Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T05:02:51.114Z Has data issue: false hasContentIssue false

Chapter 11 - L-dopa dyskinesias

Published online by Cambridge University Press:  05 July 2015

Joseph H. Friedman
Affiliation:
Department of Neurology, Brown University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Obeso, JA, Olanow, CW, Nutt, JG. Levodopa motor complications in Parkinson’s disease. Trends in neurosciences 2000;23:S27.CrossRefGoogle ScholarPubMed
Olanow, CW. The scientific basis for the current treatment of Parkinson’s disease. Annual review of medicine 2004;55:4160.CrossRefGoogle ScholarPubMed
Voon, V, Fernagut, PO, Wickens, J, et al. Chronic dopaminergic stimulation in Parkinson’s disease: from dyskinesias to impulse control disorders. Lancet neurology 2009;8:11401149.CrossRefGoogle ScholarPubMed
Nutt, JG, Chung, KA, Holford, NH. Dyskinesia and the antiparkinsonian response always temporally coincide: a retrospective study. Neurology 2010;74:11911197.CrossRefGoogle ScholarPubMed
Fahn, S, Jankovic, J, Hallett, M. Principles and practice of movement disorders, 2nd ed. Edinburgh; New York: Elsevier/Saunders, 2011.Google Scholar
Hauser, RA, Friedlander, J, Zesiewicz, TA, et al. A home diary to assess functional status in patients with Parkinson’s disease with motor fluctuations and dyskinesia. Clinical neuropharmacology 2000;23:7581.CrossRefGoogle ScholarPubMed
Fabbrini, G, Brotchie, JM, Grandas, F, Nomoto, M, Goetz, CG. Levodopa-induced dyskinesias. Movement disorders: official journal of the Movement Disorder Society 2007; 22:13791389;quiz 1523.CrossRefGoogle ScholarPubMed
Reimer, J, Grabowski, M, Lindvall, O, Hagell, P. Use and interpretation of on/off diaries in Parkinson’s disease. Journal of neurology, neurosurgery, and psychiatry 2004;75:396400.CrossRefGoogle Scholar
Colosimo, C, Martinez-Martin, P, Fabbrini, G, et al. Task force report on scales to assess dyskinesia in Parkinson’s disease: critique and recommendations. Movement disorders: official journal of the Movement Disorder Society 2010;25:11311142.CrossRefGoogle ScholarPubMed
Goetz, CG, Stebbins, GT, Chung, KA, et al. Which dyskinesia scale best detects treatment response? Movement disorders: official journal of the Movement Disorder Society 2013;28:341346.CrossRefGoogle ScholarPubMed
Stacy, MA, Murphy, JM, Greeley, DR, et al. The sensitivity and specificity of the 9-item Wearing-off Questionnaire. Parkinsonism & related disorders 2008;14:205212.CrossRefGoogle ScholarPubMed
Katzenschlager, R, Schrag, A, Evans, A, et al. Quantifying the impact of dyskinesias in PD: the PDYS-26: a patient-based outcome measure. Neurology 2007;69:555563.CrossRefGoogle ScholarPubMed
Jankovic, J. Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Movement disorders: official journal of the Movement Disorder Society 2005;20 Suppl 11:S1116.CrossRefGoogle ScholarPubMed
Schrag, A, Ben-Shlomo, Y, Brown, R, Marsden, CD, Quinn, N. Young-onset Parkinson’s disease revisited–clinical features, natural history, and mortality. Movement disorders: official journal of the Movement Disorder Society 1998;13:885894.CrossRefGoogle ScholarPubMed
Blanchet, PJ, Allard, P, Gregoire, L, Tardif, F, Bedard, PJ. Risk factors for peak dose dyskinesia in 100 levodopa-treated parkinsonian patients. The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques 1996;23:189193.CrossRefGoogle ScholarPubMed
Kumar, N, Van Gerpen, JA, Bower, JH, Ahlskog, JE. Levodopa-dyskinesia incidence by age of Parkinson’s disease onset. Movement disorders: official journal of the Movement Disorder Society 2005;20:342344.CrossRefGoogle ScholarPubMed
Ku, S, Glass, GA. Age of Parkinson’s disease onset as a predictor for the development of dyskinesia. Movement disorders: official journal of the Movement Disorder Society 2010;25:11771182.CrossRefGoogle ScholarPubMed
Di Monte, DA, McCormack, A, Petzinger, G, Janson, AM, Quik, M, Langston, WJ. Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Movement disorders: official journal of the Movement Disorder Society 2000;15:459466.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Vidailhet, M, Bonnet, AM, Marconi, R, Gouider-Khouja, N, Agid, Y. Do parkinsonian symptoms and levodopa-induced dyskinesias start in the foot? Neurology 1994;44:16131616.CrossRefGoogle ScholarPubMed
Khan, NL, Graham, E, Critchley, P, et al. Parkin disease: a phenotypic study of a large case series. Brain: a journal of neurology 2003;126:12791292.CrossRefGoogle ScholarPubMed
Scherfler, C, Khan, NL, Pavese, N, et al. Striatal and cortical pre- and postsynaptic dopaminergic dysfunction in sporadic parkin-linked parkinsonism. Brain: a journal of neurology 2004;127:13321342.CrossRefGoogle ScholarPubMed
Calon, F, Morissette, M, Rajput, AH, Hornykiewicz, O, Bedard, PJ, Di Paolo, T. Changes of GABA receptors and dopamine turnover in the postmortem brains of parkinsonians with levodopa-induced motor complications. Movement disorders: official journal of the Movement Disorder Society 2003;18:241253.CrossRefGoogle ScholarPubMed
Togasaki, DM, Tan, L, Protell, P, Di Monte, DA, Quik, M, Langston, JW. Levodopa induces dyskinesias in normal squirrel monkeys. Annals of neurology 2001;50:254257.CrossRefGoogle ScholarPubMed
de la Fuente-Fernandez, R, Schulzer, M, Mak, E, Calne, DB, Stoessl, AJ. Presynaptic mechanisms of motor fluctuations in Parkinson’s disease: a probabilistic model. Brain: a journal of neurology 2004;127:888899.CrossRefGoogle ScholarPubMed
Linazasoro, G, Antonini, A, Maguire, RP, Leenders, KL. Pharmacological and PET studies in patients with Parkinson’s disease and a short duration-motor response: implications in the pathophysiology of motor complications. Journal of neural transmission 2004;111:497509.CrossRefGoogle Scholar
Troiano, AR, de la Fuente-Fernandez, R, Sossi, V, et al. PET demonstrates reduced dopamine transporter expression in PD with dyskinesias. Neurology 2009;72:12111216.CrossRefGoogle ScholarPubMed
Hong, JY, Oh, JS, Lee, I, et al. Presynaptic dopamine depletion predicts levodopa-induced dyskinesia in de novo Parkinson disease. Neurology 2014;82:15971604.CrossRefGoogle ScholarPubMed
Linazasoro, G, Van Blercom, N, Bergaretxe, A, Inaki, FM, Laborda, E, Ruiz Ortega, JA. Levodopa-induced dyskinesias in Parkinson disease are independent of the extent of striatal dopaminergic denervation: a pharmacological and SPECT study. Clinical neuropharmacology 2009;32:326329.CrossRefGoogle ScholarPubMed
Schneider, JS, Gonczi, H, Decamp, E. Development of levodopa-induced dyskinesias in parkinsonian monkeys may depend upon rate of symptom onset and/or duration of symptoms. Brain research 2003;990:3844.CrossRefGoogle ScholarPubMed
Ahlskog, JE, Muenter, MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Movement disorders: official journal of the Movement Disorder Society 2001;16:448458.CrossRefGoogle ScholarPubMed
Fahn, S, Oakes, D, Shoulson, I, et al. Levodopa and the progression of Parkinson’s disease. The New England journal of medicine 2004;351:24982508.Google Scholar
Khan, NL, Valente, EM, Bentivoglio, AR, et al. Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study. Annals of neurology 2002;52:849853.CrossRefGoogle ScholarPubMed
Dekker, M, Bonifati, V, van Swieten, J, et al. Clinical features and neuroimaging of PARK7-linked parkinsonism. Movement disorders: official journal of the Movement Disorder Society 2003;18:751757.CrossRefGoogle ScholarPubMed
Rascol, O, Brooks, DJ, Korczyn, AD, De Deyn, PP, Clarke, CE, Lang, AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. The New England journal of medicine 2000;342:14841491.CrossRefGoogle ScholarPubMed
Hauser, RA, Rascol, O, Korczyn, AD, et al. Ten-year follow-up of Parkinson’s disease patients randomized to initial therapy with ropinirole or levodopa. Movement disorders: official journal of the Movement Disorder Society 2007;22:24092417.CrossRefGoogle ScholarPubMed
Lopez, IC, Ruiz, PJ, Del Pozo, SV, Bernardos, VS. Motor complications in Parkinson’s disease: ten year follow-up study. Movement disorders: official journal of the Movement Disorder Society 2010;25:27352739.CrossRefGoogle ScholarPubMed
Zappia, M, Annesi, G, Nicoletti, G, et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Archives of neurology 2005;62:601605.CrossRefGoogle ScholarPubMed
Wang, J, Liu, ZL, Chen, B. Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology 2001;56:17571759.CrossRefGoogle ScholarPubMed
Lee, JY, Cho, J, Lee, EK, Park, SS, Jeon, BS. Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2011;26:7379.CrossRefGoogle ScholarPubMed
Foltynie, T, Cheeran, B, Williams-Gray, CH, et al. BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. Journal of neurology, neurosurgery, and psychiatry 2009;80:141144.CrossRefGoogle ScholarPubMed
Obeso, JA, Grandas, F, Herrero, MT, Horowski, R. The role of pulsatile versus continuous dopamine receptor stimulation for functional recovery in Parkinson’s disease. The European journal of neuroscience 1994;6:889897.CrossRefGoogle Scholar
Calabresi, P, Di Filippo, M, Ghiglieri, V, Picconi, B. Molecular mechanisms underlying levodopa-induced dyskinesia. Movement disorders: official journal of the Movement Disorder Society 2008;23 Suppl 3:S570579.CrossRefGoogle ScholarPubMed
Grace, AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 1991;41:124.CrossRefGoogle ScholarPubMed
Venton, BJ, Zhang, H, Garris, PA, Phillips, PE, Sulzer, D, Wightman, RM. Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. Journal of neurochemistry 2003;87:12841295.CrossRefGoogle ScholarPubMed
Zigmond, MJ, Abercrombie, ED, Berger, TW, Grace, AA, Stricker, EM. Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. Trends in neurosciences 1990;13:290296.CrossRefGoogle ScholarPubMed
Lewitt, PA, Mouradian, MM. Predicting the development of levodopa-induced dyskinesias: A presynaptic mechanism? Neurology 2014;82:15741575.CrossRefGoogle ScholarPubMed
Bezard, E, Brotchie, JM, Gross, CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nature reviews Neuroscience 2001;2:577588.CrossRefGoogle ScholarPubMed
Jenner, P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nature reviews Neuroscience 2008;9:665677.CrossRefGoogle ScholarPubMed
Berthet, A, Bezard, E. Dopamine receptors and L-dopa-induced dyskinesia. Parkinsonism & related disorders 2009;15 Suppl 4:S812.CrossRefGoogle ScholarPubMed
Missale, C, Nash, SR, Robinson, SW, Jaber, M, Caron, MG. Dopamine receptors: from structure to function. Physiological reviews 1998;78:189225.CrossRefGoogle ScholarPubMed
Le Moine, C, Bloch, B. D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. The Journal of comparative neurology 1995;355:418426.CrossRefGoogle ScholarPubMed
Landwehrmeyer, B, Mengod, G, Palacios, JM. Differential visualization of dopamine D2 and D3 receptor sites in rat brain. A comparative study using in situ hybridization histochemistry and ligand binding autoradiography. The European journal of neuroscience 1993;5:145153.CrossRefGoogle Scholar
Bezard, E, Ferry, S, Mach, U, et al. Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nature medicine 2003;9:762767.CrossRefGoogle ScholarPubMed
Gerfen, CR, Engber, TM, Mahan, LC, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990;250:14291432.CrossRefGoogle ScholarPubMed
Alexander, GE, Crutcher, MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in neurosciences 1990;13:266271.CrossRefGoogle ScholarPubMed
Le, W, Sayana, P, Jankovic, J. Animal models of Parkinson’s disease: a gateway to therapeutics? Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 2014;11:92110.CrossRefGoogle ScholarPubMed
Di Chiara, G, Morelli, M, Barone, P, Pontieri, F. Priming as a model of behavioural sensitization. Developmental pharmacology and therapeutics 1992;18:223227.CrossRefGoogle Scholar
Morelli, M, Fenu, S, Garau, L, Di Chiara, G. Time and dose dependence of the ‘priming’ of the expression of dopamine receptor supersensitivity. European journal of pharmacology 1989;162:329335.CrossRefGoogle ScholarPubMed
Cenci, MA, Lee, CS, Bjorklund, A. L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. The European journal of neuroscience 1998;10:26942706.Google ScholarPubMed
Lundblad, M, Andersson, M, Winkler, C, Kirik, D, Wierup, N, Cenci, MA. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. The European journal of neuroscience 2002;15:120132.CrossRefGoogle Scholar
Picconi, B, Centonze, D, Rossi, S, Bernardi, G, Calabresi, P. Therapeutic doses of L-dopa reverse hypersensitivity of corticostriatal D2-dopamine receptors and glutamatergic overactivity in experimental parkinsonism. Brain: a journal of neurology 2004;127:16611669.CrossRefGoogle ScholarPubMed
Gasparini, F, Di Paolo, T, Gomez-Mancilla, B. Metabotropic glutamate receptors for Parkinson’s disease therapy. Parkinson’s disease 2013;2013:196028.Google ScholarPubMed
van Zundert, B, Yoshii, A, Constantine-Paton, M. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends in neurosciences 2004;27:428437.CrossRefGoogle ScholarPubMed
Hurley, MJ, Jackson, MJ, Smith, LA, Rose, S, Jenner, P. Immunoautoradiographic analysis of NMDA receptor subunits and associated postsynaptic density proteins in the brain of dyskinetic MPTP-treated common marmosets. The European journal of neuroscience 2005;21:32403250.CrossRefGoogle ScholarPubMed
Bibbiani, F, Oh, JD, Kielaite, A, Collins, MA, Smith, C, Chase, TN. Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD. Experimental neurology 2005;196:422429.CrossRefGoogle ScholarPubMed
Del Dotto, P, Pavese, N, Gambaccini, G, et al. Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study. Movement disorders: official journal of the Movement Disorder Society 2001;16:515520.CrossRefGoogle ScholarPubMed
Gardoni, F, Picconi, B, Ghiglieri, V, et al. A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. The Journal of neuroscience: the official journal of the Society for Neuroscience 2006;26:29142922.CrossRefGoogle ScholarPubMed
Missale, C, Fiorentini, C, Busi, C, Collo, G, Spano, PF. The NMDA/D1 receptor complex as a new target in drug development. Current topics in medicinal chemistry 2006;6:801808.CrossRefGoogle ScholarPubMed
Hallett, PJ, Spoelgen, R, Hyman, BT, Standaert, DG, Dunah, AW. Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. The Journal of neuroscience: the official journal of the Society for Neuroscience 2006;26:46904700.CrossRefGoogle ScholarPubMed
Schwarzschild, MA, Agnati, L, Fuxe, K, Chen, JF, Morelli, M. Targeting adenosine A2A receptors in Parkinson’s disease. Trends in neurosciences 2006;29:647654.CrossRefGoogle ScholarPubMed
Xiao, D, Bastia, E, Xu, YH, et al. Forebrain adenosine A2A receptors contribute to L-3,4-dihydroxyphenylalanine-induced dyskinesia in hemiparkinsonian mice. The Journal of neuroscience: the official journal of the Society for Neuroscience 2006;26:1354813555.CrossRefGoogle ScholarPubMed
Calon, F, Dridi, M, Hornykiewicz, O, Bedard, PJ, Rajput, AH, Di Paolo, T. Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain: a journal of neurology 2004;127:10751084.CrossRefGoogle ScholarPubMed
Carta, AR, Pinna, A, Cauli, O, Morelli, M. Differential regulation of GAD67, enkephalin and dynorphin mRNAs by chronic-intermittent L-dopa and A2A receptor blockade plus L-dopa in dopamine-denervated rats. Synapse 2002;44:166174.CrossRefGoogle ScholarPubMed
Linazasoro, G. New ideas on the origin of L-dopa-induced dyskinesias: age, genes and neural plasticity. Trends in pharmacological sciences 2005;26:391397.CrossRefGoogle ScholarPubMed
Robertson, HA, Peterson, MR, Murphy, K, Robertson, GS. D1-dopamine receptor agonists selectively activate striatal c-fos independent of rotational behaviour. Brain research 1989;503:346349.CrossRefGoogle ScholarPubMed
Dragunow, M, Robertson, GS, Faull, RL, Robertson, HA, Jansen, K. D2 dopamine receptor antagonists induce fos and related proteins in rat striatal neurons. Neuroscience 1990;37:287294.CrossRefGoogle ScholarPubMed
Graybiel, AM, Moratalla, R, Robertson, HA. Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proceedings of the National Academy of Sciences of the United States of America 1990;87:69126916.CrossRefGoogle ScholarPubMed
Calon, F, Hadj Tahar, A, Blanchet, PJ, et al. Dopamine-receptor stimulation: biobehavioral and biochemical consequences. Trends in neurosciences 2000;23:S92100.CrossRefGoogle ScholarPubMed
Dunnett, S. L-DOPA, dyskinesia and striatal plasticity. Nature neuroscience 2003;6:437438.CrossRefGoogle ScholarPubMed
Picconi, B, Centonze, D, Hakansson, K, et al. Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nature neuroscience 2003;6:501506.CrossRefGoogle ScholarPubMed
Greengard, P, Allen, PB, Nairn, AC. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 1999;23:435447.CrossRefGoogle ScholarPubMed
Walaas, SI, Hemmings, HC, Greengard, P, Nairn, AC. Beyond the dopamine receptor: regulation and roles of serine/threonine protein phosphatases. Frontiers in neuroanatomy 2011;5:50.CrossRefGoogle ScholarPubMed
Morelli, M, Cozzolino, A, Pinna, A, Fenu, S, Carta, A, Di Chiara, G. L-dopa stimulates c-fos expression in dopamine denervated striatum by combined activation of D-1 and D-2 receptors. Brain research 1993;623:334336.CrossRefGoogle ScholarPubMed
Steiner, H, Gerfen, CR. Dynorphin opioid inhibition of cocaine-induced, D1 dopamine receptor-mediated immediate-early gene expression in the striatum. The Journal of comparative neurology 1995;353:200212.CrossRefGoogle ScholarPubMed
Gerfen, CR, Keefe, KA, Gauda, EB. D1 and D2 dopamine receptor function in the striatum: coactivation of D1- and D2-dopamine receptors on separate populations of neurons results in potentiated immediate early gene response in D1-containing neurons. The Journal of neuroscience: the official journal of the Society for Neuroscience 1995;15:81678176.CrossRefGoogle ScholarPubMed
Robertson, GS, Vincent, SR, Fibiger, HC. Striatonigral projection neurons contain D1 dopamine receptor-activated c-fos. Brain research 1990;523:288290.CrossRefGoogle ScholarPubMed
Keefe, KA, Gerfen, CR. D1 dopamine receptor-mediated induction of zif268 and c-fos in the dopamine-depleted striatum: differential regulation and independence from NMDA receptors. The Journal of comparative neurology 1996;367:165176.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Konradi, C, Leveque, JC, Hyman, SE. Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. The Journal of neuroscience: the official journal of the Society for Neuroscience 1996;16:42314239.CrossRefGoogle ScholarPubMed
Berke, JD, Paletzki, RF, Aronson, GJ, Hyman, SE, Gerfen, CR. A complex program of striatal gene expression induced by dopaminergic stimulation. The Journal of neuroscience: the official journal of the Society for Neuroscience 1998;18:53015310.CrossRefGoogle ScholarPubMed
Juncos, JL, Engber, TM, Raisman, R, et al. Continuous and intermittent levodopa differentially affect basal ganglia function. Annals of neurology 1989;25:473478.CrossRefGoogle ScholarPubMed
Konradi, C, Heckers, S. Haloperidol-induced Fos expression in striatum is dependent upon transcription factor cyclic AMP response element binding protein. Neuroscience 1995;65:10511061.CrossRefGoogle ScholarPubMed
Huang, KX, Walters, JR. Dopaminergic regulation of AP-1 transcription factor DNA binding activity in rat striatum. Neuroscience 1996;75:757775.CrossRefGoogle ScholarPubMed
Aubert, I, Guigoni, C, Hakansson, K, et al. Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Annals of neurology 2005;57:1726.CrossRefGoogle ScholarPubMed
Guigoni, C, Doudnikoff, E, Li, Q, Bloch, B, Bezard, E. Altered D(1) dopamine receptor trafficking in parkinsonian and dyskinetic non-human primates. Neurobiology of disease 2007;26:452463.CrossRefGoogle ScholarPubMed
Berthet, A, Porras, G, Doudnikoff, E, et al. Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of L-DOPA-induced dyskinesia. The Journal of neuroscience: the official journal of the Society for Neuroscience 2009;29:48294835.CrossRefGoogle ScholarPubMed
Bezard, E, Gross, CE, Qin, L, Gurevich, VV, Benovic, JL, Gurevich, EV. L-DOPA reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain. Neurobiology of disease 2005;18:323335.CrossRefGoogle ScholarPubMed
Ahmed, MR, Bychkov, E, Gurevich, VV, Benovic, JL, Gurevich, EV. Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. Journal of neurochemistry 2008;104:16221636.CrossRefGoogle Scholar
Hallett, PJ, Dunah, AW, Ravenscroft, P, et al. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology 2005;48:503516.CrossRefGoogle ScholarPubMed
Silverdale, MA, Kobylecki, C, Hallett, PJ, et al. Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate. Synapse 2010;64:177180.CrossRefGoogle ScholarPubMed
Gross, CE, Ravenscroft, P, Dovero, S, Jaber, M, Bioulac, B, Bezard, E. Pattern of levodopa-induced striatal changes is different in normal and MPTP-lesioned mice. Journal of neurochemistry 2003;84:12461255.CrossRefGoogle ScholarPubMed
Bordet, R, Ridray, S, Carboni, S, Diaz, J, Sokoloff, P, Schwartz, JC. Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proceedings of the National Academy of Sciences of the United States of America 1997;94:33633367.CrossRefGoogle ScholarPubMed
Fiorentini, C, Busi, C, Gorruso, E, Gotti, C, Spano, P, Missale, C. Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Molecular pharmacology 2008;74:5969.CrossRefGoogle ScholarPubMed
Marcellino, D, Ferre, S, Casado, V, et al. Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. The Journal of biological chemistry 2008;283:2601626025.CrossRefGoogle ScholarPubMed
Brambilla, R. Targeting Ras/ERK signaling in the striatum: will it help? Molecular psychiatry 2003;8:366368.CrossRefGoogle ScholarPubMed
Valjent, E, Pascoli, V, Svenningsson, P, et al. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proceedings of the National Academy of Sciences of the United States of America 2005;102:491496.CrossRefGoogle ScholarPubMed
Westin, JE, Vercammen, L, Strome, EM, Konradi, C, Cenci, MA. Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biological psychiatry 2007;62:800810.CrossRefGoogle Scholar
Morelli, M, Di Chiara, G. Agonist-induced homologous and heterologous sensitization to D-1- and D-2-dependent contraversive turning. European journal of pharmacology 1987;141:101107.CrossRefGoogle ScholarPubMed
Calabresi, P, Gubellini, P, Centonze, D, et al. Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. The Journal of neuroscience: the official journal of the Society for Neuroscience 2000;20:84438451.CrossRefGoogle ScholarPubMed
Calabresi, P, Picconi, B, Parnetti, L, Di Filippo, M. A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine-acetylcholine synaptic balance. Lancet neurology 2006;5:974983.CrossRefGoogle ScholarPubMed
Calabresi, P, Picconi, B, Tozzi, A, Di Filippo, M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in neurosciences 2007;30:211219.CrossRefGoogle ScholarPubMed
Centonze, D, Grande, C, Saulle, E, et al. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. The Journal of neuroscience: the official journal of the Society for Neuroscience 2003;23:85068512.CrossRefGoogle ScholarPubMed
Morgante, F, Espay, AJ, Gunraj, C, Lang, AE, Chen, R. Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain: a journal of neurology 2006;129:10591069.CrossRefGoogle ScholarPubMed
Grondin, R, Doan, VD, Gregoire, L, Bedard, PJ. D1 receptor blockade improves L-dopa-induced dyskinesia but worsens parkinsonism in MPTP monkeys. Neurology 1999;52:771776.CrossRefGoogle ScholarPubMed
Meissner, W, Ravenscroft, P, Reese, R, et al. Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6-OHDA-lesioned rat in the presence of excessive extracellular striatal dopamine. Neurobiology of disease 2006;22:586598.CrossRefGoogle ScholarPubMed
Carta, M, Lindgren, HS, Lundblad, M, Stancampiano, R, Fadda, F, Cenci, MA. Role of striatal L-DOPA in the production of dyskinesia in 6-hydroxydopamine lesioned rats. Journal of neurochemistry 2006;96:17181727.CrossRefGoogle ScholarPubMed
de la Fuente-Fernandez, R, Sossi, V, Huang, Z, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain: a journal of neurology 2004;127:27472754.CrossRefGoogle ScholarPubMed
Cenci, MA, Lundblad, M. Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. Journal of neurochemistry 2006;99:381392.CrossRefGoogle ScholarPubMed
Poewe, W, Mahlknecht, P, Jankovic, J. Emerging therapies for Parkinson’s disease. Current opinion in neurology 2012;25:448459.CrossRefGoogle ScholarPubMed
Napolitano, M, Picconi, B, Centonze, D, Bernardi, G, Calabresi, P, Gulino, A. L-DOPA treatment of parkinsonian rats changes the expression of Src, Lyn and PKC kinases. Neuroscience letters 2006;398:211214.CrossRefGoogle ScholarPubMed
Smith, Y, Raju, D, Nanda, B, Pare, JF, Galvan, A, Wichmann, T. The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain research bulletin 2009;78:6068.CrossRefGoogle ScholarPubMed
Blandini, F. An update on the potential role of excitotoxicity in the pathogenesis of Parkinson’s disease. Functional neurology 2010;25:6571.Google ScholarPubMed
Bargiotas, P, Konitsiotis, S. Levodopa-induced dyskinesias in Parkinson’s disease: emerging treatments. Neuropsychiatric disease and treatment 2013;9:16051617.Google ScholarPubMed
Luginger, E, Wenning, GK, Bosch, S, Poewe, W. Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2000;15:873878.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Verhagen Metman, L, Del Dotto, P, van den Munckhof, P, Fang, J, Mouradian, MM, Chase, TN. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology 1998;50:13231326.CrossRefGoogle ScholarPubMed
da Silva-Junior, FP, Braga-Neto, P, Sueli Monte, F, de Bruin, VM. Amantadine reduces the duration of levodopa-induced dyskinesia: a randomized, double-blind, placebo-controlled study. Parkinsonism & related disorders 2005;11:449452.CrossRefGoogle ScholarPubMed
Thomas, A, Iacono, D, Luciano, AL, Armellino, K, Di Iorio, A, Onofrj, M. Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. Journal of neurology, neurosurgery, and psychiatry 2004;75:141143.Google ScholarPubMed
Metman, LV, Del Dotto, P, LePoole, K, Konitsiotis, S, Fang, J, Chase, TN. Amantadine for levodopa-induced dyskinesias: a 1-year follow-up study. Archives of neurology 1999;56:13831386.CrossRefGoogle ScholarPubMed
Wolf, E, Seppi, K, Katzenschlager, R, et al. Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2010;25:13571363.CrossRefGoogle ScholarPubMed
Jahangirvand, AR, A. Early use of amantadine to prevent or delay onset of levodopa-induced dyskinesia in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2013;28:207.Google Scholar
F CJ, Ory-Magne, Azulay, JP, Bonnet, AM, Brefel-Courbon, C, Damier, P, Dellapina, E, Destée, A, Durif, F, Galitzky, M, Lebouvier, T, Meissner, W, Thalamas, C, Tison, F, Salis, A, Sommet, A, Viallet, F, Vidailhet, M, Rascol, O; NS-Park CIC Network. Withdrawing amantadine in dyskinetic patients with Parkinson disease: The AMANDYSK trial. Neurology 2014;82:300307.Google Scholar
Pahwa, RT, Hauser, C., Sethi, R., Isaacson, K., Truong, D., Struck, D., Stempien, L., Went, M., G. Randomized trial of extended release amantadine in Parkinson’s disease patients with levodopa-induced dyskinesia (EASED study). Movement disorders: official journal of the Movement Disorder Society 2013;28:158.Google Scholar
Parkinson Study, G. Evaluation of dyskinesias in a pilot, randomized, placebo-controlled trial of remacemide in advanced Parkinson disease. Archives of neurology 2001;58:16601668.Google Scholar
Bara-Jimenez, W, Dimitrova, TD, Sherzai, A, Aksu, M, Chase, TN. Glutamate release inhibition ineffective in levodopa-induced motor complications. Movement disorders: official journal of the Movement Disorder Society 2006;21:13801383.CrossRefGoogle ScholarPubMed
Verhagen Metman, L, Del Dotto, P, Natte, R, van den Munckhof, P, Chase, TN. Dextromethorphan improves levodopa-induced dyskinesias in Parkinson’s disease. Neurology 1998;51:203206.CrossRefGoogle ScholarPubMed
Pharmaceuticals, A. Safety and Efficacy of AVP-923 in the Treatment of Levodopa-induced Dyskinesia in Parkinson’s Disease Patients (LID in PD) [online]. Available at: http://clinicaltrials.gov/show/NCT01767129. Accessed April 30, 2014.Google Scholar
Merello, M, Nouzeilles, MI, Cammarota, A, Leiguarda, R. Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clinical neuropharmacology 1999;22:273276.Google ScholarPubMed
Moreau, C, Delval, A, Tiffreau, V, et al. Memantine for axial signs in Parkinson’s disease: a randomised, double-blind, placebo-controlled pilot study. Journal of neurology, neurosurgery, and psychiatry 2013;84:552555.CrossRefGoogle ScholarPubMed
Vidal, EI, Fukushima, FB, Valle, AP, Villas Boas, PJ. Unexpected improvement in levodopa-induced dyskinesia and on-off phenomena after introduction of memantine for treatment of Parkinson’s disease dementia. Journal of the American Geriatrics Society 2013;61:170172.CrossRefGoogle ScholarPubMed
Nash, JE, Ravenscroft, P, McGuire, S, Crossman, AR, Menniti, FS, Brotchie, JM. The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson’s disease. Experimental neurology 2004;188:471479.CrossRefGoogle ScholarPubMed
Nutt, JG, Gunzler, SA, Kirchhoff, T, et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Movement disorders: official journal of the Movement Disorder Society 2008;23:18601866.CrossRefGoogle ScholarPubMed
Ltd. NP. A Double-blind, Placebo Controlled, Crossover, Ascending Single Dose Safety Tolerability, Pharmacokinetic and Pharmacodynamic Study of Neu-120 in Patients With Advanced Phase Idiopathic Parkinson’s Disease With Levodopa Induced Dyskinesia [online]. Available at: http://www.clinicaltrials.gov/ct2/show/NCT00607451?term=NCT00607451%26rank=1. Accessed April 30, 2014.Google Scholar
Picconi, B, Calabresi, P. Targeting metabotropic glutamate receptors as a new strategy against levodopa-induced dyskinesia in Parkinson’s disease? Movement disorders: official journal of the Movement Disorder Society 2014;29:715719.CrossRefGoogle ScholarPubMed
Dekundy, A, Pietraszek, M, Schaefer, D, Cenci, MA, Danysz, W. Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson’s disease. Brain research bulletin 2006;69:318326.CrossRefGoogle Scholar
Johnston, TH, Fox, SH, McIldowie, MJ, Piggott, MJ, Brotchie, JM. Reduction of L-DOPA-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. The Journal of pharmacology and experimental therapeutics 2010;333:865873.CrossRefGoogle Scholar
Levandis, G, Bazzini, E, Armentero, MT, Nappi, G, Blandini, F. Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiology of disease 2008;29:161168.CrossRefGoogle ScholarPubMed
Gregoire, L, Morin, N, Ouattara, B, et al. The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in L-Dopa-treated parkinsonian monkeys. Parkinsonism & related disorders 2011;17:270276.CrossRefGoogle ScholarPubMed
Stocchi, F, Rascol, O, Destee, A, et al. AFQ056 in Parkinson patients with levodopa-induced dyskinesia: 13-week, randomized, dose-finding study. Movement disorders: official journal of the Movement Disorder Society 2013;28:18381846.CrossRefGoogle ScholarPubMed
Pharmaceuticals, N. An Open-label Treatment Study to Evaluate the Safety, Tolerability and Efficacy of AFQ056 in Parkinson’s Patients With L-dopa Induced Dyskinesias [online]. Available at: http://www.clinicaltrials.gov/ct2/show/NCT01173731?term=NCT01173731%26rank=1. Accessed April 30, 2014.Google Scholar
Tison, FD, Corvol, J, Eggert, K, Trenkwalder, C, Lew, M, Isaacson, S, Keywood, C, Rascol, O. Safety, tolerability and anti-dyskinetic efficacy of dipraglurant, a novel mGluR5 negative allosteric modulator (NAM) in Parkinson’s disease (PD) patients with levodopa-induced dyskinesia (LID). Neurology 2013;80:004.CrossRefGoogle Scholar
Konitsiotis, S, Blanchet, PJ, Verhagen, L, Lamers, E, Chase, TN. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 2000;54:15891595.CrossRefGoogle ScholarPubMed
Eggert, K, Squillacote, D, Barone, P, et al. Safety and efficacy of perampanel in advanced Parkinson’s disease: a randomized, placebo-controlled study. Movement disorders: official journal of the Movement Disorder Society 2010;25:896905.CrossRefGoogle ScholarPubMed
Lees, A, Fahn, S, Eggert, KM, et al. Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2012;27:284288.CrossRefGoogle ScholarPubMed
Rascol, O, Barone, P, Behari, M, et al. Perampanel in Parkinson disease fluctuations: a double-blind randomized trial with placebo and entacapone. Clinical neuropharmacology 2012;35:1520.CrossRefGoogle ScholarPubMed
Savola, JM, Hill, M, Engstrom, M, et al. Fipamezole (JP-1730) is a potent alpha2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2003;18:872883.CrossRefGoogle ScholarPubMed
Lewitt, PA, Hauser, RA, Lu, M, et al. Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology 2012;79:163169.CrossRefGoogle ScholarPubMed
Grondin, R, Hadj Tahar, A, Doan, VD, Ladure, P, Bedard, PJ. Noradrenoceptor antagonism with idazoxan improves L-dopa-induced dyskinesias in MPTP monkeys. Naunyn-Schmiedeberg’s archives of pharmacology 2000;361:181186.CrossRefGoogle ScholarPubMed
Rascol, O, Arnulf, I, Peyro-Saint Paul, H, et al. Idazoxan, an alpha-2 antagonist, and L-DOPA-induced dyskinesias in patients with Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2001;16:708713.CrossRefGoogle ScholarPubMed
Manson, AJ, Iakovidou, E, Lees, AJ. Idazoxan is ineffective for levodopa-induced dyskinesias in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2000;15:336337.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Buck, K, Voehringer, P, Ferger, B. The alpha(2) adrenoceptor antagonist idazoxan alleviates L-DOPA-induced dyskinesia by reduction of striatal dopamine levels: an in vivo microdialysis study in 6-hydroxydopamine-lesioned rats. Journal of neurochemistry 2010;112:444452.CrossRefGoogle Scholar
Hodgson, RA, Bedard, PJ, Varty, GB, et al. Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders. Experimental neurology 2010;225:384390.CrossRefGoogle ScholarPubMed
Hauser, RA, Cantillon, M, Pourcher, E, et al. Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet neurology 2011;10:221229.CrossRefGoogle ScholarPubMed
Factor, SA, Wolski, K, Togasaki, DM, et al. Long-term safety and efficacy of preladenant in subjects with fluctuating Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2013;28:817820.CrossRefGoogle ScholarPubMed
Jones, IW, Bolam, JP, Wonnacott, S. Presynaptic localisation of the nicotinic acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. The Journal of comparative neurology 2001;439:235247.CrossRefGoogle ScholarPubMed
Durif, F, Debilly, B, Galitzky, M, et al. Clozapine improves dyskinesias in Parkinson disease: a double-blind, placebo-controlled study. Neurology 2004;62:381388.CrossRefGoogle ScholarPubMed
Pierelli, F, Adipietro, A, Soldati, G, Fattapposta, F, Pozzessere, G, Scoppetta, C. Low dosage clozapine effects on L-dopa induced dyskinesias in parkinsonian patients. Acta neurologica Scandinavica 1998;97:295299.CrossRefGoogle ScholarPubMed
Bennett, JP Jr., Landow, ER, Dietrich, S, Schuh, LA. Suppression of dyskinesias in advanced Parkinson’s disease: moderate daily clozapine doses provide long-term dyskinesia reduction. Movement disorders: official journal of the Movement Disorder Society 1994;9:409414.CrossRefGoogle ScholarPubMed
Meco, G, Stirpe, P, Edito, F, et al. Aripiprazole in L-dopa-induced dyskinesias: a one-year open-label pilot study. Journal of neural transmission 2009;116:881884.CrossRefGoogle ScholarPubMed
Rascol, O, Bronzova, J, Hauser, RA, et al. Pardoprunox as adjunct therapy to levodopa in patients with Parkinson’s disease experiencing motor fluctuations: results of a double-blind, randomized, placebo-controlled, trial. Parkinsonism & related disorders 2012;18:370376.CrossRefGoogle ScholarPubMed
Hauser, RA, Bronzova, J, Sampaio, C, et al. Safety and tolerability of pardoprunox, a new partial dopamine agonist, in a randomized, controlled study of patients with advanced Parkinson’s disease. European neurology 2009;62:4048.CrossRefGoogle Scholar
Waters, CH, Sethi, KD, Hauser, RA, Molho, E, Bertoni, JM, Zydis Selegiline Study G. Zydis selegiline reduces off time in Parkinson’s disease patients with motor fluctuations: a 3-month, randomized, placebo-controlled study. Movement disorders: official journal of the Movement Disorder Society 2004;19:426432.CrossRefGoogle Scholar
Rascol, O, Brooks, DJ, Melamed, E, et al. Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet 2005;365:947954.CrossRefGoogle ScholarPubMed
Stocchi, F, Borgohain, R, Onofrj, M, et al. A randomized, double-blind, placebo-controlled trial of safinamide as add-on therapy in early Parkinson’s disease patients. Movement disorders: official journal of the Movement Disorder Society 2012;27:106112.CrossRefGoogle ScholarPubMed
Carroll, CB, Bain, PG, Teare, L, et al. Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology 2004;63:12451250.CrossRefGoogle ScholarPubMed
Sugiyama, K, Yokoyama, T, Namba, H. [Neurosurgical treatment for dopamine-induced dyskinesias in Parkinson’s disease patients]. Nihon rinsho Japanese journal of clinical medicine 2000;58:21152119.Google ScholarPubMed
Munhoz, RP, Cerasa, A, Okun, MS. Surgical treatment of dyskinesia in Parkinson’s disease. Frontiers in neurology 2014;5:65.CrossRefGoogle ScholarPubMed
Deep-Brain Stimulation for Parkinson’s Disease Study G. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. The New England journal of medicine 2001;345:956963.CrossRefGoogle Scholar
Rodriguez-Oroz, MC, Obeso, JA, Lang, AE, et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain: a journal of neurology 2005;128:22402249.CrossRefGoogle ScholarPubMed
Volkmann, J, Allert, N, Voges, J, Sturm, V, Schnitzler, A, Freund, HJ. Long-term results of bilateral pallidal stimulation in Parkinson’s disease. Annals of neurology 2004;55:871875.CrossRefGoogle ScholarPubMed
Krack, P, Batir, A, Van Blercom, N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. The New England journal of medicine 2003;349:19251934.CrossRefGoogle Scholar
Schupbach, WM, Chastan, N, Welter, ML, et al. Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. Journal of neurology, neurosurgery, and psychiatry 2005;76:16401644.CrossRefGoogle ScholarPubMed
Kleiner-Fisman, G, Herzog, J, Fisman, DN, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Movement disorders: official journal of the Movement Disorder Society 2006;21 Suppl 14:S290304.CrossRefGoogle ScholarPubMed
Odekerken, VJ, van Laar, T, Staal, MJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet neurology 2013;12:3744.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×