archaeobotany 22, 231–42. https://doi.org/10.1007/s00334-012-0362-2.CrossRefGoogle Scholar
Osterrieth, M., Madella, M., Zurro, D., Fernanda Alvarez, M. 2009. Taphonomical aspects of silica phytoliths in the loess sediments of the Argentinean pampas. Quaternary International 193, 70–9. https://doi.org/10.1016/j.quaint.2007.09.002.CrossRefGoogle Scholar
Ostrom, E. 2000. Collective action and the evolution of social norms. Journal of Economic Perspectives 14, 137–58. https://doi.org/10.1257/jep.14.3.137.CrossRefGoogle Scholar
Oumar, I., Mariac, C., Pham, J.-L., Vigouroux, Y. 2008. Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theoretical and Applied Genetics 117, 489–97. https://doi.org/10.1007/s00122-008-0793-4.CrossRefGoogle ScholarPubMed
Out, W. A., Madella, M. 2016. Morphometric distinction between bilobate phytoliths from Panicum miliaceum and Setaria italica leaves. Archaeological and Anthropological Sciences 8, 505–21. https://doi.org/10.1007/s12520-015-0235-6.CrossRefGoogle Scholar
Out, W. A., Madella, M. 2017. Towards improved detection and identification of crop by-products: Morphometric analysis of bilobate leaf phytoliths of Pennisetum glaucum and Sorghum bicolor. Quaternary International 434, 114. https://doi.org/10.1016/j.quaint.2015.07.017.CrossRefGoogle Scholar
Paddaya, K. 1994. Investigation of man–environment relationships in Indian archaeology: Some theoretical considerations. Man and Environment 19, 128.Google Scholar
Pal, J. N. 2008. The early farming culture of the middle Ganga Plain with special reference to the excavations at Jhusi and Hetapatti. Pragdhara 18, 263–81.Google Scholar
Pal, J. N. 2016. Mesolithic foragers of the Ganges Plain and adjoining Hilly, in Schug, G. R., Walimbe, S. R., Kennedy, K. A. R. (eds.), A Companion to South Asia in the Past. Blackwell Companions to Anthropology. Chichester: Wiley, pp. 86101.CrossRefGoogle Scholar
Palisot de Beauvois, A.-M.-F.-J. 1812. Essai d’une nouvelle agrostographie, ou, Nouveaux genres des graminées: Avec figures représentant les caractères de tous les genres /par A.-M.-F.-J. Paris: Palisot de Beauvois. Chez l’auteur. https://doi.org/10.5962/bhl.title.474.Google Scholar
Pande, S., Ertsen, M. 2014. Endogenous change: On cooperation and water availability in two ancient societies. Hydrology and Earth Systems Science 18, 1745–60. https://doi.org/10.5194/hess-18-1745-2014.CrossRefGoogle Scholar
Pandey, J. N. 1990. Mesolithic in the middle Ganga Valley. Bulletin of the Deccan College Research Institute 49, 311–16.Google Scholar
Pandey, A., Gupta, R. 2003. Fibre yielding plants of India: Genetic resources, perspective for collection and utilisation. Natural Product Radiance 2, 194204.Google Scholar
Pant, K. C., Chandel, K. P. S., Joshi, B. S. 1982. Analysis of diversity in Indian cowpea genetic resources. SABRAO Journal of Breeding and Genetics 14:103–11.Google Scholar
Parikh, D., Petrie, C. A. 2017. Urban-rural dynamics and Indus ceramic production in northwest India: A preliminary analysis of the pottery from Masudpur I and Masudpur VII, in Lefevre, V., Mutin, B., Didier, A. (eds.), South Asian Archaeology 2012. Turnhout: Indicopleustoi, Brepols, pp. 221–41.Google Scholar
Parikh, D., Petrie, C. A. 2019. ‘We are inheritors of a rural civilisation’: Rural complexity and the ceramic economy in the Indus Civilisation in northwest India. World Archaeology 51, 252–72. https://doi.org/10.1080/00438243.2019.1601463.CrossRefGoogle ScholarPubMed
Parry, D. W., Hodson, M. J. 1982. Silica distribution in the caryopsis and inflorescence bracts of foxtail millet [Setaria italica (L.) Beauv.] and its possible significance in carcinogenesis. Annals of Botany 49, 531–40.CrossRefGoogle Scholar
Parry, D. W., Smithson, F. 1966. Opaline silica in the inflorescences of some British grasses and cereals. Annals of Botany 30, 525–38. https://doi.org/10.1093/oxfordjournals.aob.a084094.CrossRefGoogle Scholar
Patel, A. K. 2009. Occupational histories, settlements, and subsistence in western India: What bones and genes can tell us about the origins and spread of pastoralism. Anthropozoologica 44, 173–88. https://doi.org/10.5252/az2009n1a8.CrossRefGoogle Scholar
Paterson, A. H., Bowers, J. E., Bruggmann, R. et al. 2009. The sorghum bicolor genome and the diversification of grasses. Nature 457, 551–6. https://doi.org/10.1038/nature07723.CrossRefGoogle ScholarPubMed
Pauketat, T. R. 2000. The tragedy of the commoners, in Dobres, M.-A., Robb, J. (eds.), Agency in Archaeology. London: Routledge, pp. 113–29.Google Scholar
Pawar, V. 2012. Archaeological settlement pattern of Hanumangarh District (Rajasthan) (PhD). MD University Rohtak, Rohtak.Google Scholar
Pearsall, D. M. 2000. Paleoethnobotany: A Handbook of Procedures. Cambridge: Academic Press.Google Scholar
Pearsall, D. M. 2016. Paleoethnobotany: A Handbook of Procedures. New York: Routledge. https://doi.org/10.4324/9781315423098.CrossRefGoogle Scholar
Pearsall, D. M., Piperno, D. R., Dinan, E.H. et al. 1995. Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis: Results of preliminary research. Economic Botany 49, 183–96.CrossRefGoogle Scholar
Pedersen, M. W., Overballe-Petersen, S., Ermini, L. et al. 2015. Ancient and modern environmental DNA. Philosophical Transactions of the Royal Society B 370, 20130383. https://doi.org/10.1098/rstb.2013.0383.CrossRefGoogle ScholarPubMed
Pendall, E., Amundson, R. 1990. Soil/landform relationships surrounding the Harappa archaeological site, Pakistan. Geoarchaeology 5, 301–22. https://doi.org/10.1002/gea.3340050402.CrossRefGoogle Scholar
Pengelly, B. C., Maass, B. L. 2001. Lablab purpureus (L.) Sweet: Diversity, potential use and determination of a core collection of this multi-purpose tropical legume. Genetic Resources and Crop Evolution 48, 261–72. https://doi.org/10.1023/A:1011286111384.Google Scholar
Percival, J. 1921. The Wheat Plant: A Monograph. London: Duckworth & Company.Google Scholar
Perrot, J., Ladiray, D. 1988. Les hommes de Mallaha (Eynan) Israel. Paris: Association Paléorient.Google Scholar
Perry, L. 2004. Starch analyses reveal the relationship between tool type and function: An example from the Orinoco valley of Venezuela. Journal of Archaeological Science 31, 1069–81. https://doi.org/10.1016/j.jas.2004.01.002.CrossRefGoogle Scholar
Petrie, C. A. 2013. South Asia, in Clark, P. (ed.), The Oxford Handbook of Cities in World History. Oxford: Oxford University Press, pp. 83104.Google Scholar
Petrie, C. A. 2015. Mehrgarh, Pakistan, in Barker, G., Goucher, C. (eds.), The Cambridge World History. Cambridge: Cambridge University Press, pp. 289309. https://doi.org/10.1017/CBO9780511978807.012.CrossRefGoogle Scholar
Petrie, C. A. 2017. Crisis, what crisis? Adaptation, resilience and transformation in the Indus Civilisation, in Cunningham, T. F., Driessen, J. (eds.), Crisis to Collapse: The Archaeology of Social Breakdown (Workshop) . Louvain-la-Neuve: UCL Presses Universitaires de Louvain, pp. 4364.Google Scholar
Petrie, C. A. 2019. Diversity, variability, adaptation and ‘fragility’ in the Indus Civilization, in Yoffee, N. (ed.), The Evolution of Fragility: Setting the Terms. Cambridge: McDonald Institute for Archaeological Research, University of Cambridge, pp. 109–33. https://doi.org/10.17863/CAM.40701.Google Scholar
Petrie, C. A., Bates, J. 2017. ‘Multi-cropping’, intercropping and adaptation to variable environments in Indus South Asia. Journal of World Prehistory 30, 81130. https://doi.org/10.1007/s10963-017-9101-z.CrossRefGoogle ScholarPubMed
Petrie, C. A., Bates, J., Higham, T., Singh, R. N. 2016. Feeding ancient cities in South Asia: Dating the adoption of rice, millet and tropical pulses in the Indus Civilisation. Antiquity 90, 14891504. https://doi.org/10.15184/aqy.2016.210.CrossRefGoogle Scholar
Petrie, C. A., Knox, J. R., Khan, F., Thomas, K. D., Morris, J. C. 2010. The investigation of early villages in the hills and on the plains of western South Asia, in Petrie, C. A. (ed.), Sheri Khan Tarakai and Early Village Life in the Borderlands of North-West Pakistan: Bannu Archaeological Project Surveys and Excavations 1985–2001 vol. 1. Bannu Archaeological Project Monographs. Oxford: Oxbow Books, pp. 728.Google Scholar
Petrie, C. A., Parikh, D., Green, A. S., Bates, J. 2018. Looking beneath the veneer: Thoughts about environmental and cultural diversity in the Indus Civilization, in Frenez, D., Jamison, G. M., Law, R., Vidale, M., Meadow, R. (eds.), Walking with the Unicorn: Social Organization and Material Culture in Ancient South Asia. Jonathan Mark Kenoyer Felicitation Volume. Oxford: Archaeopress, pp. 453–74.Google Scholar
Petrie, C. A., Singh, R. N., Bates, J. et al. 2017. Adaptation to variable environments, resilience to climate change: Investigating land, water and settlement in Indus northwest India. Current Anthropology 58, 130. https://doi.org/10.1086/690112.CrossRefGoogle Scholar
Petrie, C. A., Singh, R. N., Singh, A. K. 2009. Investigating changing settlement dynamics on the plains: The 2009 survey and excavations at Masudpur (Hissar District, Haryana). Puratattva 39, 3849.Google Scholar
Petrie, C. A., Thomas, K. D. 2012. The topographic and environmental context of the earliest village sites in western South Asia. Antiquity 86, 1055–67. https://doi.org/10.1017/S0003598X00048249.CrossRefGoogle Scholar
Phadtare, N. R. 2000. Sharp decrease in summer monsoon strength 4000–3500 cal yr B.P. in the central higher Himalaya of India based on pollen evidence from alpine peat. Quaternary Research 53, 122–9. https://doi.org/10.1006/qres.1999.2108.CrossRefGoogle Scholar
Phillips, S. M. 1972. A survey of the genus Eleusine Gaertn. (Gramineae) in Africa. Kew Bulletin 27, 251. https://doi.org/10.2307/4109450.CrossRefGoogle Scholar
Piggott, S. 1950. Prehistoric India to 1000 BC. Baltimore, MD: Penguin Books.Google Scholar
Piperno, D. R. 2006. Phytoliths. Lanham, MD: AltaMira Press.Google Scholar
Piperno, D. R., Dillehay, T. D. 2008. Starch grains on human teeth reveal early broad crop diet in northern Peru. Proceedings of the National Academy of Sciences USA 105, 19622–7. https://doi.org/10.1073/pnas.0808752105.CrossRefGoogle ScholarPubMed
Piperno, D. R., Weiss, E., Holst, I., Nadel, D. 2004. Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis. Nature 430, 670–3. https://doi.org/10.1038/nature02734.CrossRefGoogle ScholarPubMed
Plattner, S. (ed.), 1989. Economic Anthropology. Palo Alto, CA: Stanford University Press.Google Scholar
Poehlman, J. M. 1991. The Mungbean. New Delhi: Oxford and IBH.Google Scholar
Pokharia, A. K. 2011. Palaeoethnobotany at Lahuradewa: A contribution to the 2nd millennium BC agriculture of the Ganga Plain, India. Current Science 101, 1569–78.Google Scholar
Pokharia, A. K., Agnihotri, R., Sharma, S. et al. 2017. Altered cropping pattern and cultural continuation with declined prosperity following abrupt and extreme arid event at ~4,200 yrs BP: Evidence from an Indus archaeological site Khirsara, Gujarat, western India. PLoS One 12, e0185684. https://doi.org/10.1371/journal.pone.0185684.CrossRefGoogle ScholarPubMed
Pokharia, A. K., Kharakwal, J. S., Rawat, R. S. et al. 2011. Archaeobotany and archaeology at Kanmer, a Harappan site in Kachchh, Gujarat: Evidence for adaptation in response to climatic variation. Current Science 100, 1833–46.Google Scholar
Pokharia, A. K., Kharakwal, J. S., Srivastava, A. 2014. Archaeobotanical evidence of millets in the Indian subcontinent with some observations on their role in the Indus civilization. Journal of Archaeological Science 42, 442–55. https://doi.org/10.1016/j.jas.2013.11.029.CrossRefGoogle Scholar
Pokharia, A. K., Srivastava, C. 2013. Current status of archaeobotanical studies in Harappan civilization: An archaeological perspective. Heritage: Journal of Multidisciplinary Studies in Archaeology 1, 118–37.Google Scholar
Portères, R. 1951. Eleusine coracana Gaertn. cereals des humanites pauvres des pays tropicoux. Bulletin de l‘Institut français d’Afrique noire 13, 178.Google Scholar
Portères, R. 1976. African cereals: Eleusine, Fonio, Black Fonio, Tejf, Brachiaria, Paspalum, Pennisetum, and African Rice, in Harlan, J. R., Wet, J. M. J. D., Stemler, A. B. L. (eds.), Origins of African Plant Domestication. The Hague: De Gruyter Mouton, pp. 409–52. https://doi.org/10.1515/9783110806373.409.Google Scholar
Portillo, M., Ball, T., Manwaring, J. 2006. Morphometric analysis of inflorescence phytoliths produced by Avena sativa L. and Avena strigosa schreb. Economic Botany 60, 121–9. https://doi.org/10.1663/0013-0001(2006)60[121:MAOIPP]2.0.CO;2.CrossRefGoogle Scholar
Portillo, M., Ball, T. B., Wallace, M. et al. 2019. Advances in morphometrics in archaeobotany. Environmental Archaeology 25.2, 246–56. https://doi.org/10.1080/14614103.2019.1569351.Google Scholar
Possehl, G. L. 1967. The Mohenjo-daro floods: A reply. American Anthropologist 69, 3240.CrossRefGoogle Scholar
Possehl, G. L. 1975. The chronology of gabarbands and palas of western South Asia. Expedition Magazine 17.2.Google Scholar
Possehl, G. L. 1980. Indus Civilisation in Saurashtra. New Delhi: B. R. Publishing.Google Scholar
Possehl, G. L. 1982. The Harappan Civilisation: A contemporary perspective, in Possehl, G. L. (ed.), Harappan Civilisation: A Contemporary Perspective. New Delhi: Oxford and IBH, pp. 1528.Google Scholar
Possehl, G. L. 1986. African millets in South Asian prehistory, in Jacobsen, J. (ed.), Studies in the Archaeology of India and Pakistan. New Delhi: Oxford and IBH, pp. 237–56.Google Scholar
Possehl, G. L. 1990. Revolution in the urban revolution: The emergence of Indus urbanization. Annual Review of Anthropology 19, 261–82.CrossRefGoogle Scholar
Possehl, G. L. 1992. The Harappan cultural mosaic: Ecology revisited, in Jarrige, C. (ed.), South Asian Archaeology 1989. Madison, WI: Prehistory Press, pp. 237–44.Google Scholar
Possehl, G. L. 1998. Socio-cultural complexity without the state, in Feinman, G. M., Marcus, J. (eds.), Archaic States. Santa Fe, NM: School of American Research Press, pp. 261–91.Google Scholar
Possehl, G. L. 1997a. Climate and the eclipse of the ancient cities of the Indus, in Dafles, H., Nuzhet, H., Kulka, G., Weiss, H. (eds.), Third Millennium BC Climate Change and Old World Collapse. Berline: Springer, pp. 193243.CrossRefGoogle Scholar
Possehl, G. L. 1997b. The transformation of the Indus Civilization. Journal of World Prehistory 11, 425–72. https://doi.org/10.1007/BF02220556.CrossRefGoogle Scholar
Possehl, G. L. 1999. Indus Age: The Beginnings. Philadelphia: University of Pennsylvania Press.Google Scholar
Possehl, G. L. 2002. The Indus Civilization: A Contemporary Perspective. Lanham, MD: AltaMira Press.Google Scholar
Possehl, G. L., Chitalwala, Y. M., Rissman, P., Wagner, G. E. 1983. Excavations at Rojdi 1982–3. Puratattva 13.14, 146–9.Google Scholar
Possehl, G. L., Raval, M. H. 1989. Harappan Civilisation and Rojdi. New Delhi: Oxford and IBH.CrossRefGoogle Scholar
Postma, J. A., Lynch, J. P. 2012. Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures. Annals of Botany 110, 521–34. https://doi.org/10.1093/aob/mcs082.CrossRefGoogle ScholarPubMed
Pourkheirandish, M., Hensel, G., Kilian, B. et al. 2015. Evolution of the grain dispersal system in barley. Cell 162, 527–39. https://doi.org/10.1016/j.cell.2015.07.002.CrossRefGoogle ScholarPubMed
Pradhan, A., Thakur, A., Patel, S., Mishra, N. 2011. Effect of different nitrogen levels on kodo and finger millet under rainfed conditions. Research Journal of Agricultural Science 2, 136–8.Google Scholar
Prasad, S., Anoop, A., Riedel, N. et al. 2014. Prolonged monsoon droughts and links to Indo-Pacific warm pool: A Holocene record from Lonar Lake, central India. Earth and Planetary Science Letters 391, 171–82. https://doi.org/10.1016/j.epsl.2014.01.043.CrossRefGoogle Scholar
Prasad, S., Enzel, Y. 2006. Holocene palaeoclimates of India. Quaternary Research 66, 442–53.CrossRefGoogle Scholar
Prickett, M. E. 1986. Settlement during the early periods, in Beale, T. W., Lamberg-Karlovsky, C. C. (eds.), Excavations at Tepe Yahya, Iran, 1967–1975: The Early Periods. American School of Prehistoric Research Bulletin 38. Cambridge, MA: Peabody Museum of Archaeology and Ethnology, Harvard University, pp. 215–46.Google Scholar
Puleston, D. E. 1978. Terracing, raised fields, and tree cropping in the Maya lowlands: A new perspective on the geography of power, in Harrison, P. D., Turner, B. L. (eds.), Prehispanic Maya Agriculture. Albuquerque: University of New Mexico Press, pp. 225–46.Google Scholar
Punia, M., Joshi, P. K., Porwal, M. C. 2011. Decision tree classification of land use land cover for Delhi, India using IRS-P6 AWiFS data. Expert Systems with Applications 38, 5577–83. https://doi.org/10.1016/j.eswa.2010.10.078.CrossRefGoogle Scholar
Purseglove, J. W. 1968. Tropical Crops: Dicotyledons. London: Longmans.Google Scholar
Rachie, K. O. 1975. The Millets: Importances, Utilization and Outlook. Hyderabad: International Crops Research Institute for Semi-Arid Tropics.Google Scholar
Rachie, K. O., Majmudar, J. V. 1980. Pearl Millet. University Park:Pennsylvania State University Press.Google Scholar
Rai, D. 2004. Monitoring and assessment of groundwater resources in western Uttar Pradesh, in Abrol, I. P., Sharma, B. R., Sekhon, G. S. (eds.), Groundwater Use in North-West India. New Delhi: Centre for Advancement of Sustainable Agriculture, pp. 2732.Google Scholar
Raikes, R. L. 1964. The end of the ancient cities of the Indus. American Anthropologist 66, 284–9.Google Scholar
Raikes, R. L. 1965. The Mohenjo-daro floods. Antiquity 39, 196203.CrossRefGoogle Scholar
Raj, R., Chamyal, L. S., Prasad, V. et al. 2015. Holocene climatic fluctuations in the Gujarat Alluvial Plains based on a multiproxy study of the Pariyaj Lake archive, western India. Palaeogeography, Palaeoclimatology, Palaeoecology 421, 6074. https://doi.org/10.1016/j.palaeo.2015.01.004.CrossRefGoogle Scholar
Rajeevan, M., Gadgil, S., Bhate, J. 2010. Active and break spells of the Indian summer monsoon. Journal of Earth System Science 119, 229–47. https://doi.org/10.1007/s12040-010-0019-4.CrossRefGoogle Scholar
Rajesh, S. V., Krishnan, K., Ajithprasad, P., Sonawane, V. H. 2013. Evaluating the Anarta tradition in the light of material culture from Loteshwar and other sites in Gujara. Man and Environment 38, 1045.Google Scholar
Rajput, S. G., Santra, D. K., Schnable, J. 2016. Mapping QTLs for morpho-agronomic traits in proso millet (Panicum miliaceum L.). Molecular Breeding 36, 37. https://doi.org/10.1007/s11032-016-0460-4.CrossRefGoogle Scholar
Rajput, S. G., Plyler-Harveson, T., Santra, D. K. 2014. Development and characterization of SSR markers in proso millet based on switchgrass genomics. American Journal of Plant Sciences 5, 175–86. https://doi.org/10.4236/ajps.2014.51023.CrossRefGoogle Scholar
Rajput, T. S., Veesar, G. M., Bukhari, M. F. 2023. Feast furniture of Indus urban phase 2600–1900 BCE: Study of social stratification through diet. Storing and serving pattern in Indus Civilization. Annals of Human and Social Sciences 4.2, Article 2. https://doi.org/10.35484/ahss.2023(4-II)37.CrossRefGoogle Scholar
Ramaswamy, C. 1968. Monsoon over the Indus Valley during the Harappan Period. Nature 217, 628–9. https://doi.org/10.1038/217628a0.CrossRefGoogle Scholar
Ramawat, K. G., Ahuja, M. R. 2016. Fibre plants: An overview, in Ramawat, K. G., Ahuja, M. R. (eds.), Fibre Plants: Biology, Biotechnology and Applications. Cham: Springer, pp. 317.CrossRefGoogle Scholar
Rao, A. N., Johnson, D. E., Sivaprasad, B., Ladha, J. K., Mortimer, A. M. 2007. Weed management in direct‐seeded rice. Advances in Agronomy 93, 153255. https://doi.org/10.1016/S0065-2113(06)93004-1.CrossRefGoogle Scholar
Rao, L. S., Sahu, N. B., Sahu, P., Diwan, S., Shashtry, U. A. 2005. New light on the excavation of Harappan settlement of Bhirrana. Puratattva 35, 60–8.Google Scholar
Rao, M. 1989. Inaugural address, in Seetharam, A., Riley, K., Harinarayana, G. (eds.), Small Millets in Global Agriculture. New Delhi: Oxford and IBH, pp. ixxii.Google Scholar
Ratnagar, S. 1991. Enquiries into the Political Organisation of Harappan Society. Pune: Ravish.Google Scholar
Ratnagar, S. 2004. Trading Encounters: From the Euphrates to the Indus in the Bronze Age. New Delhi: Oxford University Press.Google Scholar
Raven, J. A. 2003. Cycling silicon: The role of accumulation in plants. Commentary. New Phytologist 158, 419–21. https://doi.org/10.1046/j.1469-8137.2003.00778.x.CrossRefGoogle Scholar
Rawal, V., Navarro, D. K. (eds.), 2019. The Global Economy of Pulses. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
Reddy, S. N. 1997. If the threshing floor could speak: Integration of agriculture and pastoralism during the late Harappan in Gujarat, India. Journal of Anthropological Archaeology 16, 162–87.CrossRefGoogle Scholar
Reddy, S. N. 2003. Discerning Palates of the Past: An Ethnoarchaeological Study of Crop Cultivation and Plant Usage in India, 1st edition. Ann Arbor, MI: Berghahn Books.Google Scholar
Reichert, E. T. 1913. The Differentiation and Specificity of Starches in Relation to Genera, Species, etc. Washington, DC: Carnegie Institute of Washington.Google Scholar
Ren, L., Dong, G., Liu, F. et al. 2020. Foraging and farming: Archaeobotanical and zooarchaeological evidence for Neolithic exchange on the Tibetan Plateau. Antiquity 94, 637–52. https://doi.org/10.15184/aqy.2020.35.CrossRefGoogle Scholar
Ren, X., Lemoine, X., Mo, D. et al. 2016. Foothills and intermountain basins: Does China’s Fertile Arc have ‘hilly flanks’? Quaternary International 426, 8696. https://doi.org/10.1016/j.quaint.2016.04.001.CrossRefGoogle Scholar
Ren, X., Nevo, E., Sun, D., Sun, G. 2013. Tibet as a potential domestication center of cultivated barley of China. PLoS One 8, e62700. https://doi.org/10.1371/journal.pone.0062700.CrossRefGoogle ScholarPubMed
Rengalakshmi, R. 2005. Folk biological classification of minor millet species in Kolli Hills, India. Journal of Ethnobiology 25, 5970.CrossRefGoogle Scholar
Richardson, M., Dorr, M. 2003. The Craft Heritage of Oman. 2 vols. Dubai: Motivate.Google Scholar
Rizvi, U. Z. 2011. Subjectivity and spatiality in Indus urban forms: Mohenjo-Daro, the body, and the domestication of waste, in Johansen, P. G., Bauer, A. (eds.), The Archaeology of Politics: The Materiality of Political Practice and Action in the Past. Newcastle: Cambridge Scholars, pp. 221–44.Google Scholar
Robbins Schug, G., Blevins, K. E. 2016. The center cannot hold: A bioarchaeological perspective on environmental crisis in the second millennium BCE, South Asia, in Robbins Schug, G., Walimbe, S. R. (eds.), Companion to South Asia in the Past. Hoboken, NJ: Wiley, pp. 255–73.CrossRefGoogle Scholar
Robbins Schug, G., Blevins, K. E., Cox, B., Gray, K., Mushrif-Tripathy, V. 2013. Infection, disease, and biosocial processes at the end of the Indus Civilization. PLoS One 8, e84814. https://doi.org/10.1371/journal.pone.0084814.CrossRefGoogle ScholarPubMed
Robbins Schug, G., Gray, K. M., Mushrif-Tripathy, V., Sankhyan, A. R. 2012. A peaceful realm? Trauma and social differentiation at Harappa. International Journal of Paleopathology 2, 136–47.CrossRefGoogle ScholarPubMed
Rominger, J. M. 1962. Taxonomy of Setaria (Gramineae) in North America. Illinois Biological Monograph 29. Urbana: University of Illinois Press.Google Scholar
Rosen, A. M. 2007. Civilizing Climate: Social Responses to Climate Change in the Ancient Near East. Lanham, MD: AltaMira Press.Google Scholar
Rosen, A. M., Savinetsky, A. B., Plakht, Y. et al. 2005. Dung in the desert: Preliminary results of the Negev Holocene Ecology Project. Current Anthropology 46, 317–27.CrossRefGoogle Scholar
Rosen, A. M., Weiner, S. 1994. Identifying ancient irrigation: A new method using opaline phytoliths from emmer wheat. Journal of Archaeological Science 21, 125–32. https://doi.org/10.1006/jasc.1994.1013.CrossRefGoogle Scholar
Rosenswig, R. 2007. Beyond identifying elites: Feasting as a means to understand early Middle Formative society on the Pacific coast of Mexico. Journal of Anthropological Archaeology 26, 127.CrossRefGoogle Scholar
Roustaei, K., Mashkour, M., Tengberg, M. 2015. Tappeh Sang-e Chakhmaq and the beginning of the Neolithic in north-east Iran. Antiquity 89, 573–95. https://doi.org/10.15184/aqy.2015.26.CrossRefGoogle Scholar
Rowley-Conway, P. 1984. The laziness of the short-distance hunter: The origins of agriculture in western Denmark. Journal of Anthropological Archaeology 3, 300–24. https://doi.org/10.1016/0278-4165(84)90005-9.Google Scholar
Rowley-Conway, P. A., Deakin, W., Shaw, C. H. 1997. Ancient DNA from sorghum: The evidence from Qasr Ibrim, Egyptian Nubia, in Van der Veen, M. (ed.), The Exploitation of Plant Resources in Ancient Africa. New York: Plenum, pp. 5561.Google Scholar
Rozin, E. 1973. The Flavor Principle Cookbook. New York: Hawthorn.Google Scholar
Sagnard, F., Deu, M., Dembélé, D. et al. 2011. Genetic diversity, structure, gene flow and evolutionary relationships within the Sorghum bicolor wild–weedy–crop complex in a western African region. Theoretical and Applied Genetics 123, 1231–46. https://doi.org/10.1007/s00122-011-1662-0.CrossRefGoogle Scholar
Saini, H. S., Tandon, S. K., Mujtaba, S. A. I., Pant, N. C., Khorana, R. K. 2009. Reconstructure of buried channel-floodplain systems of the northwestern Haryana Plains and their relation to the ‘Vedic’ Saraswati.Current Science 97, 1634–43.Google Scholar
Saisho, D., Purugganan, M. D. 2007. Molecular phylogeography of domesticated barley traces expansion of agriculture in the Old World. Genetics 177, 1765–76. https://doi.org/10.1534/genetics.107.079491.CrossRefGoogle ScholarPubMed
Sakamoto, S. (ed.). 1987. A Preliminary Repost of the Studies on Millet Cultivation and Its Agro-pastoral Culture Complex in the Indian Subcontinent (1985). Kyoto: Kyoto University Research Team for the Studies on Millet Cultivation and Its Agro-pastoral Culture Complex in the Indian Subcontinent.Google Scholar
Sakamoto, S. 1988. The Road of Millets: From the Ethnobotanical Study in Eurasia. Tokyo: Japan Broadcast.Google Scholar
Sakamoto, S. 1993. Millets in the world and their food culture. Farm Japan 27, 1018.Google Scholar
Sakamoto, S. 1996. Glutinois: Endosperm starch food culture specific to eastern and southeastern Asia, in Ellen, R., Fukui, K. (eds.), Redefining Nature: Ecology, Culture and Domestication. Oxford: Berg, pp. 215–32.Google Scholar
Sampath, S., Govindaswamy, S. 1958. Wild rices of Orissa, their relationship to cultivated varieties. Rice Newsletter 6, 1720.Google Scholar
Sanders, W. T. 1972. Population, agricultural history, and societal evolution in Mesoamerica, in Spooner, B. (ed.), Population Growth: Anthropological Implications. Cambridge, MA: MIT Press, pp. 101–53.Google Scholar
Sang, T., Ge, S. 2007. Genetics and phylogenetics of rice domestication. Current Opinion in Genetics & Development 17, 533–8. https://doi.org/10.1016/j.gde.2007.09.005.CrossRefGoogle ScholarPubMed
Sangster, A. G., Hodson, M. J., Parry, D. W., Rees, J. A. 1983. A developmental study of silicification in the trichomes and associated epidermal structures of the inflorescence bracts of the grass Phalaris canariensis L. Annals of Botany 52, 171–87.CrossRefGoogle Scholar
Sankalia, H. D. 1962. The Prehistory and Protohistory of India and Pakistan. Poona: Deccan College.Google Scholar
Saraswat, K. S. 1986a. Ancient crop: Economy of Harappans from Rohira, Punjab (c.2000–1700 BC). The Palaeobotanist 35, 32–8.Google Scholar
Saraswat, K. S. 1986b. Ancient crop plant remains from Sringaverapura, Allahabad, U. P. (ca. 1,050–700 B.C.). Geophytology 16, 97106.Google Scholar
Saraswat, K. S. 1990. Crop economy at ancient Mahorana, Punjab (c.2100–1900 BC). Pragdhara 1, 83–8.Google Scholar
Saraswat, K. S. 1992. Archaeobotanical remains in ancient cultural and socio-economic dynamics of the Indian Subcontinent. The Palaeobotanist 40, 514–45.Google Scholar
Saraswat, K. S. 1993. Plant economy of Late Harappan at Hulas. Puratattva 23, 112.Google Scholar
Saraswat, K. S. 1997. Economy of Barans at Sanghol (ca. 1900–1400 BC). Pragdhara 7, 94114.Google Scholar
Saraswat, K. S. 2002. Balu (29o40’ N; 76o22’ E), District Kaithal. Indian Archaeology: A Review 1996–7, 198203.Google Scholar
Saraswat, K. S. 2004. Plant economy of early farming communities, in Singh, B. P. (ed.), Early Farming Communities of the Kaimur (Excavations at Senuwar). Jaipur: Publication Scheme, pp. 416535.Google Scholar
Saraswat, K. S. 2005. Agricultural background of the early farming communities in the middle Ganga Plain. Pragdhara 15, 145–77.Google Scholar
Saraswat, K. S., Pokharia, A. K. 1998. On the remains of botanical materials used in fire-sacrifice ritualized during Kushana Period at Sanghol (Punjab). Pragdhara 8, 149–81.Google Scholar
Saraswat, K. S., Pokharia, A. K. 2002. Harappan plant economy at ancient Balu, Haryana. Pragdhara 12, 153–72.Google Scholar
Saraswat, K. S., Pokharia, A. K. 2003. Palaeoethnobotanical investigations at Early Harappan Kunal. Pragdhara 13, 105–40.Google Scholar
Sarcina, A. 1979. A statistical assessment of house patterns at Mohenjo-Daro. Mesopotamia 13–14, 155–99.Google Scholar
Sarkar, A., Mukherjee, A. D., Bera, M. K. et al. 2016. Oxygen isotope in archaeological bioapatites from India: Implications to climate change and decline of Bronze Age Harappan civilization. Scientific Reports 6, 26555. https://doi.org/10.1038/srep26555.CrossRefGoogle ScholarPubMed
Sato, Y. 2002. Origin of rice cultivation in the Yangtze River Basin, in Yasuda, Y. (ed.), The Origins of Pottery and Agriculture. New Delhi: Lustre, pp. 143–50.Google Scholar
Saxena, A., Trivedi, A., Chauhan, M. S., Sharma, A. 2015. Holocene vegetation and climate change in Central Ganga Plain: A study based on multiproxy records from Chaudhary-Ka-Tal, Raebareli District, Uttar Pradesh, India. Quaternary International 371, 164–74. https://doi.org/10.1016/j.quaint.2015.01.041.CrossRefGoogle Scholar
Saxena, S. K. 1981. Morphology and ecology, in Mann, H. S., Saxena, S. K. (eds.), Bordi (Ziziphus nummularia): A Shrub of the Indian Arid Zone. Its Role in Silvipasture. Jodhpur: ICAR Central Arid Zone Research Institute, pp. 39.Google Scholar
Scarborough, V. L. 2003. The Flow of Power: Ancient Water Systems and Landscapes. Santa Fe, NM: SAR Press.Google Scholar
Scarry, C. M., Scarry, J. F. 2005. Native American ‘garden agriculture’ in southeastern North America. World Archaeology 37, 259–74. https://doi.org/10.1080/00438243500095199.CrossRefGoogle Scholar
Schmidt, J. W., Weibel, D. E., Johnson, V. A. 1963. Inheritance of an incompletely dominant character in common wheat simulating Triticum sphaerococcum 1. Crop Science 3, 261–4. https://doi.org/10.2135/cropsci1963.0011183X000300030028x.CrossRefGoogle Scholar
Scholz, H. 1983. Die Unkraut-Hirse (Panicum miliaceum subsp. ruderale)? Neue Tatsachen und Befunde. Plant Systematics and Evolution 143, 233–44. https://doi.org/10.1007/BF00986381.CrossRefGoogle Scholar
Schortman, E. M., Urban, P. A. 2004. Modeling the roles of craft production in ancient political economies. Journal of Archaeological Research 12, 185226. https://doi.org/10.1023/B:JARE.0000023712.34302.49.CrossRefGoogle Scholar
Schuldenrein, J. 2002. Geoarchaeological perspectives on the Harappan sites of South Asia, in Settar, S., Korisettar, R. (eds.), Indian Archaeology in Retrospect II: Protohistory. New Delhi: Manohar, pp. 4780.Google Scholar
Schuldenrein, J., Wright, R. P., Khan, M. A. 2007. Harappan geoarchaeology reconsidered: Holocene landscapes and environments of the greater Indus Plain, in Stone, E. (ed.), Settlement and Society: Essays Dedicated to Robert McCormick Adam. Los Angeles: Cotsen Institute of Archaeology, University of California, Los Angeles, pp. 83116.CrossRefGoogle Scholar
Schuldenrein, J., Wright, R. P., Mughal, M. R., Khan, M. A. 2004. Landscapes, soils, and mound histories of the Upper Indus Valley, Pakistan: New insights on the Holocene environments near ancient Harappa. Journal of Archaeological Science 31, 777–97. https://doi.org/10.1016/j.jas.2003.10.015.CrossRefGoogle Scholar
Scott, J. C. 2017. Against the Grain: A Deep History of the Earliest States. Yale Agrarian Studies. New Haven, CT: Yale University Press.CrossRefGoogle Scholar
Sears, E. R. 1947. The sphaerococcum gene in wheat. Genetics 32, 102–3.Google Scholar
Seetharam, A., Riley, K. W., Harinarayana, G. 1990. Small Millets in Global Agriculture, Proceedings, International Small Millets Workshop, Bangalore (India). New Delhi: International Development Research Centre.Google Scholar
Sergusheva, E. A. 2013. Dynamics of agriculture in the Late Neolithic Primorye according to archaeobotanical data. Anthropology and Ethnography 4, 155–62.Google Scholar
Service, E. 1962. Primitive Social Organisation. New York: Random House.Google Scholar
Shaffer, J. G. 1982. Harappan culture: A reconsideration, in Possehl, G. L. (ed.), The Harappan Civilisation: A Contemporary Perspective. New Delhi: Oxford and IBH, pp. 4150.Google Scholar
Shaffer, J. G. 1992. The Indus Valley, Baluchistan and Helmand traditions: Neolithic through Bronze Age, in Ehrich, R. W. (ed.), Chronologies of Old World Archaeology. Chicago, IL: University of Chicago Press, pp. 441–64.Google Scholar
Shahack-Gross, R. 2011. Herbivorous livestock dung: Formation, taphonomy, methods for identification, and archaeological significance. Journal of Archaeological Science 38, 205–18. https://doi.org/10.1016/j.jas.2010.09.019.CrossRefGoogle Scholar
Shahack-Gross, R., Marshall, F., Weiner, S. 2003. Geo-ethnoarchaeology of pastoral sites: The identification of livestock enclosures in abandoned Maasai settlements. Journal of Archaeological Science 30, 439–59. https://doi.org/10.1006/jasc.2002.0853.CrossRefGoogle Scholar
Sharif, M., Thapar, B. K. 1992. Food-producing communities in Pakistan and northern India, in Dani, A. H., Masson, V. M. (eds.), The Dawn of Civilization: Earliest Times to 700 BC. History of Civilizations of Central Asia. Delhi: United Nations Educational, Scientific and Cultural Organization.Google Scholar
Sharma, G. B., Misra, B. B. 1980. Excavations at Chopani-Mando (Belan Valley) 1977–1979: Epipalaeolithic to protoneolithic. Allahabad: University of Allahabad.Google Scholar
Sharma, S., Manjul, S. K., Manjul, A., Pande, P. C., Pokharia, A. K. 2020. Dating adoption and intensification of food-crops: Insights from 4MSR (Binjor), an Indus (Harappan) site in northwestern India. Radiocarbon 62, 1349–69. https://doi.org/10.1017/RDC.2020.37.CrossRefGoogle Scholar
Sharma, S. D. 2003. Origin of cultivated rices, in Nanda, J. S., Sharma, S. D. (eds.), Monograph on Genus Oryza. New Delhi: Oxford and IBH, pp. 311–30.Google Scholar
Sharma, S. D. 2010. Domestication and diaspora of rice, in Sharma, S. D. (ed.), Rice, Origin, Antiquity, and History. Enfield, NH: Science Publishers, pp. 124.CrossRefGoogle Scholar
Sharma, S. D., Shashtry, S. V. S. 1965. Taxonomic studies in genus Oryza L. VI: A modified classification. Indian Journal of Genetic and Plant Breeding 25, 173–8.Google Scholar
Sharma, V., Sharma, T. R., Rana, J. C., Chahota, R. K. 2015. Analysis of genetic diversity and population structure in horsegram (Macrotyloma uniflorum) using RAPD and ISSR markers. Agricultural Research 4, 221–30. https://doi.org/10.1007/s40003-015-0165-7.CrossRefGoogle Scholar
Shaw, F. J. F. 1943. Vegetable remains, in Mackay, E. J. H. (ed.), Chanhu-daro Excavations. New Haven, CT: Yale University Press, pp. 250–1.Google Scholar
Shelach, G. 2000. The earliest Neolithic cultures of northeast China: Recent discoveries and new perspectives on the beginning of Agriculture. Journal of World Prehistory 14, 363413. https://doi.org/10.1023/A:1011124209079.CrossRefGoogle Scholar
Sherratt, A. 1991. Sacred and profane substances: The ritual use of narcotics in Later Neolithic Europe, in Garwood, P., Jennings, D., Skeates, R., Toms, J. (eds.), Sacred and Profane: Monograph. Oxford: Oxford University Committee for Archaeology, pp. 5064.Google Scholar
Sherratt, A. 1999. Cash-crops before cash: Organic consumables and trade, in Gosden, C., Hather, J. (eds.), The Prehistory of Food: Appetites for Change. London: Routledge, pp. 1334.Google Scholar
Sherratt, A. 2007. Diverse origins: Regional contribution to the genesis of farming, in Shennan, S., Colledge, S., Conolly, J. (eds.), The Origins and Spread of Domestic Plants in Southwest Asia and Europe. London: Institute of Archaeology, University College London, pp. 120.Google Scholar
Shillito, L.-M., Blong, J. C., Green, E. J., Van Asperen, E. N. 2020. The what, how and why of archaeological coprolite analysis. Earth-Science Reviews 207, 103196. https://doi.org/10.1016/j.earscirev.2020.103196.CrossRefGoogle Scholar
Shillito, L.-M., Ryan, P. 2013. Surfaces and streets: Phytoliths, micromorphology and changing use of space at Neolithic Çatalhöyük (Turkey). Antiquity 87, 684700. https://doi.org/10.1017/S0003598X00049395.CrossRefGoogle Scholar
Shinde, V. 1998a. Pre-Harappan Padri culture in Saurashtra: The recent discovery. South Asian Studies 14, 173–82.CrossRefGoogle Scholar
Shinde, V. S. 1998b. Early Settlements in the Central Tapi Basin. New Delhi: Munshiram Manoharlal.Google Scholar
Shinde, V. S. 2002. The emergence, development and spread of agricultural communities in South Asia, in Yasuda, Y. (ed.), The Origins of Pottery and Agriculture. New Delhi: Lustre/Roli, pp. 89115.Google Scholar
Shinde, V. 2016. Current perspectives on the Harappan Civilization, in Schug, G. R., Walimbe, S. R. (eds.), A Companion to South Asia in the Past. Hoboken, NJ: Wiley, pp. 125–44. https://doi.org/10.1002/9781119055280.ch9.Google Scholar
Shinde, V. S., Kim, Y. J., Woo, E. J. et al. 2018b. Archaeological and anthropological studies on the Harappan cemetery of Rakhigarhi, India. PLoS One 13, e0192299. https://doi.org/10.1371/journal.pone.0192299.CrossRefGoogle ScholarPubMed
Shinde, V., Osada, T., Kumar, M. (eds.). 2011. Excavations at Farmana, District Rohtak, Haryana, India, 2006–8. Kyoto: Research Institute for Humanity and Nature.Google Scholar
Shinde, V., Lee, H., Yadav, Y. et al. 2018a. A young couple’s grave found in the Rakhigarhi cemetery of the Harappan Civilization. Anatomy & Cell Biology 51, 200. https://doi.org/10.5115/acb.2018.51.3.200.CrossRefGoogle Scholar
Shinde, V., Osada, T., Sharma, M. et al. 2008. Exploration in the Ghaggar Basin and excavations at Girawad, Farmana (Rohtak District) and Mitathal (Bhiwani District), Haryana, India. Occasional Paper 3, 77158.Google Scholar
Silva, F., Stevens, C. J., Weisskopf, A. et al. 2015. Modelling the geographical origin of rice cultivation in Asia using the Rice Archaeological Database. PLoS One 10, e0137024. https://doi.org/10.1371/journal.pone.0137024.CrossRefGoogle ScholarPubMed
Silva, F., Weisskopf, A., Castillo, C. et al. 2018. A tale of two rice varieties: Modelling the prehistoric dispersals of japonica and proto- indica rices. The Holocene 28, 1745–58. https://doi.org/10.1177/0959683618788634.CrossRefGoogle Scholar
Simmonds, N. W. 1962. The Evolution of Banana. London: Longman.Google Scholar
Singh, G. 1971. The Indus Valley culture seen in the context of post-glacial climatic and ecological studies in north-west India. Archaeology and Physical Anthropology of Oceania 6, 177–89.Google Scholar
Singh, G., Joshi, R. D., Chopra, S. K., Singh, A. B. 1974. Late Quaternary history of vegetation and climate of Rajasthan Desert, India. Philosophical Transations of the Royal Society in London B: Biological Sciences 267, 467501.Google Scholar
Singh, I. B. 2005a. Quaternary palaeoenvironments of the Ganga Plain and anthropogenic activity. Man and Environment 30, 135.Google Scholar
Singh, I. B. 2005b. Landform development and palaeovegetation in Late Quaternary of the Ganga Plain: Implications for anthropogenic activity. Pragdhara 15, 531.Google Scholar
Singh, J. S., Misra, R. 1969. Influence of the direction of slope and reduced light intensities on the growth of Eleusine indica. Tropical Ecology 10, 2733.Google Scholar
Singh, N. J., Kudrat, M., Jain, K., Pandey, K. 2011. Cropping pattern of Uttar Pradesh using IRS-P6 (AWiFS) data. International Journal of Remote Sensing 32, 4511–26. https://doi.org/10.1080/01431161.2010.489061.CrossRefGoogle Scholar
Singh, R. D. 1946. Triticum sphaerococcum Perc. (Indian dwarf wheat). Indian Journal of Genetics and Plant Breeding 6, 3447.Google Scholar
Singh, R. N., Petrie, C. A., Bates, J. et al. 2012a. Survey and excavations at Bahola, District Karnal, Haryana. Manaviki 3.2–4.1, 511.Google Scholar
Singh, R. N., Petrie, C. A., Bates, J. et al. 2013a. Survey and excavations at Bahola, Karnal District, Haryana: March 27–April 17, 2012. Manaviki 3–4, 511.Google Scholar
Singh, R. N., Petrie, C. A., French, C. A. I. et al. 2008. Settlements in Context: Reconnaissance in western Uttar Pradesh and Haryana, April and May 2008. Man and Environment 33, 7187.Google Scholar
Singh, R. N., Petrie, C. A., French, C. A. I. et al. 2010b. Geoarchaology survey and excavations at Burj, Fatehabad, Haryana. Puratattva 40, 94101.Google Scholar
Singh, R. N., Petrie, C. A., French, C. A. I. et al. 2012b. Survey and excavations at Dabli vas Chugta, Hanumangarh District, Rajasthan. Puratattva 42, 133–47.Google Scholar
Singh, R. N., Petrie, C. A., Joglekar, P. P. et al. 2013a. Recent excavations at Alamgirpur, Meerut District: A preliminary report. Man and Environment 38, 3254.Google Scholar
Singh, R. N., Petrie, C. A., Pawar, V. et al. 2010a. Changing patterns of settlement in the rise and fall of Harappan urbanism: Preliminary report on the Rakhigarhi Hinterland Survey 2009. Man and Environment 35, 3753.Google Scholar
Singh, R. N., Petrie, C. A., Pawar, V., Pandey, A. K., Parikh, D. 2011. New insights into settlement along the Ghaggar and its hinterland: A preliminary report on the Ghaggar Hinterland Survey 2010. Man and Environment 36, 89106.Google Scholar
Singh, U., Singh, B. 1992. Tropical grain legumes as important human foods. Economic Botany 46, 310–21. https://doi.org/10.1007/BF02866630.CrossRefGoogle Scholar
Singh, U., Wadhwani, A. M., Johri, B. M. 1990. Dictionary of Economic Plants in India, 2nd (reprint) edition. New Delhi: ICAR.Google Scholar
Sinha, A., Berkelhammer, M., Stott, L. et al. 2011. The leading mode of Indian Summer Monsoon precipitation variability during the last millennium. Geophysical Research Letters 38. https://doi.org/10.1029/2011GL047713.CrossRefGoogle Scholar
Sinopoli, C. M. 2011. The Political Economy of Craft Production: Crafting Empire in South India, c.1350–1650. Cambridge: Cambridge University Press.Google Scholar
Smartt, J. 1978. The evolution of pulse crops. Economic Botany 32, 185–98.CrossRefGoogle Scholar
Smartt, J. 1985. Evolution of grain legumes. II and III: Pulses in the genus Vigna. Experimental Agriculture 21, 1100. https://doi.org/10.1017/S0014479700012370.CrossRefGoogle Scholar
Smartt, J. 1990. Grain Legumes: Evolution and Genetic Resources. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Smith, A., Proctor, L., Hart, T. C., Stein, G. J. 2019. The burning issue of dung in archaeobotanical samples: A case-study integrating macro-botanical remains, dung spherulites, and phytoliths to assess sample origin and fuel use at Tell Zeidan, Syria. Vegetation History and Archaeobotany 28, 229–46. https://doi.org/10.1007/s00334-018-0692-9.CrossRefGoogle Scholar
Smith, A. B., Jacobsen, L. 1995. Excavations at Geduld and the appearance of early domestic stock in Namibia. South African Archaeological Bulletin 50, 314.CrossRefGoogle Scholar
Smith, B. D. 1998. The Emergence of Agriculture. New York: Scientific American Library.Google Scholar
Smith, H., Jones, G. 1990. Experiments on the effects of charring on cultivated grape seeds. Journal of Archaeological Science 17, 317–27. https://doi.org/10.1016/0305-4403(90)90026-2.CrossRefGoogle Scholar
Smith, M. 2006. How ancient agriculturalists managed yield fluctuations through crop selection and reliance on wild plants: An example from central India. Economic Botany 60, 3948.CrossRefGoogle Scholar
Smith, M. 2009. V. Gordon Childe and the urban revolution: A historical perspective on a revolution in urban studies. Town Planning Review 80, 329. https://doi.org/10.3828/tpr.80.1.2a.CrossRefGoogle Scholar
Smith, M. L. 2006. The archaeology of food preference. American Anthropologist 108, 480–93.CrossRefGoogle Scholar
Smith, M. L. 2014. The archaeology of urban landscapes. Annual Review of Anthropology 43, 307–23. https://doi.org/10.1146/annurev-anthro-102313-025839.CrossRefGoogle Scholar
Snowden, J. D. 1936. The Cultivated Races of Sorghum. London: Adlard and Sons.Google Scholar
Song, A., Ning, D., Fan, F. et al. 2015. The potential for carbon bio-sequestration in China’s paddy rice (Oryza sativa L.) as impacted by slag-based silicate fertilizer. Science Reports 5, 17354. https://doi.org/10.1038/srep17354.CrossRefGoogle ScholarPubMed
Spangler, R., Zaitchik, B., Russo, E., Kellogg, E. 1999. Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Systematic Botany 24, 267. https://doi.org/10.2307/2419552.CrossRefGoogle Scholar
Spate, M., Zhang, G., Yatoo, M., Betts, A. 2017. New evidence for early 4th millennium BP agriculture in the western Himalayas: Qasim Bagh, Kashmir. Journal of Archaeological Science: Reports 11, 568–77. https://doi.org/10.1016/j.jasrep.2016.12.038.Google Scholar
Spengler, R. N. 2019. Fruit from the Sands: The Silk Road Origins of the Food You Eat. Oakland: University of California Press.Google Scholar
Spengler, R. N., Frachetti, M. D., Fritz, G. J. 2013. Ecotopes and herd foraging practices in the steppe/mountain ecotone of central Asia during the Bronze and Iron Ages. Journal of Ethnobiology 33, 125–47. https://doi.org/10.2993/0278-0771-33.1.125.CrossRefGoogle Scholar
Srivastava, C. 2005. Plant economy at ancient Mahorana, Sangrur District, Punjab (c.2300 BC–AD 200). Man and Environment 30, 94102.Google Scholar
Stapf, O. 1917. Gramineae: Flora of Tropical Africa. London: Lowell Reeve & Company.Google Scholar
Stapf, O. 1931. Quoted comments, in Mohenjo-Daro and the Indus Civilisation. London: Arthur Probsthain.Google Scholar
Staubwasser, M., Sirocko, F., Grootes, P. M., Segl, M. 2003. Climate change at the 4.2 ka BP termination of the Indus Valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters 30, 7_1-7_3. https://doi.org/10.1029/2002GL016822.CrossRefGoogle Scholar
Staubwasser, M., Weiss, H. 2006. Holocene climate and cultural evolution in late prehistoric–early historic west Asia. Quaternary Research 66, 372–87. https://doi.org/10.1016/j.yqres.2006.09.001.CrossRefGoogle Scholar
Steele, W. M. 1976. Cowpea, Vigna unguiculata (Legumino-sae-Papillionatae), in Simmonds, N. W. (ed.), Evolution of Crop Plants. London: Longman, pp. 183–5.Google Scholar
Steensberg, A. 1973. 6000 year old ploughing implement from Satrup Moor. Tools and Tillage 2, 105–18.Google Scholar
Stein, A. 1929. An archaeological tour in Waziristan and northern Baluchistan. Memoirs of the Archaeological Survey of India 37. Delhi.Google Scholar
Steinberg, M. K. 1998. Neotropical kitchen gardens as a potential research landscape for conservation biologists. Conservation Biology 12, 1150–2. https://doi.org/10.1046/j.1523-1739.1998.98086.x.CrossRefGoogle Scholar
Stemler, A. 1990. A scanning electron microscopic analysis of plant impressions in pottery from sites of Kadero, El Zakiab, Um Direiwa and El Kadada. Archéologie du Nil Moyen 4, 87106.Google Scholar
Stevens, C. J. 2003. An investigation of agricultural consumption and production models for prehistoric and Roman Britain. Environmental Archaeology 8, 6176.CrossRefGoogle Scholar
Stevens, C. J., Fuller, D. Q. 2017. The spread of agriculture in eastern Asia: Archaeological bases for hypothetical farmer/language dispersals. Language Dynamics and Change 7, 152–86. https://doi.org/10.1163/22105832-00702001.CrossRefGoogle Scholar
Stevens, C. J., Murphy, C., Roberts, R. et al. 2016. Between China and South Asia: A Middle Asian corridor of crop dispersal and agricultural innovation in the Bronze Age. The Holocene 26, 1541–55. https://doi.org/10.1177/0959683616650268.CrossRefGoogle ScholarPubMed
Stevens, C. J., Shelach-Lavi, G., Zhang, H., Teng, M., Fuller, D. Q. 2021. A model for the domestication of Panicum miliaceum (common, proso or broomcorn millet) in China. Vegetation History and Archaeobotany 30, 2133. https://doi.org/10.1007/s00334-020-00804-z.CrossRefGoogle Scholar
Stevens, O. A. 1932. The number and weight of seeds produced by weeds. American Journal of Botany 19, 784–94.CrossRefGoogle Scholar
Stevens, O. A. 1957. Weights of seeds and numbers per plant. Weeds 5, 4655. https://doi.org/10.2307/4040327.CrossRefGoogle Scholar
Stone, E. 1997. City-states and their centres: The Mesopotamian example, in Nichols, D. L., Charlton, T. H. (eds.), The Archaeology of City-States, Cross-Cultural Approaches. Washington, DC: Smithsonian Institute Press, pp. 1526.Google Scholar
Stone, G. D., Netting, R. McC., Stone, M. P. 1990. Seasonality, labor scheduling, and agricultural intensification in the Nigerian savanna. American Anthropologist 92, 723.CrossRefGoogle Scholar
Strathern, M. 1988. The Gender of the Gift. Cambridge: Cambridge University Press.Google Scholar
Stump, D. 2013. The archaeology of agricultural intensification in Africa, in Mitchell, P., Lane, P. (eds.), Oxford Handbook of African Archaeology. Oxford: Oxford University Press.Google Scholar
Styring, A., Maier, U., Stephan, E., Schlichtherle, H., Bogaard, A. 2016. Cultivation of choice: New insights into farming practices at Neolithic lakeshore sites. Antiquity 90, 95110. https://doi.org/10.15184/aqy.2015.192.CrossRefGoogle Scholar
Subramanian, D. 1983. Seed morphological studies in Phaseolus, Vigna and Macroptilium. Journal of the Indian Botanical Society 62, 7783.Google Scholar
Sugiyama, S. 2011. Phytolith analysis at Farmana site of the Indus Civilisation, in Shinde, V., Osada, T., Kumar, M. (eds.), Excavations at Farmana, District Rohtak, Haryana, India, 2006–8. Kyoto: Research Institute for Humanity and Nature, pp. 826–30.Google Scholar
Sulas, F., Madella, M. 2012. Archaeology at the micro-scale: Micromorphology and phytoliths at a Swahili stonetown. Archaeological and Anthropological Sciences 4, 145–59. https://doi.org/10.1007/s12520-012-0090-7.CrossRefGoogle Scholar
Sun, X., Liu, Q., Tang, T., Chen, X., Luo, X. 2019. Silicon fertilizer application promotes phytolith accumulation in rice plants. Frontiers in Plant Science 10, 425. https://doi.org/10.3389/fpls.2019.00425.CrossRefGoogle ScholarPubMed
Sun, Y., Skinner, D. Z., Liang, G. H., Hulbert, S. H. 1994. Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics 89, 2632. https://doi.org/10.1007/BF00226978.CrossRefGoogle ScholarPubMed
Sundararaj, D. D., Thulasidas, G. 1976. Botany of Field Crops. Delhi: Pan Macmillan.Google Scholar
Sundarram, A., Murthy, T. P. K. 2014. a-Amylase production and applications: A review. Journal of Applied & Environmental Microbiology 2, 166–75. https://doi.org/10.12691/jaem-2-4-10.Google Scholar
Suryanarayan, A., Cubas, M., Craig, O. E. et al. 2021. Lipid residues in pottery from the Indus Civilisation in northwest India. Journal of Archaeological Science 125, 105291. https://doi.org/10.1016/j.jas.2020.105291.CrossRefGoogle ScholarPubMed
Swaminathan, M. S. 2006. An evergreen revolution. Crop Science 46, 22932303. https://doi.org/10.2135/cropsci2006.9999.CrossRefGoogle Scholar
Tainter, J. A. 1988. The Collapse of Complex Societies. Cambridge: Cambridge University Press.Google Scholar
Tainter, J. A. 2006. Social complexity and sustainability. Ecological Complexity 3, 91103. https://doi.org/10.1016/j.ecocom.2005.07.004.CrossRefGoogle Scholar
Tainter, J. A. 2011. Resources and cultural complexity: Implications for sustainability. Critical Reviews in Plant Sciences 30, 2434. https://doi.org/10.1080/07352689.2011.553539.CrossRefGoogle Scholar
Tan, L., Li, X., Liu, F. et al. 2008. Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetics 40, 1360–4. https://doi.org/10.1038/ng.197.CrossRefGoogle ScholarPubMed
Tang, J., Xia, H., Cao, M. et al. 2004. A comparison of rice chloroplast genomes. Plant Physiology 135, 412–20. https://doi.org/10.1104/pp.103.031245.CrossRefGoogle ScholarPubMed
Tanno, K., Willcox, G. 2006. The origins of cultivation of Cicer arietinum L. and Vicia faba L.: Early finds from Tell el-Kerkh, north-west Syria, late 10th millennium B.P. Vegetation History and Archaeobotany 15, 197204. https://doi.org/10.1007/s00334-005-0027-5.CrossRefGoogle Scholar
Tao, D., Wu, Y., Guo, Z., Hill, D. V., Wang, C. 2011. Starch grain analysis for groundstone tools from Neolithic Baiyinchanghan site: Implications for their function in northeast China. Journal of Archaeological Science 38, 3577–83. https://doi.org/10.1016/j.jas.2011.08.028.CrossRefGoogle Scholar
Tateoka, T. 1963. Taxonomic studies of Oryza III: Key to the species and their enumeration. Botanical Society of Japan: Shokubutsugaku Zasshi 76, 165–73. https://doi.org/10.15281/jplantres1887.76.165.Google Scholar
Taylor, J. R. N., Emmambux, M. N. 2008. Gluten-free foods and beverages from millets, in Arendt, E. K., Dal Bello, F. (eds.), Gluten-Free Cereal Products and Beverages. San Diego, CA: Academic Press, pp. 119–V. https://doi.org/10.1016/B978-012373739-7.50008-3.Google Scholar
Tengberg, M. 1999. Crop husbandry at Miri Qalat, Makran, South West Pakistan. Vegetation History and Archaeobotany 8, 312.CrossRefGoogle Scholar
Tengberg, M., Thiébault, S. 2003. Vegetation history and wood exploitation in Pakistani Baluchistan from the Neolithic to the Harappan Period: The evidence of charcoal analysis, in Weber, S. A., Belcher, W. (eds.), Indus Ethnobiology: New Perspectives from the Field. Lanham, MD: Lexington Books, pp. 2164.Google Scholar
Terral, J.-F., Newton, C., Ivorra, S. et al. 2012. Insights into the historical biogeography of the date palm (Phoenix dactylifera L.) using geometric morphometry of modern and ancient seeds: Historical biogeography of date palm agrobiodiversity. Journal of Biogeography 39, 929–41. https://doi.org/10.1111/j.1365-2699.2011.02649.x.CrossRefGoogle Scholar
Terral, J.-F., Tabard, E., Bouby, L. et al. 2010. Evolution and history of grapevine (Vitis vinifera) under domestication: New morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Annals of Botany 105, 443–55. https://doi.org/10.1093/aob/mcp298.CrossRefGoogle ScholarPubMed
Tesso, T., Kapran, I., Grenier, C. et al. 2008. The potential for crop-to-wild gene flow in Sorghum in Ethiopia and Niger: A geographic survey. Crop Science 48, 1425–31. https://doi.org/10.2135/cropsci2007.08.0441.CrossRefGoogle Scholar
Tewari, R., Srivastava, R. K., Saraswat, K. S., Singh, I. B., Singh, K. K. 2008. Early farming at Lahuradewa. Pragdhara 18, 347–73.Google Scholar
Tewari, R., Srivastava, R. K., Singh, K. K., Saraswat, K. S., Singh, I. B. 2003. Preliminary report of the excavation at Lahuradewa, District Sant KabirNagar, U.P. 2001–2002: Wider archaeological implications. Pragdhara 13, 3768.Google Scholar
Tewari, R., Srivastava, R.K., Singh, K.K. et al. 2006. Second preliminary report of the excavations at Lahuradewa District Sant Kabir Nagar, U.P.: 2002–2003–2004 & 2005–06. Pragdhara 16, 3568.Google Scholar
Thapar, B. K. 1973. New traits of the Indus Civilization at Kalibangan: An appraisal, in Hammond, N. (ed.), South Asian Archaeology 1971. Park Ridge, NJ: Noyes Press, pp. 85104.Google Scholar
Thomas, K. D. 2003. Minimising risk? Approaches to pre-Harappan human ecology on the north-west margin of the greater Indus system, in Weber, S. A., Belcher, W. R. (eds.), Indus Ethnobiology: New Perspectives from the Field. Lanham, MD: Lexington Books, pp. 397429.Google Scholar
Thomas, K. D., Cartwright, C. 2010. The biological remains from Sheri Khan Teraki, in Khan, F., Cartwright, C., Joyner, L., Petrie, C. (eds.), Sheri Khan Tarakai and Early Village Life in the Borderlands of North-West Pakistan. Bannu Archaeological Project Monograph Series. Oxford: Oxbow Books, pp. 305–42.Google Scholar
Thomas, K. D., Petrie, C. A., Khan, F., Knox, J. R., Morris, J. C. 2010. Early village sites in the Gomal Plain, in Petrie, C. A. (ed.), Sheri Khan Tarakai and Early Village Life in the Borderlands of North-West Pakistan: Bannu Archaeological Project Surveys and Excavations 1985–2001 vol. 1. Bannu Archaeological Project Monograph Series. Oxford: Oxbow Books, pp. 379–98.Google Scholar
Thomas, R., Tengberg, M., Moulhérat, C., Marcon, V., Besenval, R. 2012. Analysis of a protohistoric net from Shahi Tump, Baluchistan (Pakistan). Archaeological and Anthropological Sciences 4, 1523. https://doi.org/10.1007/s12520-011-0078-8.CrossRefGoogle Scholar
Thompson, G. B. 1996. Ethnographic models for interpreting rice remains, in Higham, C., Thosarat, R. (eds.), The Excavations at Khok Phanom Di, a Prehistoric Site in Central Thailand. London: Society of Antiquaries of London, pp. 119–50.Google Scholar
Thomsen, P. F., Willerslev, E. 2015. Environmental DNA: An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183, 418. https://doi.org/10.1016/j.biocon.2014.11.019.CrossRefGoogle Scholar
Thornton, C. P. 2013. Mesopotamia, Meluhha, and those in between, in Crawford, H. (ed.), Sumerian World. London: Routledge, pp. 598617.Google Scholar
Tiwari, M., Nagoji, S. S., Ganeshram, R. S. 2015. Multi-centennial scale SST and Indian summer monsoon precipitation variability since the mid-Holocene and its nonlinear response to solar activity. The Holocene 25, 1415–24. https://doi.org/10.1177/0959683615585840.CrossRefGoogle Scholar
Tiwari, M., Ramesh, R., Bhushan, R. et al. 2006. Paleoproductivity variations in the equatorial Arabian Sea: Implications for East African and Indian Summer rainfalls and the El Niño frequency. Radiocarbon 48, 1729. https://doi.org/10.1017/S0033822200035360.CrossRefGoogle Scholar
Tomooka, N., Vaughan, D. A., Moss, H., Maxted, N. 2002. The Asian Vigna. Dordrecht: Springer. https://doi.org/10.1007/978-94-010-0314-8.CrossRefGoogle Scholar
Torrence, R., Barton, H. 2006. Ancient Starch Research. London: Routledge.Google Scholar
Torrence, R., Wright, R., Conway, R. 2004. Identification of starch granules using image analysis and multivariate techniques. Journal of Archaeological Science 31, 519–32. https://doi.org/10.1016/j.jas.2003.09.014.CrossRefGoogle Scholar
Tostain, S. 1992. Enzyme diversity in pearl millet (Pennisetum glaucum L.): 3. Wild millet. Theoretical and Applied Genetics 83–83, 733–42. https://doi.org/10.1007/BF00226692.Google Scholar
Tostain, S. 1998. Le Mil, une longue histoire: Hypothèses sur sa domestication et ses migrations, in Chastenet, M. (ed.), Plantes et Paysages d’Afrique: Une Histoire à Explorer. Paris: Karthala, pp. 461–90.Google Scholar
Treydte, K., Boda, S., Graf Pannatier, E. et al. 2014. Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: Source water versus needle water enrichment. New Phytology 202, 772–83. https://doi.org/10.1111/nph.12741.CrossRefGoogle Scholar
Trigger, B. 2003. Understanding Early Civilisations: A Comparative Study. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Tringham, R. 1991. Households with faces: The challenge of gender in prehistoric architectural remains, in Gero, J., Conkey, M. (eds.), Engendering Archaeology. Oxford: Blackwell, pp. 93131.Google Scholar
Tripathi, J., Block, B., Rajamani, V., Eisenhauer, A. 2004. Is River Ghaggar Saraswati? Geochemical constraints. Current Science 87, 1141–5.Google Scholar
Tripathi, J. K., Bock, B., Rajamani, V. 2013. Nd and Sr isotope characteristics of Quaternary Indo-Gangetic plain sediments: Source distinctiveness in different geographic regions and its geological significance. Chemical Geology 344, 1222. https://doi.org/10.1016/j.chemgeo.2013.02.016.CrossRefGoogle Scholar
Triplett, J. K., Wang, Y., Zhong, J., Kellogg, E. A. 2012. Five nuclear loci resolve the polyploid history of switchgrass (Panicum virgatum L.) and relatives. PLoS One 7, e38702. https://doi.org/10.1371/journal.pone.0038702.CrossRefGoogle ScholarPubMed
Turner, B. L., Hanham, R. Q., Portararo, A. V. 1977. Population pressure and agriculture intensity. Annals of the Association of American Geographers 67, 384–96. https://doi.org/10.1111/j.1467-8306.1977.tb01149.x.Google Scholar
Tusa, S. 1990. Ancient ploughing in northern Pakistan, in Taddei, M. (ed.), South Asian Archaeology 1987. Rome: Instituto Italiano per il Medio es Estremo Oriente, pp. 349–76.Google Scholar
Twiss, K. 2012. The archaeology of food and social diversity. Journal of Archaeological Research 20, 357–95. https://doi.org/10.1007/s10814-012-9058-5.CrossRefGoogle Scholar
Twiss, P. C., Suess, E., Smith, R. M. 1969. Morphological classification of grass phytoliths. Soil Science Society of America Proceedings 33, 109–15.CrossRefGoogle Scholar
Ugent, D., Pozorski, S., Pozorski, T. 1982. Archaeological potato tuber remains from the Casma Valley of Peru. Economic Botany 36, 182–92. https://doi.org/10.1007/BF02858715.CrossRefGoogle Scholar
Upadhyaya, H. D., Ravishankar, C. R., Narasimhudu, Y. et al. 2011. Identification of trait-specific germplasm and developing a mini core collection for efficient use of foxtail millet genetic resources in crop improvement. Field Crops Research 124, 459–67. https://doi.org/10.1016/j.fcr.2011.08.004.CrossRefGoogle Scholar
Valamoti, S., Chondrou, D., Bekiaris, T. et al. 2020. Plant foods, stone tools and food preparation in prehistoric Europe: An integrative approach in the context of ERC funded project PLANTCULT. Journal of Lithic Studies 7. https://doi.org/10.2218/jls.3095.CrossRefGoogle Scholar
Valamoti, S. M., Mangafa, M., Koukouli-Chrysanthaki, Ch., Malamidou, D. 2007. Grape-pressings from northern Greece: The earliest wine in the Aegean? Antiquity 81, 5461. https://doi.org/10.1017/S0003598X00094837.CrossRefGoogle Scholar
Valdiya, K. 2002. Saraswati: The River That Disappeared. Hyderabad: Universities Press.Google Scholar
Valipour, H. R., Davoudi, H., Hoseinzadeh, J., Fazeli, H. 2012. Tepe Khaleseh: Archaeological evaluation of a Late Neolithic site in north-western Iran. Antiquity Project Gallery 331.Google Scholar
Van der Maeson, L. J. G. 1986. Cajanus DC. and Atylosia W& A. (Leguminosae). Wageningen: Agricultural University.Google Scholar
Van der Veen, M. 1984. Sampling for seeds, in Van Zeist, W., Casparie, W. A. (eds.), Plants and Ancient Man: Studies in Palaeoethnobotany. Rotterdam: Balkema, pp. 193–9.Google Scholar
Van der Veen, M. 1992. Crop Husbandry Regimes: An Archaeobotanical Study of Farming in Northern England 1000 BC–AD 500. Sheffield Archaeological Monographs. Sheffield: Department of Archaeology and Prehistory, University of Sheffield.Google Scholar
Van der Veen, M. 1995. The identification of maslin crops, in Kroll, H., Pasternak, R. (eds.), Res Archaeobotanicae. Kiel: Koeltz Scientific Books, pp. 335–43.Google Scholar
Van der Veen, M. 2003. When is food a luxury? World Archaeology 34, 405–27. https://doi.org/10.1080/0043824021000026422.CrossRefGoogle Scholar
Van der Veen, M. 2005. Gardens and fields: The intensity and scale of food production. World Archaeology 37, 157–63. https://doi.org/10.1080/004382405000130731.CrossRefGoogle Scholar
Van der Veen, M. 2008. Food as embodied material culture: Diversity and change in plant food consumption in Roman Britain. Journal of Roman Archaeology 21, 83109. https://doi.org/10.1017/S1047759400004396.CrossRefGoogle Scholar
Van der Veen, M. 2014. The materiality of plants: Plant–people entanglements. World Archaeology 46, 799812. https://doi.org/10.1080/00438243.2014.953710.CrossRefGoogle Scholar
Van der Veen, M., Fieller, N. 1982. Sampling seeds. Journal of Archaeological Science 9, 287–98. http://dx.doi.org/10.1080/00438243.2014.953710.CrossRefGoogle Scholar
Vandiver, P. 1995. The production technology of early pottery at Mehrgarh, in Jarrige, C., Jarrige, J.-F., Meadow, R., Quivron, G. (eds.), Mehrgarh Field Reports 1974–1985. Karachi: Department of Culture and Tourism.Google Scholar
Van Wyk, B.-E. 2005. Food Plants of the World. Pretoria: Briza.Google Scholar
Van Wyk, B.-E., Gericke, N. 2000. People’s Plants: A Guide to Useful Plants of Southern Africa, 1st edition. Pretoria: Briza.Google Scholar
Van Zeist, W. 1968. Prehistoric and early historic food plants in the Netherlands. Palaeohistoria 14, 41173.Google Scholar
Vaughan, D. A. 2003. Genepools of the genus Oryza, in Nanda, J. S., Sharma, S. D. (eds.), Monograph on Genus Oryza. Enfield, NH: Science Publishers, pp. 113–38.Google Scholar
Vaughan, D. A., Lu, B., Tomooka, N. 2008a. Was Asian rice (Oryza sativa) domesticated more than once? Rice 1, 1624.CrossRefGoogle Scholar
Vaughan, D. A., Lu, B., Tomooka, N. 2008b. The evolving story of rice evolution. Plant Science 174, 394408. https://doi.org/10.1016/j.plantsci.2008.01.016.CrossRefGoogle Scholar
Varma, R. K., Misra, V. D., Pandey, J. N., Pal, J. N. 1985. A preliminary report on the excavations at Damdama (1982–1984). Man and Environment 9, 4565.Google Scholar
Vats, M. S. 1940. Excavations at Harappa. Calcutta: Archaeological Survey of India.Google Scholar
Vavilov, N. I. 1926. Origin and Geography of Cultivated Plants, English edition. New York: Cambridge University Press.Google Scholar
Vavilov, N. I. 1951. The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica 13, 1366.Google Scholar
Venkateswaran, K., Elangovan, M., Sivaraj, N. 2019. Origin, domestication and diffusion of Sorghum bicolor, in Aruna, C., Visarada, K. B. R. S., Bhat, B. V., Tonapi, A. (eds.), Breeding Sorghum for Diverse End Uses. Woodhead Publishing, pp. 1531. https://doi.org/10.1016/B978-0-08-101879-8.00002-4.CrossRefGoogle Scholar
Venkateswaran, K., Muraya, M., Dwiveda, S. L., Upadhyaya, H. D. 2014. Wild sorghums: Their potential use in crop improvement, in Wang, Y.-H., Upadhyaya, H. D., Kole, C. (eds.), Genetics, Genomics and Breeding of Sorghum. Boca Raton, FL: CRC Press, pp. 78111. https://doi.org/10.1201/b17153-7.Google Scholar
Verdcourt, B. 1971. Phaeseoleae, in Milne-Redhead, E., Polhill, R. M. (eds.), Flora of Tropical East Africa, Leguminosae (Part 4) Palpilionidae (2). London: Crown Agents for Overseas Governments and Administrations.Google Scholar
Vidale, M. 2010. Aspects of palace life at Mohenjo-Daro. South Asian Studies 26, 5976. https://doi.org/10.1080/02666031003737232.CrossRefGoogle Scholar
Vidale, M. 2018. Heterarchic powers in the ancient Indus cities. Journal of Asian Civilizations 41, 146.Google Scholar
Vidale, M., Miller, H. M.-L. 2000. On the development of Indus technical virtuosity and its relation to social structure, in Taddei, M., de Marco, G. (eds.), South Asian Archaeology 1997. Rome: Instituto Italian per l’Africa e l’Oriente, pp. 115–32.Google Scholar
Vishnu-Mittre, . 1957. Pollen analysis (Maski). Ancient India 13, 129–33.Google Scholar
Vishnu-Mittre, . 1966. Some aspects concerning pollen: Analytical investigations in the Kashmir Valley. The Palaeobotanist 15, 157–75.Google Scholar
Vishnu-Mittre, . 1968. Inter-relationship between archaeology and plant sciences. Puratattva 1, 415.Google Scholar
Vishnu-Mittre, . 1971. Ancient plant economy at Hallur, in Nagaraja Rao, M. S. (ed.), Protohistoric Cultures of the Tungabhadra Valley (Hallur Excavations). Dharwar: Swati, pp. 19.Google Scholar
Vishnu-Mittre, . 1974. Palaeobotanical evidence in India, in Hutchinson, J. (ed.), Evolutionary Studies in World Crops: Diversity and Change in the Indian Subcontinent. Cambridge: Cambridge University Press, pp. 330.Google Scholar
Vishnu-Mittre, . 1976a. Palaeoecology of the Rajasthan Desert during the last 10,000 years. The Palaeobotanist 25, 549–58.Google Scholar
Vishnu-Mittre, . 1976b. The archaeobotanical and palynological evidence for the early origin of agriculture in South and Southeast Asia, in Arnott, M. I. (ed.), Gastronomy. The Hague: Mouton, pp. 1321.Google Scholar
Vishnu-Mittre, . 1981. Botanical perspective on the Quaternary. The Palaeobotanist 28, 402–12.Google Scholar
Vishnu-Mittre, . 1985. The uses of wild plants and the processes of domestication in the Indian Sub-continent, in Misra, V. N., Bellwood, P. (eds.), Recent Advances in Indo-Pacific Prehistory. New Delhi: Oxford and IBH, pp. 281–91.Google Scholar
Vishnu-Mittre, . 1989. Forty years of archaeobotanical research in South Asia. Man and Environment 14, 116.Google Scholar
Vishnu-Mittre, . 1990. Plant remains, in Joshi, J. P. (ed.), Excavation at Surkotada. Delhi: Archaeological Survey of India, pp. 388–92.Google Scholar
Vishnu-Mittre, , Guzder, S. 1975. The early domestication of plants in South and SouthEast Asia: A critical review. The Palaeobotanist 22, 83–8.Google Scholar
Vishnu-Mittre, , Sharma, B. D. 1966. Studies of postglacial vegetational history from the Kashmir Valley-I. Haigam Lake. The Palaeobotanist 15, 185212.Google Scholar
Vishnu-Mittre, , Singh, G., Saxena, K. M. S. 1962. Pollen analytical investigations of the lower Karewas. The Palaeobotanist 11, 92–5.Google Scholar
Vishnu-Mittre, , Sharma, K. A. 1983. Palaeobotanical and pollen analytical investigations. Indian Archaeology: A Review 1979–80, 113–14.Google Scholar
Vishnu-Mittre, , Savithri, R. 1975. Supposed remains of Rice (Oryza sp.) in the Terracotta Cakes and Pai at Kalibangan, Rajasthan. The Palaeobotanist 22, 124–6.Google Scholar
Vishnu-Mittre, , Savithri, R. 1978. Setaria in ancient plant economy of India. The Palaeobotanist 25, 559–64.Google Scholar
Vishnu-Mittre, , Savithri, R. 1979. Further contribution on protohistoric ragi: Eleusine coracana Gaertn. The Palaeobotanist 26, 1015.Google Scholar
Vishnu-Mittre, , Savithri, R. 1982. Food economy of the Harappans, in Possehl, G. L. (ed.), Harappan Civilisation. New Delhi: Oxford and IBH, pp. 205–21.Google Scholar
Vitte, C., Ishii, T., Lamy, F., Brar, D., Panaud, O. 2004. Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Molecular Genetics and Genomics 272, 504–11. https://doi.org/10.1007/s00438-004-1069-6.CrossRefGoogle ScholarPubMed
Von Rad, U., Schaff, M., Michels, K. H. et al. 1999. A 5000-yr record of climatic change in carved sediment from the oxygen minimum zone off Pakistan, northeastern Arabian Sea. Quaternary Research 52, 3953.CrossRefGoogle Scholar
Vrydaghs, L., Denham, T. 2007. Rethinking agriculture: Introductory thoughts, in Denham, T., Iriarte, J., Vrydaghs, L. (eds.), Rethinking Agriculture: Archaeological and Ethnoarchaeological Perspectives. London: Routledge, pp. 115.Google Scholar
Wagner, M., Tarasov, P., Hosner, D. et al. 2013. Mapping of the spatial and temporal distribution of archaeological sites of northern China during the Neolithic and Bronze Age. Quaternary International 290–1, 344–57. https://doi.org/10.1016/j.quaint.2012.06.039.Google Scholar
Walker, M. J. C., Berkelhammer, M., Björck, S. et al. 2012. Formal subdivision of the Holocene Series/Epoch: A discussion paper by a working group of INTIMATE (Integration of Ice-Core, Marine and Terrestrial Records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). Journal of Quaternary Science 27, 649–59. https://doi.org/10.1002/jqs.2565.CrossRefGoogle Scholar
Wallace, M., Charles, M. 2013. What goes in does not always come out: The impact of the ruminant digestive system of sheep on plant material, and its importance for the interpretation of dung-derived archaeobotanical assemblages. Environmental Archaeology 18, 1830. https://doi.org/10.1179/1461410313Z.00000000022.CrossRefGoogle Scholar
Wallace, M. P., Jones, G., Charles, M. et al. 2015. Stable carbon isotope evidence for Neolithic and Bronze Age crop water management in the eastern Mediterranean and Southwest Asia. PLoS One 10, e0127085. https://doi.org/10.1371/journal.pone.0127085.CrossRefGoogle ScholarPubMed
Wang, C., Lu, H. Y. 2012. Research progress of fan-shaped phytolith of rice and relative issues. Quaternary Sciences 32, 269–81.Google Scholar
Wang, C., Lu, H., Zhang, J., Mao, L., Ge, Y. 2019. Bulliform phytolith size of rice and its correlation with hydrothermal environment: A preliminary morphological study on species in southern China. Frontiers in Plant Science 10, 1037. https://doi.org/10.3389/fpls.2019.01037.CrossRefGoogle Scholar
Wang, R., Hunt, H. V., Qiao, Z., Wang, L., Han, Y. 2016. Diversity and cultivation of broomcorn millet (Panicum miliaceum L.) in China: A review. Economic Botany 70, 332–42. https://doi.org/10.1007/s12231-016-9357-8.CrossRefGoogle Scholar
Wang, R., Ji, X., Liu, X. et al. 2014. Diversity of leaf traits and photosynthetic characteristics in broomcorn millet (Panicum miliaceum L.) germplasms among different ecotype zones of China. Journal of Shanxi Agricultural University (Natural Science Edition) 34, 97102.Google Scholar
Wang, R.-L., Wendel, J. F., Dekker, J. H. 1995. Weedy adaptation in Setaria spp. I: Isozyme analysis of genetic diversity and population genetic structure in Setaria viridis. American Journal of Botany 82, 308–17.Google Scholar
Wang, X. Y. 1994. Zhongguo Shuji. Beijing: China Agricultural.Google Scholar
Wang, X., Shen, G., Han, Y., Wang, Y., Wang, H. 2013. The difference analysis of morphological index in five common millet (Panicum miliaceum L.) varieties. Journal of Shanxi Agricultural Sciences 41, 1167–70.Google Scholar
Wang, Y., Cheng, H., Edwards, R. L. et al. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 308, 854. https://doi.org/10.1126/science.1106296CrossRefGoogle ScholarPubMed
Warinner, C., Herbig, A., Mann, A. et al. 2017. A robust framework for microbial archaeology. Annual Review of Genomics and Human Genetics 18, 321–56. https://doi.org/10.1146/annurev-genom-091416-035526.CrossRefGoogle ScholarPubMed
Warwick, S. I. 1987. Isozyme variation in proso millet. Journal of Heredity 78, 210–12. https://doi.org/10.1093/oxfordjournals.jhered.a110362.CrossRefGoogle Scholar
Wasylikowa, K., Dahlberg, J. A. 1999. Sorghum in the economy of the early nomadic tribes at Napta Playa, southern Egypt, in Van der Veen, M. (ed.), The Exploitation of Plant Resources in Ancient Africa. New York: Kluwer Academic/Plenum, pp. 1132.CrossRefGoogle Scholar
Watt, G. 1892. A Dictionary of Economic Products of India. Calcutta: Superintendent of Government Printing.Google Scholar
Watt, G. 1908. The Commercial Products of India: An Abridgement of ‘The Dictionary of the Economic Products of India’. London: John Murray.Google Scholar
Weber, S. A. 1989. Plant and Harappan subsistence: An example of stability and change from Rojdi (PhD). University of Pennsylvania, Philadelphia.Google Scholar
Weber, S. A. 1991. Plants and Harappan Subsistence: An Example of Stability and Change from Rojdi. New Delhi: Oxford and IBH.Google Scholar
Weber, S. A. 1992. South Asian archaeobotanical variability, in Jarrige, C. (ed.), South Asian Archaeology 1989. Madison, WI: Prehistory Press, pp. 283–90.Google Scholar
Weber, S. A. 1997. Harappa archaeobotany: A model for subsistence, in Allchin, B., Allchin, F. R. (eds.), South Asian Archaeology 1995. New Delhi: Oxford and IBH, pp. 115–17.Google Scholar
Weber, S. A. 1998. Out of Africa: The initial impact of millets in South Asia. Current Anthropology 39, 267–74.CrossRefGoogle Scholar
Weber, S. A. 1999. Seeds of urbanism: Palaeoethnobotany and the Indus Civilisation. Antiquity 73, 813–26.CrossRefGoogle Scholar
Weber, S. A. 2003. Archaeobotany at Harappa: Indications for change, in Weber, S. A., Belcher, W. R. (eds.), Indus Ethnobiology: New Perspectives from the Field. Lanham, MD: Lexington Books, pp. 175–98.Google Scholar
Weber, S. A., Barela, T., Lehman, H. 2010b. Ecological continuity: An explanation for agricultural diversity in the Indus Civilisation and beyond. Man and Environment 35, 6275.Google Scholar
Weber, S. A., Fuller, D. Q. 2008. Millets and their role in early agriculture. Pragdhara 18, 6990.Google Scholar
Weber, S. A., Kashyap, A. 2016. The vanishing millets of the Indus civilization. Archaeological and Anthropological Sciences 8, 915. https://doi.org/10.1007/s12520-013-0143-6.CrossRefGoogle Scholar
Weber, S. A., Kashyap, A., Harriman, D. 2010a. Does size matter: The role and significance of cereal grains in the Indus Civilization. Archaeological and Anthropological Sciences 2, 3543. https://doi.org/10.1007/s12520-010-0025-0.CrossRefGoogle Scholar
Weber, S. A., Kashyap, A., Mounce, L. 2011. Archaeobotany at Farmana: New insights into Harappan plant use strategies, in Shinde, V., Osada, T., Kumar, M. (eds.), Excavations at Farmana, District Rohtak, Haryana, India, 2006–8. Kyoto: Research Institute for Humanity and Nature, pp. 808–25.Google Scholar
Webster, P. J., Magaña, V. O., Palmer, T. N. et al. 1998. Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research 103, 14451–510. https://doi.org/10.1029/97JC02719.CrossRefGoogle Scholar
Weiner, S. 2010. Microarchaeology: Beyond the Visible Archaeological Record. New York: Cambridge University Press.CrossRefGoogle Scholar
Weiss, H. 2017. Megadrought and Collapse: From Early Agriculture to Angkor. Oxford: Oxford University Press.CrossRefGoogle Scholar
Weiss, H., Courty, M.-A., Wetterstrom, W. et al. 1993. The genesis and collapse of third millennium north Mesopotamian civilization. Science 261, 9951004. https://doi.org/10.1126/science.261.5124.995.CrossRefGoogle ScholarPubMed
Weiss, E., Wetterstrom, W., Nadel, D., Bar-Yosef, O. 2004. The broad spectrum revisited: Evidence from plant remains. Proceedings of the National Academy of Sciences USA 101, 9551–5. https://doi.org/10.1073/pnas.0402362101.CrossRefGoogle ScholarPubMed
Weiss, E., Zohary, D. 2011. The Neolithic Southwest Asian founder crops: Their biology and archaeobotany. Current Anthropology 52, S237–54. https://doi.org/10.1086/658367.CrossRefGoogle Scholar
Weisskopf, A. 2010. Vegetation, agriculture and social change in Late Neolithic China: A phytolith study (PhD). University College London, London.Google Scholar
Weisskopf, A., Deng, Z., Qin, L., Fuller, D. Q. 2015. The interplay of millets and rice in Neolithic central China: Integrating phytoliths into the archaeobotany of Baligang. Archaeological Research in Asia 4, 3645. https://doi.org/10.1016/j.ara.2015.10.002.CrossRefGoogle Scholar
Weisskopf, A., Harvey, E., Kingwell-Banham, E. et al. 2014. Archaeobotanical implications of phytolith assemblages from cultivated rice systems, wild rice stands and macro-regional patterns. Journal of Archaeological Science 51, 4353. https://doi.org/10.1016/j.jas.2013.04.026.CrossRefGoogle Scholar
Weisskopf, A. R., Lee, G.-A. 2016. Phytolith identification criteria for foxtail and broomcorn millets: A new approach to calculating crop ratios. Archaeological and Anthropological Sciences 8, 2942. https://doi.org/10.1007/s12520-014-0190-7.CrossRefGoogle Scholar
Werth, E. 1937. Zur Geographie und Geschichte der Hirzen. Angewandte Botanik 19, 4288.Google Scholar
West-Eberhard, M. J. 2005a. Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences USA 102, 6543–9. https://doi.org/10.1073/pnas.0501844102.CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. 2005b. Phenotypic accommodation: Adaptive innovation due to developmental plasticity. Journal of Experimental Zoology Part B: Molecular and Development Evolution 304B, 610–18. https://doi.org/10.1002/jez.b.21071.CrossRefGoogle Scholar
Wheeler, M. 1947. Harappa 1946: The defences and cemetery R-37. Ancient India 3, 58130.Google Scholar
Wheeler, M. 1950. Five Thousand Years of Pakistan: An Archaeological Outline. London: Royal India and Pakistan Society.Google Scholar
Wheeler, M. 1953. The Cambridge History of India: Supplementary Volume, the Indus Civilization. Cambridge: Cambridge University Press.Google Scholar
Wheeler, M. 1968. The Indus Civilisation, Supplementary Volume to the Cambridge History of India, 3rd edition. Cambridge: Cambridge University Press.Google Scholar
White, C. E., Miller, N. F. 2018. The archaeobotany of grape and wine in Hittite Anatolia. Die Welt des Orients 48, 209–24.CrossRefGoogle Scholar
White, C. E., Shelton, C. P. 2015. Recovering macrobotanical remains: Current methods and techniques, in Marston, J. M., d’Alpoim Guedes, J., Warinner, C. (eds.), Method and Theory in Paleoethnobotany. Denver: University Press of Colorado, pp. 95114. https://doi.org/10.5876/9781607323167.c006.Google Scholar
White, C. E., Toro, F., White, J. 2019. Rice carbonization and the archaeobotanical record: Experimental results from the Ban Chiang ethnobotanical collection, Thailand. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-019-00797-5.CrossRefGoogle Scholar
White, J. C. 1995. Modelling the development of early rice agriculture: Ethnoecological perspectives from northeast Thailand. Asian Perspectives 34, 3767.Google Scholar
White, L. 1959. The Evolution of Culture. New York: McGraw-Hill.Google Scholar
Whitlam, J., Valipour, H. R., Charles, M. 2020. Cutting the mustard: New insights into the plant economy of Late Neolithic Tepe Khaleseh (Iran). Iran 118. https://doi.org/10.1080/05786967.2019.1642792.CrossRefGoogle Scholar
Wiersema, J. H., Dahlberg, J. 2007. The nomenclature of Sorghum bicolor (L.) Moench (Gramineae). Taxon 56, 941–6. https://doi.org/10.2307/25065876.CrossRefGoogle Scholar
Wigboldus, J. S. 1996. Early presence of African millets near the Indian Ocean, in Reade, J. E. (ed.), The Indian Ocean in Antiquity. London: British Museum Publications, pp. 291300.Google Scholar
Willcox, G. 1991. Carbonised plant remains from Shortughai, Afghanistan, in Renfrew, J. M. (ed.), New Light on Early Farming: Recent Developments in Palaeoethnobotany. Edinburg: Edinburg University Press, pp. 139–53.Google Scholar
Willcox, G. 1992. Some differences between crops of Near Eastern origin and those from the tropics, in Jarrige, C. (ed.), South Asian Archaeology 1989. Monographs in World Archaeology. Madison, WI: Prehistory Press, pp. 291300.Google Scholar
Willcox, G. 1999. Agrarian change and the beginnings of cultivation in the Near East: Evidence from wild progenitors, experimental cultivation and archaeobotanical data, in Gosden, C., Hather, J. (eds.), The Prehistory of Food: Appetites for Change. London: Routledge, pp. 478500.Google Scholar
Willcox, G. 2002a. Geographical variation in major cereal components and evidence for independent domestication events in western Asia, in Cappers, R. T. J., Bottema, S. (eds.), The Dawn of Farming in the Near East. Berlin: Ex Oriente, pp. 133–40.Google Scholar
Willcox, G. 2002b. Charred plant remains from a 10th millennium B.P. kitchen at Jerf el Ahmar (Syria). Vegetation History and Archaeobotany 11, 5560. https://doi.org/10.1007/s003340200006.CrossRefGoogle Scholar
Willcox, G. 2004. Measuring grain size and identifying Near Eastern cereal domestication: Evidence from the Euphrates Valley. Journal of Archaeological Science 31, 145–50. https://doi.org/10.1016/j.jas.2003.07.003.CrossRefGoogle Scholar
Willcox, G. 2005. The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: Multiple events, multiple centres. Vegetation History and Archaeobotany 14, 534–41. https://doi.org/10.1007/s00334-005-0075-x.CrossRefGoogle Scholar
Willcox, G., Buxo, R., Herveux, L. 2009. Late Pleistocene and early Holocene climate and the beginnings of cultivation in northern Syria. The Holocene 19, 151–8. https://doi.org/10.1177/0959683608098961.CrossRefGoogle Scholar
Willcox, G., Fornite, S., Herveux, L. 2008. Early Holocene cultivation before domestication in northern Syria. Vegetation History and Archaeobotany 17, 313–25. https://doi.org/10.1007/s00334-007-0121-y.CrossRefGoogle Scholar
Wilson, J., Hardy, K., Allen, R. et al. 2010. Automated classification of starch granules using supervised pattern recognition of morphological properties. Journal of Archaeological Science 37, 594604. https://doi.org/10.1016/j.jas.2009.10.024.CrossRefGoogle Scholar
Wilson, S. M. 1985. Phytolith analysis at Kuk, an early agricultural site in Papua New Guinea. Archaeology in Oceania 20, 90–7.CrossRefGoogle Scholar
Winchell, F. 2013. The Butana Group Ceramics and Their Place in the Neolithic and Post-Neolithic of Northeast Africa. Cambridge Monographs in African Archaeology 83 British Archaeological Report, International Series 2459. Oxford.Google Scholar
Winchell, F., Brass, M., Manzo, A. et al. 2018. On the origins and dissemination of domesticated sorghum and pearl millet across Africa and into India: A view from the Butana Group of the far eastern Sahel. African Archaeological Review 35, 483505.CrossRefGoogle ScholarPubMed
Winchell, F., Stevens, C. J., Murphy, C., Champion, L., Fuller, D. Q. 2017. Evidence for sorghum domestication in fourth millennium BC eastern Sudan: Spikelet morphology from ceramic impressions of the Butana Group. Current Anthropology 58, 673–83. https://doi.org/10.1086/693898.CrossRefGoogle Scholar
Wittfogel, K. A. 1957. Oriental Despotism. New Haven, CT: Yale University Press.Google Scholar
Wright, P. J. 2003. Preservation or destruction of plant remains by carbonization? Journal of Archaeological Science 30, 577–83. https://doi.org/10.1016/S0305-4403(02)00203-0.CrossRefGoogle Scholar
Wright, P. J. 2005. Flotation samples and some paleoethnobotanical implications. Journal of Archaeological Science 32, 1926. https://doi.org/10.1016/j.jas.2004.06.003.CrossRefGoogle Scholar
Wright, R. P. 2002. The origin of cities, in Ember, M., Ember, C.R. (eds.), Encyclopedia of Urban Cultures: Cities and Cultures around the World. Danbury: Grolier, pp. 311.Google Scholar
Wright, R. P. 2010. The Ancient Indus: Urbanism, Economy, and Society. Case Studies in Early Societies. New York: Cambridge University Press.Google Scholar
Wright, R. P., Bryson, R. A., Schuldenrein, J. 2008. Water supply and history: Harappa and the Beas regional survey. Antiquity 82, 3748.CrossRefGoogle Scholar
Wright, R. P., Lentz, D. L., Beaubien, H. F., Kimbrough, C. K. 2012. New evidence for jute (Corchorus capsularis L.) in the Indus civilization. Archaeological and Anthropological Sciences 4, 137–43. https://doi.org/10.1007/s12520-012-0088-1.CrossRefGoogle Scholar
Wu, W., Wang, X., Wu, X., Jin, G., Tarasov, P. E. 2014. The early Holocene archaeobotanical record from the Zhangmatun site situated at the northern edge of the Shandong Highlands, China. Quaternary International 348, 183–93. https://doi.org/10.1016/j.quaint.2014.02.008.CrossRefGoogle Scholar
Xiong, H., Shi, A., Mou, B. et al. 2016. Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp). PLoS One 11, e0160941. https://doi.org/10.1371/journal.pone.0160941.CrossRefGoogle Scholar
Xiong, L. Z., Liu, K. D., Dai, X. K., Xu, C. G., Zhang, Q. 1999. Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theoretical and Applied Genetics 98, 243–51. https://doi.org/10.1007/s001220051064.CrossRefGoogle Scholar
Yadav, D., Yadav, D. 1992. Pulse crops. Kalyani: Kalyani Publishers.Google Scholar
Yang, X., Zhang, J., Perry, L. et al. 2012b. From the modern to the archaeological: Starch grains from millets and their wild relatives in China. Journal of Archaeological Science 39, 247–54. https://doi.org/10.1016/j.jas.2011.09.001.CrossRefGoogle Scholar
Yang, X., Wan, Z., Perry, L. et al. 2012a. Early millet use in northern China. Proceedings of the National Academy of Sciences USA 109, 3726–30. https://doi.org/10.1073/pnas.1115430109.Google ScholarPubMed
Yanushevich, Z. V. 1989. Agricultural evolution north of the Black Sea from the Neolithic to the Iron Age, in Harris, D. R., Hillman, G. C. (eds.), Foraging and Farming: Evolution of Plant Exploitation. London: Unwin and Hyman, pp. 607–19.Google Scholar
Yashpal, B., Sood, R. K., Agrawal, D. P. 1980. Remote sensing of the ‘lost’ Sarasvati River. Proceedings of the Indian Academy of Sciences: Earth and Planetary Sciences 89, 317–31.Google Scholar
Yatoo, M. A., Spate, M., Betts, A., Pokharia, A. K., Shah, M. A. 2020. New evidence from the Kashmir Valley indicates the adoption of East and West Asian crops in the western Himalayas by 4400 years ago. Quaternary Science Advances 2, 100011. https://doi.org/10.1016/j.qsa.2020.100011.CrossRefGoogle Scholar
Ye, C.-Y., Lin, Z., Li, G. et al. 2014. Echinochloa chloroplast genomes: Insights into the evolution and taxonomic identification of two weedy species. PLoS One 9, e113657. https://doi.org/10.1371/journal.pone.0113657.CrossRefGoogle ScholarPubMed
Ye, C.-Y., Wu, D., Mao, L. et al. 2020. The genomes of the allohexaploid Echinochloa crus-galli and its progenitors provide insights into polyploidization-driven adaptation. Molecular Plant 13, 12981310. https://doi.org/10.1016/j.molp.2020.07.001.CrossRefGoogle ScholarPubMed
, Ying-Shih. 1977. Han China, in Chang, K. C. (ed.), Food in Chinese Culture. New Haven, CT: Yale University Press, pp. 5583.Google Scholar
Yoffee, N. 2005. Myths of the Archaic State. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Yoffee, N. 2016. The power of infrastructures: A counternarrative and a speculation. Journal of Archaeological Method and Theory 23, 1053–65. https://doi.org/10.1007/s10816-015-9260-0.CrossRefGoogle Scholar
Yoshida, S. 2002. Wild plant foods and vegeculture, in Yoshida, S., Matthews, P. (eds.), Vegeculture in Eastern Asia and Oceania. Osaka: National Museum of Ethnography, pp. 3144.Google Scholar
Zach, B., Klee, M. 2003. Four thousand years of plant exploitation in the Chad Basin of NE Nigeria II: Discussion on the morphology of caryopses of domesticated Pennisetum and complete catalogue of the fruits and seeds of Kursakata. Vegetation History and Archaeobotany 12, 187204. https://doi.org/10.1007/s00334-003-0016-5.CrossRefGoogle Scholar
Zarrillo, S., Pearsall, D. M., Raymond, J. S., Tisdale, M. A., Quon, D. J. 2008. Directly dated starch residues document early formative maize ( Zea mays L.) in tropical Ecuador. Proceedings of the National Academy of Sciences USA 105, 5006–11. https://doi.org/10.1073/pnas.0800894105.CrossRefGoogle ScholarPubMed
Zeder, M. A. 2015. Core questions in domestication research. Proceedings of the National Academy of Sciences USA 112, 3191–8. https://doi.org/10.1073/pnas.1501711112.CrossRefGoogle ScholarPubMed
Zeder, M. A. 2017. Domestication as a model system for the extended evolutionary synthesis. Interface Focus 7, 20160133. https://doi.org/10.1098/rsfs.2016.0133.CrossRefGoogle Scholar
Zeder, M. A., Hesse, B. 2000. The initial domestication of goats (Capra hircus) in the Zagros Mountains 10,000 years ago. Science 287, 2254–7. https://doi.org/10.1126/science.287.5461.2254.CrossRefGoogle ScholarPubMed
Zeuner, F. E. 1960. On the origin of the cinder mounds of the Bellary district, India. Bulletin of the London Institute of Archaeology 2, 3744.Google Scholar
Zhang, J. 2014. New thoughts on the social forms of ancient China (from the Zhou to Qing Dynasties). Journal of Chinese Humanities 1, 5166. https://doi.org/10.1163/23521341-01010004.Google Scholar
Zhang, J., Lu, H., Gu, W. et al. 2012. Early mixed farming of millet and rice 7800 years ago in the middle Yellow River region, China. PLoS One 7, e52146. https://doi.org/10.1371/journal.pone.0052146.CrossRefGoogle ScholarPubMed
Zhang, J., Lu, H., Wu, N., Yang, X., Diao, X. 2011. Phytolith analysis for differentiating between foxtail millet (Setaria italica) and green foxtail (Setaria viridis). PLoS One 6, e19726. https://doi.org/10.1371/journal.pone.0019726.CrossRefGoogle ScholarPubMed
Zhang, L.-B., Zhu, Q., Wu, Z.-Q. et al. 2009. Selection on grain shattering genes and rates of rice domestication. New Phytologist 184, 708–20. https://doi.org/10.1111/j.1469-8137.2009.02984.x.CrossRefGoogle ScholarPubMed
Zhao, Z. 2004. Tanxun Zhongguo beifang hanzuo nongye qiyuan dexin xiansuo (Searching for the Origin of Dry Land Farming in North China, in Chinese). Beijing: Zhongguo Wenwubao.Google Scholar
Zhao, Z. 2005a. Archaeobotany and its recent advances in China. Kaogu (Archaeology) 7, 42–9.Google Scholar
Zhao, Z. 2005b. Discussion of the Xinglonggou site flotation results and the origin of dry farming in northern China. Antiquities of Eastern Asia 2005A, 188–99.Google Scholar
Zhao, Z. 2011. New archaeobotanic data for the study of the origins of agriculture in China. Current Anthropology 52, S295S306. https://doi.org/10.1086/659308.CrossRefGoogle Scholar
Zhao, Z. 2014. The process of origin of agriculture in China: Archaeological evidence from flotation results. Quaternary Sciences 34, 73–4.Google Scholar
Zhao, Z., Pearsall, D. M., Benfer, R. A., Piperno, D. R. 1998. Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis, II: Finalized method. Economic Botany 52, 134–45.CrossRefGoogle Scholar
Zheng, Y., Fujiwara, H., You, X., Yu, W., Liu, B. 1999. Morphological characteristics of plant opals from motor cells of rice in the Neolothic age of the Taihu region. Chinese Journal of Rice Science 13, 2530.Google Scholar
Zheng, Y., Matsui, A., Fujiwara, H. 2003. Phytoliths of rice detected in the Neolithic sites in the valley of the Taihu Lake in China. Environmental Archaeology 8, 177–83. https://doi.org/10.1179/env.2003.8.2.177.CrossRefGoogle Scholar
Zhou, X., Yu, J., Spengler, R. N. et al. 2020. 5,200-year-old cereal grains from the eastern Altai Mountains redate the trans-Eurasian crop exchange. Nature Plants 6, 7887. https://doi.org/10.1038/s41477-019-0581-y.CrossRefGoogle ScholarPubMed
Zhu, Q., Ge, S. 2005. Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytologist 167, 249–65. https://doi.org/10.1111/j.1469-8137.2005.01406.x.CrossRefGoogle ScholarPubMed
Zohary, D. 1969. The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the Old World, in Ucko, P. J., Dimbleby, G. W. (eds.), The Domestication and Exploitation of Plants and Animals. London: Gerald Duckworth & Company, pp. 4766.Google Scholar
Zohary, D. 1989. Pulse domestication and cereal domestication: How different are they? Economic Botany 43, 31–4.CrossRefGoogle Scholar
Zohary, D. 1994. The domestication of the grapevine Vitis vinifera L. in the Near East, in McGovern, P. E., Fleming, S. J., Katz, S. H. (eds.), The Origins and Ancient History and Wine. Philadelphia, PA: Gordon and Breach, pp. 2330.Google Scholar
Zohary, D. 2004. Unconscious selection and the evolution of domesticated plants. Economic Botany 58, 510. https://doi.org/10.1663/0013-0001(2004)058[0005:USATEO2.0.CO;2.CrossRefGoogle Scholar
Zohary, D., Hopf, M. 1973. Domestication of pulses in the Old World: Legumes were companions of wheat and barley when agriculture began in the Near East. Science 182, 887–94. https://doi.org/10.1126/science.182.4115.887.CrossRefGoogle ScholarPubMed
Zohary, D., Hopf, M. 2000. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley, 3rd edition. New York: Oxford University Press.Google Scholar
Zohary, D., Hopf, M., Weiss, E. 2012. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin, 4th edition. Oxford: Oxford University Press.CrossRefGoogle Scholar
Zohary, D., Spiegel-Roy, P. 1975. Beginnings of fruit growing in the Old World. Science 187, 319–27. https://doi.org/10.1126/science.187.4174.319.CrossRefGoogle ScholarPubMed
Zorzi, C., Sanchez Goñi, M. F., Anupama, K. et al. 2015. Indian monsoon variations during three contrasting climatic periods: The Holocene, Heinrich Stadial 2 and the last interglacial–glacial transition. Quaternary Science Reviews 125, 5060. https://doi.org/10.1016/j.quascirev.2015.06.009.CrossRefGoogle Scholar
Zuo, X., Lu, H., Jiang, L. et al. 2017. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proceedings of the National Academy of Sciences USA 114, 6486–91. https://doi.org/10.1073/pnas.1704304114.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jennifer Bates, Seoul National University
  • Book: The Origins of Agriculture in the Bronze Age Indus Civilization
  • Online publication: 13 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009424424.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jennifer Bates, Seoul National University
  • Book: The Origins of Agriculture in the Bronze Age Indus Civilization
  • Online publication: 13 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009424424.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jennifer Bates, Seoul National University
  • Book: The Origins of Agriculture in the Bronze Age Indus Civilization
  • Online publication: 13 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009424424.017
Available formats
×