Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T11:05:12.038Z Has data issue: false hasContentIssue false

Chapter 19 - Biomarkers in Parkinson’s Disease

from Section 2: - Hypokinetic Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Parkinson’s disease (PD) diagnosis mostly relies on (late) clinical (parkinsonism) symptoms, whereas we need early diagnostic markers in order to initiate and monitor the effects of forthcoming disease-modifying drugs in the earliest phase of this disease. Therefore, reliable diagnostic and prognostic biomarkers are urgently needed. Evidence suggests the potential (differential) diagnostic and prognostic value of clinical, genetic, neuroimaging, and biochemical markers (e.g., in saliva, urine, blood and cerebrospinal fluid). Such biomarkers may include α-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain, closely reflecting the pathophysiology of PD. Here, we provide an overview of these markers with practical guidelines for facilitating early PD diagnosis.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Deng, H, Wang, P, Jankovic, J. The genetics of Parkinson disease. Ageing Res Rev 2018;42:7285.CrossRefGoogle ScholarPubMed
Marras, C, Lang, A, van de Warrenburg, BP, et al. Nomenclature of genetic movement disorders: Recommendations of the International Parkinson and Movement Disorder Society task force. Mov Disord 2016;31(4):436457.CrossRefGoogle ScholarPubMed
Polymeropoulos, MH, Lavedan, C, Leroy, E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997;276(5321):20452047.CrossRefGoogle ScholarPubMed
Lunati, A, Lesage, S, Brice, A. The genetic landscape of Parkinson’s disease. Rev Neurol (Paris) 2018;174(9):628643.CrossRefGoogle ScholarPubMed
Xu, W, Tan, L, Yu, JT. Link between the SNCA gene and parkinsonism. Neurobiol Aging 2015;36(3):15051518.CrossRefGoogle ScholarPubMed
Atik, A, Stewart, T, Zhang, J. Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol 2016;26(3):410418.CrossRefGoogle ScholarPubMed
Paisán-Ruíz, C, Jain, S, Evans, EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004;44(4):595600.CrossRefGoogle ScholarPubMed
Zimprich, A, Biskup, S, Leitner, P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004;44(4):601607.CrossRefGoogle ScholarPubMed
Rubio, JP, Topp, S, Warren, L, et al. Deep sequencing of the LRRK2 gene in 14,002 individuals reveals evidence of purifying selection and independent origin of the p.Arg1628Pro mutation in Europe. Hum Mutat 2012;33(7):10871098.CrossRefGoogle ScholarPubMed
Bardien, S, Lesage, S, Brice, A, Carr, J. Genetic characteristics of leucine-rich repeat kinase 2 (LRRK2) associated Parkinson’s disease. Parkinsonism Relat Disord 2011;17(7):501508.CrossRefGoogle ScholarPubMed
Correia Guedes, L, Ferreira, JJ, Rosa, MM, et al. Worldwide frequency of G2019S LRRK2 mutation in Parkinson’s disease: a systematic review. Parkinsonism Relat Disord 2010;16(4):237242.CrossRefGoogle ScholarPubMed
Trinh, J, Guella, I, Farrer, MJ. Disease penetrance of late-onset parkinsonism: a meta-analysis. JAMA Neurol 2014;71(12):15351539.CrossRefGoogle ScholarPubMed
Saunders-Pullman, R, Raymond, D, Elango, S. LRRK2 Parkinson disease. In: Adam, MP, Ardinger, HH, Pagon, RA, et al., eds. GeneReviews. Seattle (WA): University of Washington; 2006.Google Scholar
Jeong, GR, Lee, BD. Pathological functions of LRRK2 in Parkinson’s disease. Cells 2020;9(12):2565.CrossRefGoogle ScholarPubMed
Vilariño-Güell, C, Rajput, A, Milnerwood, AJ, et al. DNAJC13 mutations in Parkinson disease. Hum Mol Genet 2014;23(7):17941801.CrossRefGoogle ScholarPubMed
Deng, HX, Shi, Y, Yang, Y, et al. Identification of TMEM230 mutations in familial Parkinson’s disease. Nat Genet 2016;48(7):733739.CrossRefGoogle ScholarPubMed
Kilarski, LL, Pearson, JP, Newsway, V, et al. Systematic review and UK-based study of PARK2 (parkin), PINK1, PARK7 (DJ-1) and LRRK2 in early-onset Parkinson’s disease. Mov Disord 2012;27(12):15221529.CrossRefGoogle ScholarPubMed
Kasten, M, Hartmann, C, Hampf, J, et al. Genotype–phenotype relations for the Parkinson’s disease genes Parkin, PINK1, DJ1: MDSGene systematic review. Mov Disord 2018;33(5):730741.CrossRefGoogle ScholarPubMed
Valente, EM, Abou-Sleiman, PM, Caputo, V, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004;304(5674):11581160.CrossRefGoogle ScholarPubMed
Abou-Sleiman, PM, Healy, DG, Quinn, N, Lees, AJ, Wood, NW. The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann Neurol 2003;54(3):283286.CrossRefGoogle ScholarPubMed
Bonifati, V, Rizzu, P, van Baren, MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003;299(5604):256259.CrossRefGoogle ScholarPubMed
Morgan, NV, Westaway, SK, Morton, JE, et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 2006;38(7):752754.CrossRefGoogle ScholarPubMed
Shojaee, S, Sina, F, Banihosseini, SS, et al. Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet 2008;82(6):13751384.CrossRefGoogle ScholarPubMed
Krebs, CE, Karkheiran, S, Powell, JC, et al. The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum Mutat 2013;34(9):12001207.CrossRefGoogle Scholar
Mamais, A, Cookson, MR. Parkinson’s disease: genetics. In: Heinz, S, Kuei, YT, eds. Handbook of Behavioral Neuroscience. Amsterdam: Elsevier; 2016: 839855.Google Scholar
Gan-Or, Z, Liong, C, Alcalay, RN. GBA-associated Parkinson’s disease and other synucleinopathies. Curr Neurol Neurosci Rep 2018;18(8):44.CrossRefGoogle ScholarPubMed
Stirnemann, J, Belmatoug, N, Camou, F, et al. A review of Gaucher disease pathophysiology, clinical presentation and treatments. Int J Mol Sci 2017;18(2):441.CrossRefGoogle ScholarPubMed
Sidransky, E, Nalls, MA, Aasly, JO, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009;361(17):16511661.CrossRefGoogle ScholarPubMed
Mao, X, Wang, T, Peng, R, et al. Mutations in GBA and risk of Parkinson’s disease: a meta-analysis based on 25 case-control studies. Neurol Res 2013;35(8):873878.CrossRefGoogle ScholarPubMed
Huang, Y, Deng, L, Zhong, Y, Yi, M. The association between E326K of GBA and the risk of Parkinson’s disease. Parkinsons Dis 2018;2018:1048084.Google ScholarPubMed
Gan-Or, Z, Amshalom, I, Kilarski, LL, et al. Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology 2015;84(9):880887.CrossRefGoogle ScholarPubMed
Riboldi, GM, Di Fonzo, AB. GBA, Gaucher disease, and Parkinson’s disease: From genetic to clinic to new therapeutic approaches. Cells 2019;8(4):364.CrossRefGoogle ScholarPubMed
Zhang, Y, Shu, L, Zhou, X, et al. A meta-analysis of GBA-related clinical symptoms in Parkinson’s disease. Parkinsons Dis 2018;2018:3136415.Google ScholarPubMed
Stojkovska, I, Krainc, D, Mazzulli, JR. Molecular mechanisms of α-synuclein and GBA1 in Parkinson’s disease. Cell Tissue Res 2018;373(1):5160.CrossRefGoogle ScholarPubMed
Behl, T, Kaur, G, Fratila, O, Buhas, C, et al. Cross-talks among GBA mutations, glucocerebrosidase, and α-synuclein in GBA-associated Parkinson’s disease and their targeted therapeutic approaches: a comprehensive review. Transl Neurodegener 2021;10(1):4.CrossRefGoogle ScholarPubMed
Massey, LA, Jager, HR, Paviour, DC, et al. The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy. Neurology 2013;80(20):18561861.CrossRefGoogle ScholarPubMed
Madhyastha, TM, Askren, MK, Boord, P, et al. Cerebral perfusion and cortical thickness indicate cortical involvement in mild Parkinson’s disease. Mov Disord 2015;30(14):18931900.CrossRefGoogle ScholarPubMed
Teune, LK, Renken, RJ, de Jong, BM, et al. Parkinson’s disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging. Neuroimage Clin 2014;5:240244.CrossRefGoogle ScholarPubMed
Melzer, TR, Watts, R, MacAskill, MR, et al. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson’s disease. Brain 2011;134(3):845855.CrossRefGoogle ScholarPubMed
Wang, X, Zhang, Y, Zhu, C, et al. The diagnostic value of SNpc using NM-MRI in Parkinson’s disease: meta-analysis. Neurol Sci 2019;40(12):24792489.CrossRefGoogle Scholar
Mahlknecht, P, Krismer, F, Poewe, W, Seppi, K. Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson’s disease. Mov Disord 2017;32(4):619623.CrossRefGoogle ScholarPubMed
Tolosa, E, Garrido, A, Scholz, SW, Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol 2021;20(5):385397.CrossRefGoogle ScholarPubMed
Deng, XY, Wang, L, Yang, TT, Li, R, Yu, G. A meta-analysis of diffusion tensor imaging of substantia nigra in patients with Parkinson’s disease. Sci Rep 2018;8:2941.CrossRefGoogle ScholarPubMed
Vaillancourt, DE, Spraker, MB, Prodoehl, J, et al. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 2009;72(16):13781384.CrossRefGoogle ScholarPubMed
Du, G, Lewis, MM, Sen, S, et al. Imaging nigral pathology and clinical progression in Parkinson’s disease. Mov Disord 2012;27(13):16361643.CrossRefGoogle ScholarPubMed
Guan, J, Rong, Y, Wen, Y, et al. Detection and application of neurochemical profile by multiple regional 1H-MRS in Parkinson’s disease. Brain Behav 2017;7(9):e00792.CrossRefGoogle ScholarPubMed
Ciurleo, R, Bonanno, L, Di Lorenzo, G, Bramanti, P, Marino, S. Metabolic changes in de novo Parkinson’s disease after dopaminergic therapy: a proton magnetic resonance spectroscopy study. Neurosci Lett 2015;599:5560.CrossRefGoogle ScholarPubMed
Yoshii, F, Ryo, M, Baba, Y, Koide, T, Hashimoto, J. Combined use of dopamine transporter imaging (DAT-SPECT) and 123I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy for diagnosing Parkinson’s disease. J Neurol Sci 2017;375:8085.CrossRefGoogle Scholar
Lauretani, F, Longobucco, Y, Ravazzoni, G, et al. Imaging the functional neuroanatomy of Parkinson’s disease: clinical applications and future directions. Int J Environ Res Public Health 2021;18(5):2356.CrossRefGoogle ScholarPubMed
Meles, SK, Oertel, WH, Leenders, KL. Circuit imaging biomarkers in preclinical and prodromal Parkinson’s disease. Mol Med 2021;27(1):111.CrossRefGoogle ScholarPubMed
Berg, D, Behnke, S, Seppi, K, et al. Enlarged hyperechogenic substantia nigra as a risk marker for Parkinson’s disease. Mov Disord 2013;28(2):216219.CrossRefGoogle ScholarPubMed
Berg, D, Godau, J, Walter, U. Transcranial sonography in movement disorders. Lancet Neurol 2008;7(11):10441055.CrossRefGoogle ScholarPubMed
Li, DH, He, YC, Liu, J, Chen, SD. Diagnostic accuracy of transcranial sonography of the substantia nigra in Parkinson’s disease: a systematic review and meta-analysis. Sci Rep 2016;6:20863.CrossRefGoogle ScholarPubMed
Sakakibara, R, Tateno, F, Kishi, M, et al. MIBG myocardial scintigraphy in pre-motor Parkinson’s disease: a review. Parkinsonism Relat Disord 2014;20(3):267273.CrossRefGoogle ScholarPubMed
Krashia, P, Cordella, A, Nobili, A, et al. Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson’s disease. Nat Commun 2019;10:3945.CrossRefGoogle Scholar
Yan, D, Zhang, Y, Yan, H, Shi, N, Yan, H. Pesticide exposure and risk of Parkinson’s disease: dose-response meta-analysis of observational studies. Regul Toxicol Pharmacol 2018;96:5763.CrossRefGoogle ScholarPubMed
Le, W, Rowe, DB, Jankovic, J, Xie, W, Appel, SH. Effects of cerebrospinal fluid from patients with Parkinson disease on dopaminergic cells. Arch Neurol 1999;56(2):194200.CrossRefGoogle ScholarPubMed
Li, T, Yang, Z, Li, S, et al. Alterations of NURR1 and cytokines in the peripheral blood mononuclear cells: combined biomarkers for Parkinson’s disease. Front Aging Neurosci 2018;10:392.CrossRefGoogle ScholarPubMed
Martin-Ruiz, C, Williams-Gray, C, Yarnall, A, et al. Senescence and inflammatory markers for predicting clinical progression in Parkinson’s disease: the ICICLE-PD study. J Parkinsons Dis 2020;10(1):193206.CrossRefGoogle ScholarPubMed
Jensen, MP, Jacobs, BM, Dobson, R, et al. Lower lymphocyte count is associated with increased risk of Parkinson’s disease. Ann Neurol 2021;89(4):803812.CrossRefGoogle ScholarPubMed
Cui, SS, Du, JJ, Liu, SH, et al. Serum soluble lymphocyte activation gene‐3 as a diagnostic biomarker in Parkinson’s disease: a pilot multicenter study. Mov Disord 2019;34(1):138141.CrossRefGoogle ScholarPubMed
Nissen, SK, Ferreira, SA, Nielsen, MC, et al. Soluble CD163 changes indicate monocyte association with cognitive deficits in Parkinson’s disease. Mov Disord 2021;36(4):963976.CrossRefGoogle ScholarPubMed
Dong, J, Liu, X, Wang, Y, Cai, H, Le, W. Nurr1Cd11bcre conditional knockout mice display inflammatory injury to nigrostriatal dopaminergic neurons. Glia 2020;68(10):20572069.CrossRefGoogle ScholarPubMed
Petrillo, S, Schirinzi, T, Di Lazzaro, G, et al. Systemic activation of Nrf2 pathway in Parkinson’s disease. Mov Disord 2020;35(1):180184.CrossRefGoogle ScholarPubMed
Lin, JC, Lin, CS, Hsu, CW, Lin, CL, Kao, CH. Association between Parkinson’s disease and inflammatory bowel disease: a nationwide Taiwanese retrospective cohort study. Inflamm Bowel Dis 2016;22(5):10491055.CrossRefGoogle ScholarPubMed
Perez-Pardo, P, Dodiya, HB, Engen, PA, et al. Role of TLR4 in the gut–brain axis in Parkinson’s disease: a translational study from men to mice. Gut 2019;68(5):829843.CrossRefGoogle ScholarPubMed
Akhtar, RS, Licata, JP, Luk, KC, et al. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson’s disease. J Neurochem 2018;145(6):489503.CrossRefGoogle ScholarPubMed
Sabatino, JJ, Probstel, AK, Zamvil, S. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2019;20(12):728745.CrossRefGoogle ScholarPubMed
Fan, Z, Pan, YT, Zhang, ZY, et al. Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson’s disease. J Neuroinflammation 2020;17(1):11.CrossRefGoogle ScholarPubMed
Belloli, S, Morari, M, Murtaj, V, et al. Translation imaging in Parkinson’s disease: focus on neuroinflammation. Front Aging Neurosci 2020;12:152.CrossRefGoogle ScholarPubMed
Eidson, LN, Kannarkat, GT, Barnum, CJ, et al. Candidate inflammatory biomarkers display unique relationships with alpha-synuclein and correlate with measures of disease severity in subjects with Parkinson’s disease. J Neuroinflammation 2017;14(1):164.CrossRefGoogle ScholarPubMed
Borsche, M, König, IR, Delcambre, S, et al. Mitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism. Brain 2020;143(10):30413051.CrossRefGoogle ScholarPubMed
Goldstein, DS, Holmes, C, Sharabi, Y. Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson’s disease and other synucleinopathies. Brain 2012;135(6):19001913.CrossRefGoogle ScholarPubMed
LeWitt, P, Schultz, L, Auinger, P, Lu, M; Parkinson Study Group DATATOP Investigators. CSF xanthine, homovanillic acid, and their ratio as biomarkers of Parkinson’s disease. Brain Res 2011;1408:8897.CrossRefGoogle ScholarPubMed
Kim, AR, Nodel, MR, Pavlenko, TA, et al. Tear fluid catecholamines as biomarkers of the Parkinson’s disease: a clinical and experimental study. Acta Naturae 2019;11(4):99103.CrossRefGoogle ScholarPubMed
Von Seggern, M, Szarowicz, C, Swanson, M, et al. Purine molecules in Parkinson’s disease: analytical techniques and clinical implications. Neurochem Int 2020;139:104793.CrossRefGoogle ScholarPubMed
Bolner, A, Pilleri, M, De Riva, V, Nordera, GP. Plasma and urinary HPLC-ED determination of the ratio of 8-OHdG/2-dG in Parkinson’s disease. Clin Lab 2011;57(11–12):859866.Google ScholarPubMed
Fujimaki, M, Saiki, S, Li, Y, et al. Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease. Neurology 2018;90(5):e404e411.CrossRefGoogle ScholarPubMed
Luan, H, Liu, LF, Tang, Z, et al. Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Sci Rep 2015;5:13888.CrossRefGoogle ScholarPubMed
Zhang, Q, Gao, Y, Zhang, J, et al. L-Asparaginase exerts neuroprotective effects in an SH-SY5Y-A53T model of Parkinson’s disease by regulating glutamine metabolism. Front Mol Neurosci 2020;13:563054.CrossRefGoogle Scholar
Rosario, D, Bidkhori, G, Lee, S, et al. Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metabolism in Parkinson’s disease. Cell Rep 2021;34(9):108807.CrossRefGoogle ScholarPubMed
Hertel, J, Harms, AC, Heinken, A, et al. Integrated analyses of microbiome and longitudinal metabolome data reveal microbial–host interactions on sulfur metabolism in Parkinson’s disease. Cell Rep 2019;29(7):17671777.08.CrossRefGoogle ScholarPubMed
Graham, SF, Rey, NL, Ugur, Z, et al. Metabolomic profiling of bile acids in an experimental model of prodromal Parkinson’s disease. Metabolites 2018;8(4):71.CrossRefGoogle Scholar
Shao, Y, Li, T, Liu, Z, et al. Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol Neurodegener 2021;16(1):4.CrossRefGoogle ScholarPubMed
Cirstea, MS, Yu, AC, Golz, E, et al. Microbiota composition and metabolism are associated with gut function in Parkinson’s disease. Mov Disord 2020;35(7):12081217.CrossRefGoogle ScholarPubMed
Xicoy, H, Wieringa, B, Martens, GJM. The role of lipids in Parkinson’s disease. Cells 2019;8(1):27.CrossRefGoogle ScholarPubMed
Burté, F, Houghton, D, Lowes, H, et al. Metabolic profiling of Parkinson’s disease and mild cognitive impairment. Mov Disord 2017;32(6):927932.CrossRefGoogle ScholarPubMed
Sinclair, E, Trivedi, DK, Sarkar, D, et al. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat Commun 2021;12:1592.CrossRefGoogle ScholarPubMed
Sinclair, E, Walton-Doyle, C, Sarkar, D, et al. Validating differential volatilome profiles in Parkinson’s disease. ACS Cent Sci 2021;7(2):300306.CrossRefGoogle ScholarPubMed
Ammal Kaidery, N, Ahuja, M, Thomas, B. Crosstalk between Nrf2 signaling and mitochondrial function in Parkinson’s disease. Mol Cell Neurosci 2019;101:103413.CrossRefGoogle ScholarPubMed
Margis, R, Margis, R, Rieder, CR. Identification of blood microRNAs associated to Parkinson’s disease. J Biotechnol 2011;152(3):96101.CrossRefGoogle Scholar
Khoo, SK, Petillo, D, Kang, UJ, et al. Plasma-based circulating microRNA biomarkers for Parkinson’s disease. J Parkinsons Dis 2012;2(4):321331.CrossRefGoogle ScholarPubMed
Burgos, K, Malenica, I, Metpally, R, et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One 2014;9(5):e94839.CrossRefGoogle ScholarPubMed
Serafin, A, Foco, L, Zanigni, S, et al. Overexpression of blood microRNAs 103a, 30b, and 29a in l-dopa-treated patients with PD. Neurology 2015;84(7):645653.CrossRefGoogle ScholarPubMed
Yang, Z, Li, T, Cui, Y, et al. Elevated plasma microRNA-105-5p level in patients with idiopathic Parkinson’s disease: a potential disease biomarker. Front Neurosci 2019;13:218.CrossRefGoogle ScholarPubMed
Schulz, J, Takousis, P, Wohlers, I, et al. Meta-analyses identify differentially expressed micrornas in Parkinson’s disease. Ann Neurol 2019;85(6):835.CrossRefGoogle ScholarPubMed
Dos Santos, MCT, Barreto-Sanz, MA, Correia, BRS, et al. miRNA-based signatures in cerebrospinal fluid as potential diagnostic tools for early stage Parkinson’s disease. Oncotarget 2018;9(25):17455.CrossRefGoogle ScholarPubMed
Nies, YH, Mohamad Najib, NH, Lim, WL, et al. MicroRNA dysregulation in Parkinson’s disease: a narrative review. Front Neurosci 2021;15:660379.CrossRefGoogle ScholarPubMed
Kim, J, Inoue, K, Ishii, J, et al. A microRNA feedback circuit in midbrain dopamine neurons. Science 2007;317(5842):12201224.CrossRefGoogle ScholarPubMed
Alvarez-Erviti, L, Seow, Y, Schapira, AH, et al. Influence of microRNA deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson’s disease. Cell Death Dis 2013;4(3):e545.CrossRefGoogle ScholarPubMed
Cardo, LF, Coto, E, Ribacoba, R, et al. MiRNA profile in the substantia nigra of Parkinson’s disease and healthy subjects. J Mol Neurosci 2014;54(4):830836.CrossRefGoogle ScholarPubMed
Wang, Y, Yang, Z, Le, W. Tiny but mighty: promising roles of microRNAs in the diagnosis and treatment of Parkinson’s disease. Neurosci Bull 2017;33(5):543551.CrossRefGoogle ScholarPubMed
Yang, D, Li, T, Wang, Y, et al. miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression. J Cell Sci 2012;125(7):16731682.Google ScholarPubMed
Yang, Z, Li, T, Li, S, et al. Altered expression levels of microRNA-132 and Nurr1 in peripheral blood of Parkinson’s disease: potential disease biomarkers. ACS Chem Neurosci 2019;10(5):22432249.CrossRefGoogle ScholarPubMed
Botta-Orfila, T, Morató, X, Compta, Y, et al. Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson’s disease. J Neurosci Res 2014;92(8):10711077.CrossRefGoogle ScholarPubMed
Gui, Y, Liu, H, Zhang, L, Lv, W, Hu, X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015;6(35): 3704337053.CrossRefGoogle ScholarPubMed
Ma, W, Li, Y, Wang, C, et al. Serum miR-221 serves as a biomarker for Parkinson’s disease. Cell Biochem Funct 2016;34(7):511515.CrossRefGoogle ScholarPubMed
Bai, X, Tang, Y, Yu, M, et al. Downregulation of blood serum microRNA 29 family in patients with Parkinson’s disease. Sci Rep 2017;7:5411.CrossRefGoogle ScholarPubMed
Yang, Y, Li, Y, Yang, H, Guo, J, Li, N. Circulating microRNAs and long non-coding RNAs as potential diagnostic biomarkers for Parkinson’s disease. Front Mol Neurosci 2021;14:631553.CrossRefGoogle ScholarPubMed
Kern, F, Fehlmann, T, Violich, I, et al. Deep sequencing of sncRNAs reveals hallmarks and regulatory modules of the transcriptome during Parkinson’s disease progression. Nat Aging 2021;1(3):309322.CrossRefGoogle ScholarPubMed
Schilling, M, Lill, CM. MicroRNAs as molecular biomarkers for Parkinson’s disease progression. Mov Disord 2021;36(8):1793.CrossRefGoogle ScholarPubMed
Parnetti, L, Gaetani, L, Eusebi, P, et al. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol 2019;18(6):573586.CrossRefGoogle ScholarPubMed
Li, N, Pan, X, Zhang, J, et al. Plasma levels of miR-137 and miR-124 are associated with Parkinson’s disease but not with Parkinson’s disease with depression. Neurol Sci 2017;38(5):761767.CrossRefGoogle Scholar
Schwienbacher, C, Foco, L, Picard, A, et al. Plasma and white blood cells show different miRNA expression profiles in Parkinson’s disease. J Mol Neurosci 2017;62(2):244254.CrossRefGoogle ScholarPubMed
Zhang, X, Yang, R, Hu, BL, et al. Reduced circulating levels of miR-433 and miR-133b are potential biomarkers for Parkinson’s disease. Front Cell Neurosci 2017;11:170.CrossRefGoogle ScholarPubMed
Jin, L, Wan, W, Wang, L, et al. Elevated microRNA-520d-5p in the serum of patients with Parkinson’s disease, possibly through regulation of cereloplasmin expression. Neurosci Lett 2018;687:8893.CrossRefGoogle ScholarPubMed
Dong, H, Wang, C, Lu, S, et al. A panel of four decreased serum microRNAs as a novel biomarker for early Parkinson’s disease. Biomarkers 2016;21(2):129137.CrossRefGoogle ScholarPubMed
Ding, H, Huang, Z, Chen, M, et al. Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism Relat Disord 2016;22:6873.CrossRefGoogle ScholarPubMed
Cressatti, M, Juwara, L, Galindez, JM, et al. Salivary microR-153 and microR-223 levels as potential diagnostic biomarkers of idiopathic Parkinson’s disease. Mov Disord 2020;35(3):468477.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×