Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T10:27:10.749Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2015

Alan Jamieson
Affiliation:
University of Aberdeen
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Hadal Zone
Life in the Deepest Oceans
, pp. 322 - 362
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, F. and Horikoshi, K. (2001). The biotechnological potential of piezophiles. Trends in Biotechnology, 19(3), 102–108.CrossRefGoogle ScholarPubMed
Abdel-Mageed, W.M,. Milne, B.F., Wagner, M. et al. (2010). Dermacozines, a new phenazine family from deep-sea dermacocci isolated from Mariana Trench sediment. Organic and Biomolecular Chemistry, 8(10), 2352–2362.CrossRefGoogle ScholarPubMed
Aertsen, A., Meersman, F., Hendrickx, M.E., Vogel, R.F. and Michiels, C.W. (2009). Biotechnology under high pressure: applications and implications. Trends in Biotechnology, 27(7), 434–441.CrossRefGoogle ScholarPubMed
Agassiz, A. and Mayer, A.G. (1902). Reports on the scientific results of the expedition to the tropical Pacific in charge of Alexander Agassiz by the US Fish Commission steamer Albatross from August 1899 to March 1900. III. The Medusae, Memoirs of the Museum of Comparative Zoology at Harvard College, 26, 139–176.Google Scholar
Aguilar, A., Ingemansson, T. and Magnien, E. (1998). Extremophile microorganisms as cell factories: support from the European Union. Extremophiles, 2, 367–373.CrossRefGoogle ScholarPubMed
Aguzzi, J., Jamieson, A.J., Fujii, T. et al. (2012). Shifting feeding behaviour of deep-sea buccinid gastropods at natural and simulated food falls. Marine Ecology Progress Series, 458, 247–253.CrossRefGoogle Scholar
Akimoto, K., Hattori, M., Uematsu, K. and Kato, C. (2001). The deepest living Foraminifera, Challenger Deep, Mariana Trench. Marine Micropaleontology, 42, 95–97.CrossRefGoogle Scholar
Albertelli, G., Amaud, P.M., Della Croce, N., Drago, N. and Elefteriou, A. (1992). The deep Mediterranean macrofauna caught by traps and its trophic significance. Comptes Rendus de l’Academie des Sciences, 315(111), 139–144.Google Scholar
Alexander, D.E. (1988). Kinematics of swimming in two species of Idotea (Isopoda: Valvifera). Journal of Experimental Biology, 138, 37–49.Google Scholar
Allen, M.J. and Jaspars, M. (2009). Realizing the potential of marine biotechnology: challenges and opportunities. Industrial Biotechnology, 5(2), 77–83.CrossRefGoogle Scholar
Allwood, A., Beaty, D., Bass, D. et al. (2013). Conference summary: life detection in extraterrestrial samples. Astrobiology, 13(2), 203–216.CrossRefGoogle ScholarPubMed
Amils, R., Blix, A., Danson, M. et al. (2007). Investigating life in extreme environments: a European perspective. European Science Foundation Position Paper.
Amstutz, A. (1951). Sur l’e´volution des structures alpines. Archive Des Sciences, 4, 323–329.Google Scholar
Anderson, M.E., Crabtree, R.E., Carter, H.J., Sulak, K.J. and Richardson, M.D. (1985). Distribution of demersal fishes of the Caribbean Sea found below 2000 meters. Bulletin of Marine Science, 37, 794–807.Google Scholar
Ando, M., Ishida, M., Nishikawa, Y., Mizuki, C. and Hayashi, Y. (2012). What caused a large number of fatalities in the Tohoko earthquake?Geophysical Research Abstracts, 14, EGU2012–5501–1.Google Scholar
Andriashev, A.P. (1953). Archaic deep-sea and secondary deep sea-fishes and their role in zoogeographical analysis. Essays on the General Problems of Ichthyology, 58–64. (In Russian; translation on-line.)
Andriashev, A.P. (1955). A new fish of the snailfish family (Pisces, Liparidae) found at a depth of more than 7 kilometers. Trudy Instituta Okeanologii im. P.P. Shirshova, 12, 340–344.Google Scholar
Andriashev, A.P. and Pitruk, D.L. (1998). A review of the ultra-abyssal (hadal) genus Pseudoliparis (Scorpaeniformes, Liparidae) with a description of a new species from the Japan Trench. Voprosy Ikhtiologii, 33, 325–330.Google Scholar
Andriashev, A.P. and Stein, D.L. (1998). Review of the snailfish genus Careproctus (Liparidae, Scorpaeniformes) in Antarctic and adjacent waters. Natural History Museum of Los Angeles County Contributions in Science, 470, 1–63.Google Scholar
Angel, M.V. (1982). Ocean trench conservation. International Union for Conservation of Nature and Natural Resources. The Environmentalist, 2, 1–17.CrossRefGoogle Scholar
Anon. (1998). Executive summary. The legendary ocean: the unexplored frontier. Year of the Ocean Discussion Papers (March 1998). Silver Spring, MD: Office of the Chief Scientist, NOAA, US Department of Commerce. p. L-12.
Anon. (2007) Investigating the Oceans. London: House of Commons Science and Technology Select Committee.Google Scholar
Aono, E., Baba, T., Ara, T. et al. (2010). Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments. Molecular BioSystems, 6, 1216–1226.CrossRefGoogle ScholarPubMed
Archer, D.E. (1996). An atlas of the distribution of calcium carbonate in sediments of the deep sea. Global Biogeochemical Cycles, 10, 159–174.CrossRefGoogle Scholar
Armstrong, J.D., Bagley, P.M. and Priede, I.G. (1992). Photographic and acoustic tracking observations of the behaviour of the grenadier Coryphaenoides (Nemotonurus) armatus, the eel Synaphobranchus bathybius, and other abyssal demersal fish in the North Atlantic Ocean. Marine Biology, 112, 535–544.CrossRefGoogle Scholar
Arnison, P.G., Bibb, M.J., Bierbaum, G. et al. (2013). Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Products Report, 30(1), 108–160.CrossRefGoogle ScholarPubMed
Arrhenius, O. (1921). Species and area. Journal of Ecology, 9(1), 95–99.CrossRefGoogle Scholar
Arzola, R.G., Wynn, R.B., Lastras, G., Masson, D.G. and Weaver, P.P.E. (2008). Sedimentary features and processes in the Nazaré and Setúbal submarine canyons, west Iberian margin. Marine Geology, 250, 64–88.CrossRefGoogle Scholar
Attrill, M.J. and Rundle, S.D. (2002). Ecotone or ecocline: ecological boundaries in estuaries. Estuarine, Coastal and Shelf Science, 55(6), 929–936.CrossRefGoogle Scholar
Bacescu, M. (1971). Mysimenzies hadalis g. n. sp. n., a benthic mysid of the Peru Trench, found during cruise XI/1965 of R/V Anton Bruun (USA). Revue Roumaine de Biologie (Zoologie), 16(1), 3–8.Google Scholar
Bagley, P.M., Priede, I.G., Jamieson, A.J. et al. (2005). Lander techniques for deep ocean biological research. Underwater Technology, 26(1), 3–11.CrossRefGoogle Scholar
Bailey, D.M. and Priede, I.G. (2002). Predicting fish behaviour in response to abyssal food-falls. Marine Biology, 141(5), 831–840.CrossRefGoogle Scholar
Bailey, D.M., King, N.J. and Priede, I.G. (2007). Camera and carcasses: historical and current methods for using artificial food falls to study deep-water animals. Marine Ecology Progress Series, 350, 179–191.CrossRefGoogle Scholar
Balmaseda, M.A., Trenberth, K.E. and Källen, E. (2013). Distinctive climate signals in reanalysis of global ocean heat content. Geophysical Research Letters, 40, 1–6.CrossRefGoogle Scholar
Barker, B.A.J., Helmond, I., Bax, N.J. et al. (1999). A vessel-towed camera platform for surveying seafloor habitats of the continental shelf. Continental Shelf Research, 19, 1161–1170.CrossRefGoogle Scholar
Barnard, J.L. (1961). Gammaridean Amphipoda from depths of 400 to 6000 meters. Galathea Report, 5, 23–128.Google Scholar
Barnard, J.L. and Ingram, C.L. (1986). The supergiant amphipod, Alicella gigantea Chevreux from the North Pacific Gyre. Journal of Crustacean Bioogy, 6, 825–839.CrossRefGoogle Scholar
Barnes, D.K.A. (2002). Biodiversity: invasions by marine life on plastic debris. Nature, 416, 808–809.CrossRefGoogle ScholarPubMed
Barnett, P.R.O., Watson, J. and Connelly, D. (1984). The multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediment. Oceanologica Acta, 7, 399–408.Google Scholar
Barradas-Ortiz, C., Briones-Fourzán, P. and Lozano-Álvarez, E. (2003). Seasonal reproduction and feeding ecology of giant isopods Bathynomus giganteus from the continental slope of the Yucatán peninsula. Deep-Sea Research I, 50, 495–513.CrossRefGoogle Scholar
Barry, J.P. and Hashimoto, J. (2009). Revisiting the Challenger Deep using the ROV Kaikō. Marine Technology Society Journal, 43(5), 77–78.CrossRefGoogle Scholar
Barry, J.P., Kochevar, R.E. and Baxter, C.H. (1997). The influence of pore-water chemistry and physiology in the distribution of vesicomyid clam at cold seeps in Monterey Bay: implications for patterns of chemosynthetic community organization. Limnology and Oceanography, 42, 318–328.CrossRefGoogle Scholar
Bartlett, D.H. (2002). Pressure effects on in vivo microbial processes. Biochimica et Biophysica Acta, 1595, 367–381.CrossRefGoogle ScholarPubMed
Bartlett, D.H. (2009). Microbial life in the trenches. Marine Technology Society Journal, 43(5), 129–131.CrossRefGoogle Scholar
Beaulieu, S.E. (2002). Accumulation and fate of phytodetritus on the sea floor. Oceanography and Marine Biology Annual Review, 40, 171–232.Google Scholar
Beittel, J.S. and Margesson, R. (2010). Chile earthquake: US and international response. Congressional Research Service Report for Congress, 7–5700.
Belman, B.W. and Gordon, M.S. (1979). Comparative studies on the metabolism of shallow-water and deep-sea marine fishes. 5. Effects of temperature and hydrostatic pressure on oxygen consumption in the mesopelagic Melanostigma pammelas. Marine Biology, 50, 275–281.CrossRefGoogle Scholar
Belyaev, G.M. (1966). Bottom fauna of the ultra-abyssal depths of the world ocean. Akademia Nauka SSSR, Trudy Instituta Okeanologii, 591, 1–248.Google Scholar
Belyaev, G.M. (1975). New species of holothurians of the genus Elpidia from the southern part of Atlantic Ocean. Trudy Instituta Okeanologii, 103, 259–280. (In Russian.)Google Scholar
Belyaev, G.M. (1989). Deep-sea Ocean Trenches and Their Fauna. Moscow: Nauka.Google Scholar
Berger, W.H. (1974). Deep-sea sedimentation. In The Geology of Continental Margins, ed. Burke, C.A. and Drake, C.D.. New York: Springer, pp. 213–241.CrossRefGoogle Scholar
Berger, W.H. and Wefer, G. (1996). Late Quaternary Movement of the Angola–Benguela Front: SE Atlantic, and Implications for Advection in the Equatorial Ocean. Berlin: Springer.Google Scholar
Bergmann, M. and Klages, M. (2012). Increase of litter at the Arctic deep-sea observatory HAUSGARTEN. Marine Pollution Bulletin, 64, 2734–2741.CrossRefGoogle ScholarPubMed
Bett, B.J., Vanreusal, A., Vincx, M. et al. (1994). Sampler bias in the qualitative study of deep-sea meiobenthos. Marine Ecology Progress Series, 104, 197–203.CrossRefGoogle Scholar
Bett, B.J., Malzone, M.G., Narayanaswamy, B.E. and Wigham, B.D. (2001). Temporal variability in phytodetritus and megabenthic activity at the seabed in the deep Northeast Atlantic. Progress in Oceanography, 50, 349–368.CrossRefGoogle Scholar
Bilham, R. (2009). The seismic future of cities. Bulletin of Earthquake Engineering, 7, 839–887.CrossRefGoogle Scholar
Bilham, R. (2013). Societal and observational problems in earthquake risk assessments and their delivery to those most at risk. Tectonophysics, 584, 166–173.CrossRefGoogle Scholar
Billett, D.S.M. and Hansen, B. (1982). Abyssal aggregations of Kolga hyalina Danielssen and Koren (Echinodermata: Holothurioidea) in the northeast Atlantic Ocean: a preliminary report. Deep-Sea Research A, 29(7), 799–818.CrossRefGoogle Scholar
Billett, D.S.M., Lampitt, R.S., Rice, A.L. and Mantoura, R.F.C. (1983). Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature, 302, 520–522.CrossRefGoogle Scholar
Billett, D.S.M., Bett, B.J., Rice, A.L. et al. (2001). Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic). Progress in Oceanography, 50, 325–348.CrossRefGoogle Scholar
Billett, D.S.M., Bett, B.J., Jacobs, C.L., Rouse, I.P. and Wigham, B.D. (2006). Mass deposition of jellyfish in the deep Arabian Sea. Limnology and Oceanography, 51, 2077–2083.CrossRefGoogle Scholar
Billett, D.S.M., Bett, B., Reid, W.D.K., Boorman, B. and Priede, I.G. (2010). Long-term change in the abyssal NE Atlantic: the ‘Amperima Event’ revisited. Deep-Sea Research II, 57(15), 1406–1417.CrossRefGoogle Scholar
Birstein, J.A. (1957). Certain peculiarities of the ultra-abyssal fauna as exemplified by the genus Storthyngura (Crustacea Isopoda Asellota). Zoologichesky Zhurnal, 36, 961–985. (In Russian with English summary.)Google Scholar
Birstein, J.A. (1958). Deep-sea Malacostraca of the north-western part of the Pacific Ocean, their distribution and relations. 15th International Congress of Zoology (London), 5.Google Scholar
Birstein, J.A. (1963). Deep-sea Isopod Crustaceans of the Northwestern Pacific Ocean. Moscow: Institute of Oceanology of the USSR, Nauka. (In Russian with English summary.)Google Scholar
Birstein, J.A. and Tchindonova, J.G. (1958). Glubocovodniie Mysidii severo zapadnoi ciasti Tihogo Okeana (The deep sea Mysidacea from the north-western Pacific Ocean). Trudy Instituta Okeanologii, 27, 258–355. (In Russian.)Google Scholar
Birstein, Y.A. and Vinogradov, M.E. (1955). Pelagicheskle gammaridy (Amphipoda: Gammaridea) Kurilo-Kamchatskoi padiny. Trudy Instituta Okeanologii, 12, 210–287. (In Russian.)Google Scholar
Biscaye, P.E. and Anderson, R.F. (1994). Fluxes of particulate matter on the slope of the southern Middle Atlantic Bight: SEEP-II. Deep-Sea Research II, 41, 459–510.CrossRefGoogle Scholar
Blankenship, L.E. and Levin, L.A. (2007). Extreme food webs: foraging strategies and diets of scavenging amphipods from the ocean’s deepest five kilometres. Limnology and Oceanography, 52(4), 1685–1697.CrossRefGoogle Scholar
Blankenship, L.E., Yayanos, A.A., Cadien, D.B. and Levin, L.A. (2006). Vertical zonation patterns of scavenging amphipods from the hadal zone of the Tonga and Kermadec Trenches. Deep-Sea Research I, 53, 48–61.CrossRefGoogle Scholar
Blankenship-Williams, L.E. and Levin, L.A. (2009). Living deep: a synopsis of hadal trench ecology. Marine Technology Society Journal, 43(5), 137–143.CrossRefGoogle Scholar
Blaxter, J.H.S. (1978). Baroreception. In Sensory Ecology, ed. Ali, M.A.. New York: Plenum Publishing Corporation, pp. 375–409.CrossRefGoogle Scholar
Blaxter, J.H.S. (1980). The effect of hydrostatic pressure on fishes. In Environmental Physiology of Fishes, ed. Ali, M.A.. New York: Plenum Publishing Corporation, pp. 369–386.CrossRefGoogle Scholar
Blunt, J.W., Copp, B.R., Hu, W.P. et al. (2009). Marine natural products. Natural Product Reports, 26(2), 170–244.CrossRefGoogle ScholarPubMed
Bostock, H.C., Hayward, B.W., Neil, H.L., Currie, K.I. and Dunbar, G.B. (2011). Deep-water carbonate concentrations in the southwest Pacific. Deep-Sea Research I, 58, 72–85.CrossRefGoogle Scholar
Boulègue, J., Benedetti, E.L., Dron, D., Mariotti, A. and Létolle, R. (1987). Geochemical and biogeochemical observations on the biological communities associated with fluid venting in Nankai Trough and Japan Trench subduction zones. Earth and Planetary Science Letters, 83, 343–355.CrossRefGoogle Scholar
Boutan, L. (1900). La Photographie Sous-marine et les Progrés de la Photographie. Paris: Schleicher Frères.Google Scholar
Bouvier, E.L. (1908). Crustaces decapodes (peneides) provenant des campagnes de ‘Hirondelle’ et de la ‘Princess Alice’ (1886–1907). Resultants des Campagnes Scientifiques Acomplies sur son Yacht Prince Albert I, 33, 1–122.Google Scholar
Bowen, A.D., Yoerger, D.R., Taylor, C. et al. (2008). The Nereus hybrid underwater robotic vehicle for global ocean science operations to 11,000 m depth. OCEANS ’08, IEEE/MTS Conference Proceedings, Quebec.
Bowen, A.D., Yoerger, D.R., Taylor, C. et al. (2009a). The Nereus hybrid underwater robotic vehicle. Underwater Technology, 28(3), 79–89.CrossRefGoogle Scholar
Bowen, A.D., Yoerger, D.R., Taylor, C. et al. (2009b). Field trials of the Nereus hybrid underwater robotic vehicle in the Challenger Deep of the Mariana Trench. OCEANS ’09, IEEE/MTS Conference Proceedings, Biloxi, MS.
Bowman, J.P., Gosink, J.J., McCammon, S.A. et al. (1998). Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6o3). International Journal of Systematic Bacteriology, 48, 1171–1180.CrossRefGoogle Scholar
Brady, H.B. (1884). Report on the Foraminifera dredged by H.M.S. Challenger during the years 1873–1876. Reports on the Scientific Results of the Voyage of the H.M.S. Challenger During the Years 1873–1876, Zoology, 9, 1–814.Google Scholar
Brandt, A., Malyutina, M., Borowski, C., Schriever, G. and Thiel, H. (2004). Munnopsidid isopod attracted to bait in the DISCOL area, Pacific Ocean. Mitteilungen Hamburgisches Zoologisches Museum Institut, 101, 275–279.Google Scholar
Brehan, M.K., MacDonald, A.G., Jones, G.R. and Cossins, A.R. (1992). Homeoviscous adaptation under pressure: the pressure dependence of membrane order in brain myelin membranes of deep-sea fish. Biochimica et Biophysica Acta, 1103, 317–323.CrossRefGoogle Scholar
Britton, J.C. and Morton, B. (1994). Marine carrion and scavengers, Oceanography and Marine Biology Annual Review, 32, 369–434.Google Scholar
Broecker, W.S. (1991). The Great Ocean Conveyer. Oceanography, 4(2), 79–89.CrossRefGoogle Scholar
Broecker, W.S. and Peng, T.-H. (1982). Tracers in the Sea. Palisades, New York: Eldigio Press.Google Scholar
Broecker, W.S., Takahashi, T. and Stuiver, M. (1980). Hydrography of the central Atlantic, II: waters beneath the two degree discontinuity. Deep-Sea Research, 27(6A), 397–420.CrossRefGoogle Scholar
Brown, A. and Thatje, S. (2011). Respiratory response of the deep-sea amphipod Stephonyx biscayensis indicates bathymetric range limitation by temperature and hydrostatic pressure. PLoS ONE, 6(12), e28562–[6pp].CrossRefGoogle ScholarPubMed
Brown, A.D. and Simpson, J. (1972). Water relations of sugar-tolerant yeasts: the role of intracellular polyols. Journal of General Microbiology, 72, 589–591.CrossRefGoogle ScholarPubMed
Bruun, A.F. (1956a). Animal life of the deep-sea bottom. In The Galathea Deep Sea Expedition 1950–1952, ed. Bruun, A.F., Greve, S., Mielche, H. and Spärk, R.. London: George, Allen and Unwin, pp.149–195.Google Scholar
Bruun, A.F. (1956b). The abyssal fauna: its ecology distribution and origin. Nature, 177, 1105–1108.CrossRefGoogle Scholar
Bruun, A.F. (1957). General introduction to the reports and list of deep-sea station. Galathea Report, 1, 7–48.Google Scholar
Bryden, H.L. (1973). New polynomials for thermal expansion, adiabatic temperature gradient and potential temperature of sea water. Deep-Sea Research, 20, 410–408.Google Scholar
Bucklin, A., Wilson, R.R. and Smith, K.L. (1987). Genetic differentiation of seamount and basin populations of the deep-sea amphipod Eurythenes gryllus. Deep-Sea Research, 34, 1795–1810.CrossRefGoogle Scholar
Buesseler, K.O. and Boyd, P.W. (2009). Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnology and Oceanography, 54, 1210–1232.CrossRefGoogle Scholar
Buesseler, K.O., Livingston, H.D., Honjo, S. et al. (1990). Scavenging and particle deposition in the southwestern Black Sea – evidence from Chernobyl radiotracers. Deep–Sea Research, 7, 413–430.CrossRefGoogle Scholar
Bühring, S.I. and Christiansen, B. (2001). Lipids in selected abyssal benthopelagic animals: links to the epipelagic zone?Progress in Oceanography, 50, 369–382.CrossRefGoogle Scholar
Burton, A. (2012). Way down deep. Frontiers in Ecology and the Environment, 10, 112.CrossRefGoogle Scholar
Cairns, S.D., Bayer, F.M. and Fautin, D.G. (2007). Galatheanthemum profundale (Anthozoa: Actinaria) in the Western Atlantic. Bulletin of Marine Science, 80(1), 191–200.Google Scholar
Caldeira, K. and Wickett, M.E. (2003). Anthropogenic carbon and ocean pH. Nature, 425, 365.CrossRefGoogle ScholarPubMed
Campenot, R.B. (1975). The effects of high hydrostatic pressure on transmission at the crustacean neuromuscular junction. Comparative Biochemistry and Physiology B, 52, 133–140.CrossRefGoogle ScholarPubMed
Canals, M., Puig, P., Durrieu de Madron, X. et al. (2006). Flushing submarine canyons. Nature, 444, 354–357.CrossRefGoogle ScholarPubMed
CAREX (2011). CAREX roadmap for research on life in extreme environment. CAREX Publication, 9, 1–48.Google Scholar
Carey, S.W. (1958). The tectonic approach to continental drift. In Continental Drift: A Symposium, ed. Carey, S.W.. Hobart: University of Tasmania, pp. 177–363.Google Scholar
Carney, R.S. (2005). Zonation of deep biota on continental margins. Oceanography and Marine Biology Annual Review, 43, 211–278.Google Scholar
Carruthers, J.N. and Lawford, A.L. (1952). The deepest oceanic sounding. Nature, 169, 601–603.CrossRefGoogle Scholar
Carter, H.J. (1983). Apagesoma edentatum, a new genus and species of Ophidiid fish from the western north Atlantic. Bulletin of Marine Science, 33, 94–101.Google Scholar
Castellini, M.A., Castellini, J.M. and Rivera, P.M. (2001). Adaptations to pressure in the RBC metabolism of diving animals. Comparative Biochemistry and Physiology A, 129, 751–757.CrossRefGoogle Scholar
Catalano, R., Yorifuji, T. and Kawachi, I. (2013). Natural selection in utero: evidence from the Great East Japan Earthquake. American Journal of Human Biology, 25, 555–559.CrossRefGoogle ScholarPubMed
Chapelle, G. and Peck, L.S. (1999). Polar gigantism dictated by oxygen availability. Nature, 399, 114–115.CrossRefGoogle Scholar
Chapelle, G. and Peck, L.S. (2004). Amphipod crustacean size spectra: new insights in the relationship between size and oxygen. Oikos, 106, 167–175.CrossRefGoogle Scholar
Charmasson, S.S. and Calmet, D.P. (1987). Distribution of scavenging Lysianassidae amphipods Eurythenes gryllus in the northeast Atlantic: comparison with studies held in the Pacific. Deep-Sea Research, 34(9), 1509–1523.CrossRefGoogle Scholar
Chastain, R.A. and Yayanos, A.A. (1991). Ultrastructural changes in an obligatory barophilic marine bacterium after decompression. Applied and Environmental Microbiology, 57(5), 1489–1497.Google Scholar
Chernova, N.V., Stein, D.L. and Andriashev, A.P. (2004). Family Liparidae Scopoli 1777, annotated checklists of fishes. California Academy of Science, 31, 1–82.Google Scholar
Chevreux, E. (1899). Sur deux espèces géantes d’amphipodes provenant des campagnes du yacht Princesse Alice. Bulletin de la Société of Zoologique de France, 24, 152–158.CrossRefGoogle Scholar
Childress, J.J. (1971). Respiratory rate and depth of occurrence of midwater animals. Limnology and Oceanogaphy, 16, 104–106.CrossRefGoogle Scholar
Childress, J.J. (1977). Effects of pressure, temperature and oxygen on the oxygen-consumption rate of the midwater copepod Gausia princeps. Marine Biology, 39, 19–24.CrossRefGoogle Scholar
Childress, J.J. (1995). Are there physiological and biochemical adaptations of metabolism in deep-sea animals?Trends in Ecology and Evolution, 10, 30–36.CrossRefGoogle ScholarPubMed
Childress, J.J. and Fisher, C. (1992). The biology of hydrothermal vent animals; physiology, biochemistry and autotrophic symbioses. Oceanography and Marine Biology Annual Review, 30, 337–442.Google Scholar
Childress, J.J. and Somero, G.N. (1979). Depth-related enzymatic activities in muscle, brain, and heart of deep-living pelagic teleosts. Marine Biology, 52, 273–283.CrossRefGoogle Scholar
Childress, J.J. and Thuesen, E.V. (1995). Metabolic potentials of deep-sea fishes: a comparative approach. In Biochemistry and Molecular Biology of Fishes, ed. Hochachka, P.W. and Mommsen, T.P.. Berlin: Elsevier Science, pp. 175–195.Google Scholar
Chiswell, S.M. and Moore, M.I. (1999). Internal tides near the Kermadec Ridge. Journal of Physical Oceanography, 29, 1019–1035.2.0.CO;2>CrossRefGoogle Scholar
Christiansen, B. and Diel-Christiansen, D. (1993). Respiration of lysianassoid amphipods in a subarctic fjord and some implications on their feeding ecology. Sarsia, 78, 9–15.CrossRefGoogle Scholar
Christiansen, B., Pfannkuche, O. and Thiel, H. (1990). Vertical distribution and population structure of the necrophagous amphipod Eurythenes gryllus in the West European basin. Marine Ecology Progress Series, 66, 35–45.CrossRefGoogle Scholar
Christiansen, B., Beckmann, W. and Weikert, H. (2001). The structure and carbon demand of the bathyal benthic boundary layer community: a comparison of two oceanic locations in the NE-Atlantic. Deep-Sea Research II, 48, 2409–2424.CrossRefGoogle Scholar
Cohen, D.M., Inada, T., Iwamoto, T. and Scialabba, N. (1990). Gadiform fishes of the world (Order Gadiformes). An annotated and illustrated catalogue of cods, hakes, grenadiers and other gadiform fishes known to date. FAO Fisheries Synopsis, 10(125), 442.Google Scholar
Collins, M.A., Priede, I.G. and Bagley, P.M. (1999). In situ comparison of activity in two deep-sea scavenging fishes occupying different depth zones. Proceedings of the Royal Society London B, 266, 2011–2016.CrossRefGoogle Scholar
Conan, G., Roux, M. and Sibuet, M. (1980). A photographic survey of a population of the stalked crinoid Diplocrinus (Annacrinus) wyvillethomsoni (Echinodermata) from the bathyal slope of the Bay of Biscay. Deep-Sea Research, 28, 441–453.CrossRefGoogle Scholar
Connerney, J.E.P., Acuna, M.H., Wasilewski, P.J. et al. (1999). Magnetic lineations in the ancient crust of Mars. Science, 284, 794–798.CrossRefGoogle ScholarPubMed
Connor, E.F. and McCoy, E.D. (1979). The statistics and biology of the species area relationship. American Naturalist, 113(6) 791–833.CrossRefGoogle Scholar
Cook-Anderson, G. and Beasley, D. (2005). NASA details earthquake effects on the Earth. NASA Press Release, 10 January 2005.
Cossins, A.R., and MacDonald, A.G. (1984). Homeoviscous theory under pressure: II. The molecular order of membranes from deep-sea fish. Biochimica et Biophysica Acta (BBA)-Biomembranes, 776(1), 144–150.CrossRefGoogle Scholar
Cossins, A.R. and MacDonald, A.G. (1989). The adaptation of biological membranes to temperature and pressure: fish from the deep and cold. Journal of Bioenergetics and Biomembranes, 21(1), 15–35.CrossRefGoogle Scholar
Cousteau, J.-Y. (1958). Calypso explores an undersea canyon. National Geographic Magazine, 113, 373–396.Google Scholar
Craig, J., Jamieson, A.J, Heger, A. and Priede, I.G. (2009). Distribution of bioluminescent organisms in the Mediterranean Sea and predicted effects on a deep-sea neutrino telescope. Nuclear Instruments and Methods in Physics Research A, 602, 224–226.CrossRefGoogle Scholar
Craig, J., Jamieson, A.J., Bagley, P.M. and Priede, I.G. (2011a). Seasonal variation of deep-sea bioluminescence in the Ionian Sea. Nuclear Instruments and Methods in Physics Research A, 626, S115–S117.CrossRefGoogle Scholar
Craig, J, Jamieson, A.J., Bagley, P.M. and Priede, I.G. (2011b). Naturally occurring bioluminescence on the deep-sea floor. Journal of Marine Systems, 88, 563–567.CrossRefGoogle Scholar
Dahl, E. (1959). Amphipoda from depths exceeding 6000 meters. Galathea Report, 1, 211–241.Google Scholar
Dahl, E. (1977). The amphipod functional model and its bearing upon systematics and phylogeny. Zoologica Scripta, 6, 221–228.CrossRefGoogle Scholar
Dahl, E. (1979). Deep-sea carrion feeding amphipods: evolutionary patterns in niche adaptation. Oikos, 33, 167–175.CrossRefGoogle Scholar
Dahlgren, T., Glover, A.G., Smith, C.R. and Baco, A. (2004). Fauna of whale falls: systematics and ecology of a new polychaete (Annelida: Chrysopetalidae) from the deep Pacific Ocean. Deep-Sea Research I, 51, 1873–1887.CrossRefGoogle Scholar
Daito, H., Suzuki, M., Shiihara, J. et al. (2012). Impact of the Tohoku earthquake and tsunami on pneumonia hospitalisations and mortality among adults in northern Miyagi, Japan: a multicentre observational study. Thorax, 68, 544–550.CrossRefGoogle Scholar
Dalsgaard, J., John, M., Kattner, G., Müller-Navarra, D. and Hagen, W. (2003). Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology, 46, 225–340.CrossRefGoogle ScholarPubMed
Danovaro, R., Gambi, C. and Della Croce, N. (2002). Meiofauna hotspot in the Atacama Trench (Southern Pacific Ocean). Deep-Sea Research I, 49, 843–857.CrossRefGoogle Scholar
Danovaro, R., Della Croce, N., Dell’Anno, A. and Pusceddu, A. (2003). A depocenter of organic matter at 7800m depth in SE Pacific Ocean. Deep-Sea Research I, 50, 1411–1420.CrossRefGoogle Scholar
Danovaro, R., Dell’Anno, A. and Pusceddu, A. (2004). Biodiversity response to climate change in a warm deep sea. Ecology Letters, 7, 821–828.CrossRefGoogle Scholar
DaSilva, E.J. (2004). The colours of biotechnology: science, development and humankind. Electronic Journal of Biotechnology, 7(3), 01–02.Google Scholar
De Broyer, C. and Thurston, M.H. (1987). New Atlantic material and redescription of the type specimens of the giant abyssal amphipod Alicella gigantea Chevreux (Crustacea). Zoologica Scripta, 16(4), 335–350.CrossRefGoogle Scholar
De Broyer, C., Nyssen, F. and Dauby, P. (2004). The crustacean scavenger guild in Antarctic shelf, bathyal and abyssal communities. Deep-Sea Research II, 51(14–16), 1733–1752.CrossRefGoogle Scholar
De La Rocha, C.L. and Passow, U. (2007). Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep-Sea Research I, 54, 639–658.CrossRefGoogle Scholar
De Leo, F.C., Smith, C.R., Rowden, A.A., Bowden, D.A. and Clarke, M.R. (2010). Submarine canyons: hotspots of benthic biomass and productivity in the deep sea. Proceedings of the Royal Society London B, 277, 2783–2792.CrossRefGoogle ScholarPubMed
DeLong, E.F. (1986). Adaptations of deep-sea bacteria to the abyssal environment. PhD thesis, University of California, San Diego.
DeLong, E.F. and Yayanos, A.A. (1985). Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science, 228, 1101–1103.CrossRefGoogle ScholarPubMed
DeLong, E.F. and Yayanos, A.A. (1986). Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Applied Environmental Microbiology, 51, 730–737.Google ScholarPubMed
Demhardt, I.J. (2005). Alfred Wegener’s hypothesis on continental drift and its discussion in Petermanns Geographishe Mitteilungen (1912–1942). Polarforschung, 75, 29–35.Google Scholar
Deming, J.W., Somers, L.K., Straube, W.L., Swartz, , , D.G. and MacDonell, M.T. (1988). Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Systematic and Applied Microbiology, 10, 152–160.CrossRefGoogle Scholar
Denton, E.J. (1990). Light and vision at depths greater than 200 metres. In Light and Life in the Sea, ed. Herring, P.J., Campbell, A.K., Whitfield, M. and Maddock, L.. Cambridge: Cambridge University Press, pp. 127–148.Google Scholar
Deuser, W.G. and Ross, E.H. (1980). Seasonal change in the flux of organic carbon to the deep Sargasso Sea. Nature, 283, 364−365.CrossRefGoogle Scholar
Dietz, R.S. (1961). Continent and ocean basin evolution by spreading of the sea floor. Nature, 190, 854–857.CrossRefGoogle Scholar
Dobzhansky, T. (1951). Genetics and the Origin of Species, 3rd edn. New York: Columbia University Press.Google Scholar
Doebeli, M. and Dieckmann, U. (2003). Speciation along environmental gradients. Nature, 421, 259–264.CrossRefGoogle ScholarPubMed
Domanski, P. (1986). The near-bottom shrimp faunas (Decapoda: Natantia) at two abyssal sites in the Northeast Atlantic Ocean. Marine Biology, 93, 171–180.CrossRefGoogle Scholar
Drazen, J.C. and Seibel, B.A. (2007). Depth-related trends in metabolism of benthic and benthopelagic deep-sea fishes. Limnology and Oceanography, 52, 2306–2316.CrossRefGoogle Scholar
Drazen, J.C., Yeh, J., Friedman, J. and Condon, N. (2011). Metabolism and enzyme activities of hagfish from shallow and deep water of the Pacific Ocean. Comparative Biochemistry and Physiology A, 159(2), 182–187.CrossRefGoogle ScholarPubMed
Duarte, C.M., Middelburg, J.J. and Caraco, N. (2005). Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2(1), 1–8.CrossRefGoogle Scholar
Duineveld, G, Lavaleye, M., Berghuis, E. and de Wilde, P. (2001). Activity and composition of the benthic fauna in the Whittard Canyon and the adjacent continental slope (NE Atlantic). Oceanologica Acta, 24, 69–83.CrossRefGoogle Scholar
Dunn, D.F. (1983). Some Antarctic and Sub-Antarctic sea anemones (Coelenterata: Ptychodactiaria and Actiniaria). Antarctic Research Series, 39, 1–67.CrossRefGoogle Scholar
Eckman, J.E. and Thistle, D. (1991). Effects of flow about a biologically produced structure on harpacticoid copepods in San Diego Trough. Deep-Sea Research A, 38(11), 1397–1416.CrossRefGoogle Scholar
Eleftheriou, A. and McIntyre, A.D. (2005). Methods for the Study of the Marine Benthos. 3rd edn. Oxford: Blackwell Scientific Publications.CrossRefGoogle Scholar
Eliason, A. (1951). Polychaeta. Reports of the Swedish Deep-Sea Expedition, 2, Zoology, 11, 131–148.Google Scholar
Elliott, A.J. and Thorpe, S.A. (1983). Benthic observations on the Madeira Abyssal Plain. Oceanologica Acta, 6, 463–466.Google Scholar
Ellis-Evans, C. and Walter, N. (2008). Coordination Action for Research activities on life in EXtreme environments: the CAREX project. Journal of Biological Research-Thessaloniki, 9, 11–15.Google Scholar
Eloe, E.A., Shulse, C.N., Fadrosh, D.W. et al. (2010). Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environmental Microbiology Reports, 3(4), 449–458.CrossRefGoogle ScholarPubMed
Eloe, E.A., Malfatti, F., Gutierrez, J. et al. (2011). Isolation and characterization of a psychropiezophilic alphaproteobacterium. Applied and Environmental Microbiology, 77(22), 8145–8153.CrossRefGoogle ScholarPubMed
Emery, K.O. (1952). Submarine photography with the benthograph. Science Monthly, 75, 3–11.Google Scholar
Emery, K.O., Merrill, A.S. and Trumbull, J.V.A. (1965). Geology and biology of the sea floor as deduced from simultaneous photographs and samples. Limnology and Oceanography, 10(1), 1–21.CrossRefGoogle Scholar
Emiliani, C. (1961). The temperature decrease of surface sea-water in high latitudes and of abyssal-hadal water in open oceanic basins during the past 75 million years. Deep-Sea Research, 8(2), 144–147.CrossRefGoogle Scholar
Endo, H. and Okamura, O. (1992). New records of the abyssal grenadiers Coryphaenoides armatus. Japanese Journal of Ichthyology, 38, 433–437.Google Scholar
England, P. and Jackson, J. (2011). Uncharted seismic risk. Nature Geoscience, 4, 348–349.CrossRefGoogle Scholar
Eustace, R.M., Kilgallen, N.M., Lacey, N.C. and Jamieson, A.J. (2013). Population structure of the hadal amphipod Hirondellea gigas from the Izu-Bonin Trench (NW Pacific; 8173–9316 m). Journal of Crustacean Biology, 33(6), 793–801.CrossRefGoogle Scholar
Ewing, M. and Heezen, B.C. (1955). Puerto-Rico Trench topographic and geophysical data. Special Paper: Geological Society of America, 62, 255–267.Google Scholar
Ewing, M., Vine, A. and Worzel, J.L. (1946). Photography of the ocean bottom. Journal Optical Society of America, 36, 307–321.CrossRefGoogle Scholar
Fabiano, M., Pusceddu, A., Dell’Anno, A. et al. (2001). Fluxes of phytopigments and labile organic matter to the deep ocean in the NE Atlantic Ocean. Progress in Oceanography, 50, 89–104.CrossRefGoogle Scholar
Faccenna, C., Becker, T.W., Pio Lucente, F., Jolivet, L. and Rossetti, F. (2001). History of subduction and back-arc extension in the central Mediterranean. Geophysical Journal International, 145, 809–820.CrossRefGoogle Scholar
Fang, J. and Kato, C. (2010). Deep-sea piezophilic bacteria: geomicrobiology and biotechnology. In Geomicrobiology: Biodiversity and Biotechnology, ed. Jain, S.K., Khan, A.A. and Rai, M.K.. Boca Raton, FL: CRC Press, pp. 47–77.CrossRefGoogle Scholar
Fang, J., Barcelona, M.J., Nogi, Y. and Kato, C. (2000). Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11 000 m. Deep-Sea Research I, 47, 1173–1182.CrossRefGoogle Scholar
Feely, R.A., Sabine, C.L., Lee, K. et al. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305, 362–366.CrossRefGoogle ScholarPubMed
Fisher, C.R. (1990). Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Review of Aquatic Science, 2, 399–436.Google Scholar
Fisher, R.L. (1954). On the sounding of trenches. Deep-Sea Research, 2, 48–58.CrossRefGoogle Scholar
Fisher, R.L. (2009). Meanwhile, back on the surface: further notes on the sounding of trenches. Marine Technology Society Journal, 43(5), 16–19.CrossRefGoogle Scholar
Fisher, R.L. and Hess, H.H. (1963). Trenches. In The Sea, ed. Hill, M.N.. New York: Wiley, pp. 411–436.Google Scholar
Fletcher, B., Bowen, A., Yoerger, D.R. and Whitcomb, L.L. (2009). Journey to the Challenger Deep: 50 years later with the Nereus Hybrid remotely operated vehicle. Marine Technology Society Journal, 43(5), 65–76.CrossRefGoogle Scholar
Fluery, A.G. and Drazen, J.C. (2013). Abyssal scavenging communities attracted to Sargassum and fish in the Sargasso Sea. Deep-Sea Research I, 72, 141–147.CrossRefGoogle Scholar
Fofonoff, N.P. (1977). Computation of potential temperature of seawater for an arbitrary reference pressure. Deep-Sea Research, 24, 489–491.CrossRefGoogle Scholar
Fofanoff, N.P. and Millard, R.C. (1983). Algorithms for computation of fundamental properties of seawater. UNESCO Technical Papers in Marine Science, 44, 53.Google Scholar
Forbes, E. (1844). Report on the Mollusca and Radiata of the Aegean Sea, and their distribution, considered as bearing on geology. Report (1843) to the 13th Meeting of the British Association for the Advancement of Science, pp. 30–193.
France, S.C. (1993). Geographic variation among three isolated populations of the hadal amphipod Hirondellea gigas (Crustacea: Amphipoda: Lysianassoidea). Marine Ecology Progress Series, 92, 277–287.CrossRefGoogle Scholar
France, S.C. (1994). Genetic population structure and gene flow among deep-sea amphipods, Abyssorchomene spp., from six California continental Borderland basins. Marine Biology, 118, 67–77.CrossRefGoogle Scholar
France, S.C. and Kocher, T.D. (1996). Geographic and bathymetric patterns of mitochondrial 16S rRNA sequence divergence among deep-sea amphipods, Eurythenes gryllus. Marine Biology, 126, 633–643.CrossRefGoogle Scholar
Frankenberg, D. and Menzies, R.J. (1968). Some quantitative analyses of deep-sea benthos off Peru. Deep-Sea Research, 15(5), 623–626.Google Scholar
Fraser, P.J. (2001). Statocysts in crabs: short-term control of locomotion and long-term monitoring of hydrostatic pressure. Biological Bulletin, 200, 155–159.CrossRefGoogle ScholarPubMed
Fraser, P.J. (2006). Review. Depth, navigation and orientation in crabs: angular acceleration, gravity and hydrostatic pressure sensing during path integration. Marine and Freshwater Behaviour and Physiology, 39(2), 87–97.CrossRefGoogle Scholar
Fraser, P.J. and MacDonald, A.G. (1994). Crab hydrostatic pressure sensors. Nature, 371, 383–384.CrossRefGoogle Scholar
Fraser, P.J. and Shelmerdine, R.L. (2002). Fish physiology: dogfish hair cells sense hydrostatic pressure. Nature, 415, 495–496.CrossRefGoogle ScholarPubMed
Fraser, P.J., MacDonald, A.G., Cruickshank, S.F. and Schraner, M.P. (2001). Integration of hydrostatic pressure information by identified interneurones in the crab Carcinus maenas (L.); long-term recordings. Journal of Navigation, 54, 71–79.CrossRefGoogle Scholar
Fraser, P.J., Cruickshank, S.F. and Shelmerdine, R.L. (2003). Hydrostatic pressure effects on vestibular hair cell afferents in fish and crustacea. Journal of Vestibular Research, 13, 235–242.Google ScholarPubMed
Froese, R. and Pauly, D. (2009). FishBase. Available at: . Accessed 28 August 2009.
Fryer, P., Becker, N., Applegate, B. et al. (2002). Why is Challenger Deep so deep?Earth and Planetary Science Letters, 211, 259–269.CrossRefGoogle Scholar
Forman, W. (2009). From Beebe and Barton to Piccard and Trieste. Marine Technology Society Journal, 43(5), 27–36.CrossRefGoogle Scholar
Fujii, T., Jamieson, A.J., Solan, M., Bagley, P.M. and Priede, I.G. (2010). A large aggregation of liparids at 7703 m depth and a reappraisal of the abundance and diversity of hadal fish. BioScience, 60(7), 506–515.CrossRefGoogle Scholar
Fujii, T., Kilgallen, N.M., Rowden, A.A. and Jamieson, A.J. (2013). Amphipod community structure across abyssal to hadal depths in the Peru–Chile and the Kermadec Trenches. Marine Ecology Progress Series, 492, 125–138.CrossRefGoogle Scholar
Fujikura, K., Kojima, S., Tamaki, K. et al. (1999). The deepest chemosynthesis-based community yet discovered from the hadal zone, 7326 m deep, in the Japan Trench. Marine Ecology Progess Series, 190, 17–26.CrossRefGoogle Scholar
Fujimoto, H., Fujiwara, T., Kong, L. and Igarashi, C. (1993). Sea-beam survey over the Challenger Deep, revisited. In Preliminary Report of the Hakuho-Maru Cruise (KH-92–1). Tokyo: Ocean Research Institute, University of Tokyo, pp. 26–27.Google Scholar
Fujio, S. and Yanagimoto, D. (2005). Deep current measurements at 38ºN east of Japan. Journal of Geophysical Research C, 110(C2), C02010.CrossRefGoogle Scholar
Fujio, S., Yanagimoto, D. and Taira, K. (2000). Deep current structure above the Izu-Ogasawara Trench. Journal of Geophysical Research, 105(C3), 6377–6386.CrossRefGoogle Scholar
Fujioka, K., Takeuchi, A., Horiuchi, K. et al. (1993). Constrated nature between landward and seaward slopes of the Japan Trench off Miyako, Northern Japan. Proceedings of JAMSTEC Symposium of Deep-Sea Research, 9, 1–26.Google Scholar
Fujioka, K., Okino, K., Kanamatsu, T. and Ohara, Y. (2002). Morphology and origin of the Challenger Deep in the southern Mariana Trench. Geophysical Research Letters, 19, 1–4.Google Scholar
Fujiwara, T., Kodaira, S., No, T. et al. (2011). The 2011 Tohoku-Oki earthquake: displacement reaching the trench axis. Science, 334, 1240.CrossRefGoogle ScholarPubMed
Fujiwara, Y., Dato, C., Masui, N., Fujikura, K. and Kojima, S. (2001). Dual symbiosis in the cold-seep thyasirid clam Maorithyas hadalis from the hadal zone in the Japan Trench, western Pacific. Marine Ecology Progress Series, 214, 151–159.CrossRefGoogle Scholar
Fulton, J. (1973). Some aspects of the life history of Calanus plumchrus in the Strait of Georgia. Journal of the Fisheries Research Board of Canada, 30, 811–815.CrossRefGoogle Scholar
Furlong, R.R. and Wahlquist, E.J. (1999). US space missions using radioisotope power systems. Nuclear News, April, 26–34.
Gage, J.D. (2003). Food inputs, utilization, carbon flow and energetics. In Ecosystems of the World 28, Ecosystems of the Deep Sea, ed. Tyler, P.A.. Amsterdam: Elsevier, pp. 315–382.Google Scholar
Gage, J.D. and Bett, B.J. (2005). Deep-sea benthic sampling. In Methods for the Study of the Marine Benthos, 3rd edn, ed. Eleftheriou, A. and McIntyre, A.D.. Oxford: Blackwell Scientific Publications, pp. 273–325.CrossRefGoogle Scholar
Gage, J.D. and Tyler, P.A. (1991). Deep-sea Biology: A Natural History of Organisms at the Deep-sea Floor. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Galgani, F., Leaute, J.P., Moguedet, P. et al. (2000). Litter on the sea floor along European coasts. Marine Pollution Bulletin, 40, 516.CrossRefGoogle Scholar
Gambi, C., Vanreusal, A. and Danovaro, R. (2003). Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean). Deep-Sea Research I, 50, 103–117.CrossRefGoogle Scholar
Gamô, S. (1984). A new remarkably giant tanaid, Gigapseudes maximus sp.nov. (Crustacea) from abyssal depths far off southeast of Mindanao, the Philippines. Scientific Reports of Yokahoma Natural University Series, 11, 1–12.Google Scholar
Garfield, N., Rago, T.A., Schnebele, K.J. and Collins, C.A. (1994). Evidence of a turbidity current in Monterey submarine canyon associated with the 1989 Loma Prieta earthquake. Continental Shelf Research, 14, 673–686.CrossRefGoogle Scholar
Gartner, J.V. (1983). Sexual dimorphism in the bathypelagic gulper eel Eurypharynx pelecanoides (Lyomeri: Eurypharyngidae), with comments on reproductive strategy. Copia, 2, 560–563.CrossRefGoogle Scholar
Gaskell, T.F., Swallow, J.C. and Ritchie, G.S. (1953). Further notes on the greatest oceanic sounding and the topography of the Marianas Trench. Deep-Sea Research, 1, 60–63.CrossRefGoogle Scholar
Gebruk, A.V. (1993). New records of elasipodid holothurians in the Atlantic sector of Antarctic and Subantarctic. Transactions of the P.P. Shirshov Institute of Oceanology, 127, 228–244.Google Scholar
Genin, A., Dayton, P.K., Lonsdale, P.F. and Speiss, F.N. (1986). Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature, 323, 59–61.CrossRefGoogle Scholar
George, R.Y. (1979). What adaptive strategies promote immigration and speciation in deep-sea environments. Sarsia, 64(1–2), 61–65.CrossRefGoogle Scholar
George, R.Y. and Higgins, R.P. (1979). Eutrophic hadal benthic community in the Puerto-Rico Trench. Ambio Special Report, 6, 51–58.Google Scholar
Gerdes, D. (1990). Antarctic trials of the multi-box corer, a new device for benthos sampling. Polar Record, 26(156), 35–38.CrossRefGoogle Scholar
Giere, O. (2009). Meiobenthology, 2nd edn. Berlin: Springer.Google Scholar
Gislén, T. (1956). Crinoids from depths exceeding 6000 meters. Galathea Report, 2, 61–62.Google Scholar
Gilchrist, I. and MacDonald, A.G. (1980). Techniques for experiments with deep-sea organisms at high pressure. In Experimental Biology at Sea, ed. MacDonald, A.G. and Priede, I.G.. London: Academic Press, pp. 234–276.Google Scholar
Gillett, M.B., Suko, J.R. Santoso, F.O. and Yancey, P.H. (1997). Elevated levels of trimethylamine oxide in muscles of deep-sea gadiform teleosts: a high-pressure adaptation?Journal of Experimental Zoology, 279, 386–391.3.0.CO;2-K>CrossRefGoogle Scholar
Gillibrand, E.J.V., Jamieson, A.J., Bagley, P.M., Zuur, A.F. and Priede, I.G. (2007a). Seasonal development of a deep pelagic bioluminescent layer in the temperate northeast Atlantic Ocean. Marine Ecology Progress Series, 341, 37–44.CrossRefGoogle Scholar
Gillibrand, E.J.V., Bagley, P.M., Jamieson, A.J. et al. (2007b). Deep sea benthic bioluminescence at artificial food falls, 1000 to 4800m depth, in the Porcupine Seabight and Abyssal Plain, North East Atlantic Ocean. Marine Biology, 150, 1053–1060.CrossRefGoogle Scholar
Glover, A.G., Wiklund, H., Taboada, S. et al. (2013). Bone-eating worms from the Antarctic: the contrasting fate of whale and wood remains on the Southern Ocean seafloor. Proceedings of the Royal Society London B, 280, 20131390.CrossRefGoogle Scholar
Glud, R.N., Ståhl, H., Berg, P., Wenzhöfer, F., Oguri, K. and Kitazato, H. (2009). In situ microscale variation in distribution and consumption of O2: a case study from a deep ocean margin sediment (Sagami Bay, Japan). Limnology and Oceanography, 54(1), 1–12.CrossRefGoogle Scholar
Glud, R.N., Wenzhöfer, F., Middelboe, M. et al. (2013). High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nature Geoscience, 6, 284–288.CrossRefGoogle Scholar
Godbold, J.A., Rosenberg, R. and Solan, M. (2009). Species-specific traits rather than resource partitioning mediate diversity effects on resource use. PLoS ONE, 4, e7423.CrossRefGoogle ScholarPubMed
Godbold, J.A., Bulling, M.T. and Solan, M. (2011). Habitat structure mediates biodiversity effects on ecosystem properties. Proceedings of the Royal Society London B, 278, 1717–2510.CrossRefGoogle ScholarPubMed
Gooday, A.J., Holzmann, M., Cornelius, N. and Pawlowski, J. (2004). A new monothalamous foraminiferan from 1000–6300 m water depth in the Weddell Sea: morphological and molecular characterisation. Deep-Sea Research II, 51, 1603–1616.CrossRefGoogle Scholar
Gooday, A.J., Cedhagen, T., Kamenskaya, O.E. and Cornelius, N. (2007). The biodiversity and biogeography of komokiaceans and other enigmatic foraminiferan-like protists in the deep Southern Ocean. Deep-Sea Research II: Topical Studies in Oceanography, 54(16), 1691–1719.CrossRefGoogle Scholar
Gooday, A.J., Todo, Y., Uematsu, K. and Kitazato, H. (2008). New organic-walled Foraminifera (Protista) from the ocean’s deepest point, the Challenger Deep (western Pacific Ocean). Zoological Journal of the Linnean Society, 153, 399–423.CrossRefGoogle Scholar
Gooday, A.J., Uematsu, K., Kitazato, H., Toyofuku, T. and Young, J.R. (2010). Traces of dissolved particles, including coccoliths, in the tests of agglutinated Foraminifera from the Challenger Deep (10 897 m water depth, western equatorial Pacific). Deep-Sea Research I, 57(2), 239–247.CrossRefGoogle Scholar
Gonzalez-Leon, J.A., Acar, M.H., Ryu, S.-W., Ruzette, A.-V.J. and Mayes, A.M. (2003). Low-temperature processing of ‘baroplastics’ by pressure-induced flow. Nature, 426, 424–428.CrossRefGoogle ScholarPubMed
Gore, R.H. (1985a). Abyssobenthic and abyssopelagic penaeoidean shimp (families Aristaeidae and Penaeidae) from the Venezuela Basin, Carribean Sea. Crustaceana, 49, 119–138.CrossRefGoogle Scholar
Gore, R.H. (1985b). Bright colours in the realm of eternal light. Sea Frontiers, 31, 264–271.Google Scholar
Gould, W.J. and McKee, W.D. (1973). Vertical structure of semi-diurnal currents in the Bay of Biscay. Nature, 244, 88–91.CrossRefGoogle Scholar
Gracia, A., Ardila, N.E., Rachello, P. and Diaz, J.M. (2005). Additions to the scaphopod fauna (Mollusca: Scaphopoda) of the Colombian Caribbean. Caribbean Journal of Science, 41(2), 328–334.Google Scholar
Graeve, M., Hagen, W. and Kattner, G. (1994). Herbivorous or omnivorous? On the significance of lipid compositions as trophic markers in Antarctic copepods. Deep-Sea Research, 41, 915–924.CrossRefGoogle Scholar
Graeve, M., Kattner, G. and Piependurgo, D. (1997). Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions?Polar Biology, 18, 53–61.CrossRefGoogle Scholar
Grimes, D.J., Singleton, F.L., Stemmler, J. et al. (1984). Microbiological effects of wastewater effluent discharge into coastal waters of Puerto Rico. Water Research, 18, 613–619.CrossRefGoogle Scholar
Guennegan, Y. and Rannou, M. (1979). Semi-diurnal rhythmic activity in deep sea benthic fishes in the Bay of Biscay. Sarsia, 64, 113–116.CrossRefGoogle Scholar
Gupta, N., Woldesenbet, E. and Sankaran, S. (2001). Studies on compression failure features in syntactic foam material. Journal of Materials Science, 36, 4485–4491.CrossRefGoogle Scholar
Haddock, S.H.D., Moline, M.A. and Case, J.F. (2010). Bioluminescence in the sea. Annual Review of Marine Science, 2, 443–493.CrossRefGoogle Scholar
Haedrich, R.L., Rowe, G.T. and Polloni, P.T. (1980). The megabenthic fauna in the deep sea south of New England, USA. Marine Biology, 57, 165–179.CrossRefGoogle Scholar
Haefner, B. (2003). Drugs from the deep: marine natural products as drug candidates. Drug Discovery Today, 8(2), 536–544.CrossRefGoogle ScholarPubMed
Hahn, J. (1950). Some aspects of deep sea underwater photography. Photographic Society of America Journal, Section B, 16(6), 27–29.Google Scholar
Hallock, Z.R. and Teague, W.J. (1996). Evidence for a North Pacific deep western boundary current. Journal of Geophysical Research, 101, 6617–6624.CrossRefGoogle Scholar
Hansen, B. (1957). Holothurioidea from depths exceeding 6000 metres. Galathea Report, 2, 33–54.Google Scholar
Hansen, B. (1972). Photographic evidence of a unique type of walking in deep-sea holothurians. Deep-Sea Research, 19, 461–462.Google Scholar
Hanson, P.P., Zenkevich, N.L., Sergeev, U.V. and Udintsev, G.B. (1959). Maximum depths of the Pacific Ocean. Priroda, 6, 84–88. (In Russian.)Google Scholar
Hardy, K., Olsson, M., Yayanos, A.A., Prsha, J. and Hagey, W. (2002). Deep ocean visualisation experimenter (DOVE): low cost 10 km camera and instrument platform. OCEANS’02 MTS/IEEE, 4, 2390–2394.CrossRefGoogle Scholar
Hargrave, B.T., Phillips, G.A., Prouse, N.J. and Cranford, P.J. (1995). Rapid digestion and assimilation of bait by the deep-sea amphipod Eurythenes gryllus. Deep-Sea Research I, 42(11/12), 1905–1921.CrossRefGoogle Scholar
Harper, A.A., MacDonald, A.G., Wardle, C.S. and Pennec, J.-P. (1987). The pressure tolerance of deep-sea fish axons: results of Challenger cruise 6B/85. Comparative Biochemistry and Physiology Part A, 88A, 647–653.CrossRefGoogle Scholar
Harrison, C.S., Hida, T.S. and Seki, M.P. (1983). Hawaiian seabird feeding ecology. Wildlife Monographs, 85, 1–71.Google Scholar
Hartmann, A.C. and Levin, L.A. (2012). Conservation concerns in the deep. Science, 336, 667–668.CrossRefGoogle ScholarPubMed
Hasegawa, M., Kurohiji, Y., Takayanagi, S., Sawadaishi, S. and Yao, M. (1986). Collection of fish and amphipoda from abyssal sea-floor at 30ºN-147ºE using traps tied to 10000m wire of research vessel. Bulletin of the Tokai Regional Fishery Research Laboratory/TOKAISUIKENHO, 119, 65–75. (In Japanese.)Google Scholar
Hashimoto, J. (1998). Onboard Report of KR98–05 Cruise in the Challenger Deep. RV KAIREI/ROV KAIKO. Yokosuka, Japan: JAMSTEC.Google Scholar
Havermans, C., Nagy, Z.T., Sonet, G., De Broyer, C. and Martin, P. (2010). Incongruence between molecular phylogeny and morphological classificationin amphipod crustaceans: a case study of Antarctic lysianassoids. Molecular Phylogenetics and Evolution, 55, 202–209.CrossRefGoogle ScholarPubMed
Hay, W.W., Sloan, J.L. and Wold, C.N. (1988). Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction. Journal of Geophysical Research: Solid Earth (1978–2012), 93(B12), 14933–14940.CrossRefGoogle Scholar
Hazel, J.R. and Williams, E.E. (1990). The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Progress in Lipid Research, 29, 167–227.CrossRefGoogle ScholarPubMed
Heezen, B.C. (1960). The rift in the ocean floor. Scientific American, 203(4), 98–110.CrossRefGoogle Scholar
Heezen, B.C. and Ewing, M. (1952). Turbidity currents and submarine slumps and the 1929 Grand Banks earthquake. American Journal of Science, 250, 849–878.CrossRefGoogle Scholar
Heezen, B.C. and Hollister, C.D. (1971). The Face of the Deep. Oxford: Oxford University Press.Google Scholar
Heezen, B.C. and Johnson, G.L. (1965). The South Sandwich Trench. Deep-Sea Research, 12, 185–197.Google Scholar
Heezen, B.C. and McGregor, I.D. (1973). The evolution f the Pacific. Scientific American, 229, 102–112.CrossRefGoogle Scholar
Heezen, B.C., Bunce, E.T., Hersey, J.B. and Tharp, M. (1964). Chain and Romanche fracture zones. Deep-Sea Research, 11, 11–33.Google Scholar
Henriques, C., Priede, I.G. and Bagley, P.M. (2002). Baited camera observations of deep-sea demersal fishes of the northeast Atlantic Ocean at 15–28ºN off West Africa. Marine Biology, 141, 307–314.Google Scholar
Herdman, H.F.P., Wiseman, J.D.H. and Ovey, C.D. (1956). Proposed names of features on the deep-sea floor, 3. Southern or Antarctic Ocean. Deep-Sea Research, 3, 258–261.Google Scholar
Herring, P.J. (2002). The Biology of the Deep Ocean. Oxford: Oxford University Press.Google Scholar
Hess, H.H. and Buell, H.W. (1950). The greatest depth in the oceans. Transactions of the American Geophysics Union, 31, 401–405.CrossRefGoogle Scholar
Hessler, R.R. and Jumars, P.A. (1974). Abyssal community analysis from replicate box cores in the central North Pacific. Deep-Sea Research, 21, 185–209.Google Scholar
Hessler, R.R. and Sanders, H.L. (1967). Faunal diversity in the deep-sea. Deep-Sea Research, 14, 65–78.Google Scholar
Hessler, R.R. and Strömberg, J.-O. (1989). Behavior of Janiroidean isopods (Asellota), with special reference to deep-sea genre. Sarsia, 74, 145–159.CrossRefGoogle Scholar
Hessler, R.R., Isaacs, J.D. and Mills, E.L. (1972). Giant amphipod from the abyssal Pacific Ocean. Science, 175(4022), 636–637.CrossRefGoogle ScholarPubMed
Hessler, R.R., Ingram, C.L., Yayanos, A.A. and Burnett, B.R. (1978). Scavenging amphipods from the floor of the Philippine Trench. Deep-Sea Research, 25, 1029–1047.CrossRefGoogle Scholar
HessIer, R.R., Wilson, G.D.F. and Thistle, D. (1979). The deep-sea isopods: a biogeographic and phylogenetic overview. Sarsia, 64, 67–75.CrossRefGoogle Scholar
Hinrichs, K.U. and Inagaki, F. (2012). Downsizing the deep biosphere. Science, 338(6104), 204–205.CrossRefGoogle ScholarPubMed
Hochachka, P.W. and Somero, G.N. (1984). Temperature adaptation. In Biochemical Adaptation: Mechanism and Process in Physiological Evolution. ed. Hochachka, P.W. and Somero, G.N.. Oxford: Oxford University Press, pp. 355–449.Google Scholar
Hochachka, P.W. and Somero, G.N. (2002). Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford: Oxford University Press.Google Scholar
Hollister, C.D. and McCave, I.N. (1984). Sedimentation under deep sea storms. Nature, 309, 220–225.CrossRefGoogle Scholar
Holt, R.D. (2010). 2020 visions: ecology. Nature, 463, 32.Google Scholar
Holzer, T.L. and Savage, J.C. (2013). Global earthquake fatalities and population. Earthquake Spectra, 29(1), 155–175.CrossRefGoogle Scholar
Honda, C.M., Kusakabe, M., Nakabayashi, S., Manganini, S.J. and Honjo, S. (1997). Change in pCO2 through biological activity in the marginal seas of the western North Pacific: the efficiency of the biological pump estimated by a sediment trap experiment. Journal of Oceanography, 53, 645–662.Google Scholar
Horibe, S. (1982). Technique and studies of marine environmental assessment. Results of tests of automatic floating deep-sea sampling device in deep water (6000 m). Biological and collecting experiments. Special Report of the Ocean Research Institute, Tokyo University, March, p. 23.
Horikoshi, K. and Bull, A.T. (2011). Prologue: definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In Extremophiles Handbook, ed. Horikoshi, K., Antranikian, G., Bull, A.T., Robb, F.T. and Stetter, K.O.. London: Springer, pp. 4–14.CrossRefGoogle Scholar
Horikoshi, K. and Grant, W.D. (1998). Extremophiles. Microbial Life in Extreme Environments. New York: Wiley-Liss.Google Scholar
Horikoshi, K., Antranikian, G., Bull, A.T., Robb, F.T. and Stetter, K.O. (2011). Extremophiles Handbook. London: Springer.CrossRefGoogle Scholar
Horikoshi, M., Fujita, T. and Ohta, S. (1990). Benthic associations in bathyal and hadal depths off the Pacific coast of north eastern Japan: physiognomies and site factors. Progress in Oceanography, 24, 331–339.CrossRefGoogle Scholar
Horne, D.J. (1999). Ocean circulation modes of the Phanaerozoic: implications for the antiquity of deep-sea benthonic invertebrates. Crustaceana, 72, 999–1018.CrossRefGoogle Scholar
Hoskin, C.J., Higgie, M., McDonald, K.R. and Moritz, C. (2005). Reinforcement drives rapid allopatric speciation. Nature, 437(27), 1353–1356.CrossRefGoogle ScholarPubMed
Howell, D.G. (1989). Tectonics of Suspect Terranes: Mountain Building and Continental Growth. London: Chapman and Hall.Google Scholar
Howell, D.G. and Murray, R.W. (1986). A budget for continental growth and denudation. Science, 233(4762), 446–449.CrossRefGoogle ScholarPubMed
Hsu, K.J. (1992). Challenger at Sea: A Ship that Revolutionized Earth Science. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Huber, J.A., Mark Welch, D.B., Morrison, H.G. et al. (2007). Microbial population structures in the deep marine biosphere. Science, 318, 97–100.CrossRefGoogle ScholarPubMed
Hudson, I.R., Pond, D.W., Billett, D.S.M. et al. (2004). Temporal variations in fatty acid composition of deep-sea holothurians: evidence of bentho-pelagic coupling. Marine Ecology Progress Series, 281, 109–120.CrossRefGoogle Scholar
Humphris, S.E. (2010). Vehicles for deep sea exploration. In Marine Ecological Processes: A Derivative of the Encyclopedia of Ocean Sciences, ed. Steele, J.H., Thorpe, S.A. and Turekian, K.K.. London: Academic Press, pp. 197–209.Google Scholar
Hydrographic Department, Japan Marine Safety Agency (1984). Mariana Trench survey by the ‘Takuyo’. International Hydrographic Bulletin, 351–352.
Imai, E., Honda, H., Hatori, K., Brack, A. and Matsuno, K. (1999). Elongation of oligopeptides in a simulated submarine hydrothermal system. Science, 283, 831–833.CrossRefGoogle Scholar
Ingram, C.L. and Hessler, R.R. (1983). Distribution and behavior of scavenging amphipods from the central North Pacific. Deep-Sea Research, 30(7A), 683–706.CrossRefGoogle Scholar
Ingram, C.L. and Hessler, R.R. (1987). Population biology of the deep-sea amphipod Eurythenes gryllus inferences from instar analyses. Deep-Sea Research A, 34(12) 1889–1910.CrossRefGoogle Scholar
Isaacs, J.D. and Schick, G.B. (1960). Deep-sea free instrument vehicle. Deep-Sea Research, 7(1), 61–67.CrossRefGoogle Scholar
Isaacs, J.D. and Schwartzlose, R.A. (1975). Active animals of the deep sea floor. Scientific American, 233(4), 84–91.CrossRefGoogle Scholar
Itoh, K., Inoue, T., Tahara, J. et al. (2008). Sea trials of the new ROV ABISMO to explore the deepest parts of oceans. Proceedings of the Eighth ISOPE Pacific/Asia Offshore Mechanics Symposium.
Itou, M., Matsumura, I. and Noriki, S. (2000). A large flux of particulate matter in the deep Japan Trench observed just after the 1994 Sanriku-Oki earthquake. Deep-Sea Research I, 47, 1987–1998.CrossRefGoogle Scholar
Itoh, M., Kawamura, K., Kitahashi, T. et al. (2011). Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific Ocean. Deep-Sea Research, 58, 86–97.CrossRefGoogle Scholar
Ivanov, A.V. (1963). Vertical and geographical dissemination of Pogonophora. Proceedings of the XVI International Congress on Zoology, Washington, DC, 1, 97.Google Scholar
Iwamoto, T. and Stein, D.L. (1974). A systematic review of the rattail fishes (Macrouridae: Gadiformes) from Oregon and adjacent waters. Occasional Papers of the California Academy of Sciences, 111, 1–79.CrossRefGoogle Scholar
Jacobs, D.K. and Lindberg, D.R. (1998). Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proceedings of the National Academy of Sciences, USA, 95, 9396–9401.CrossRefGoogle ScholarPubMed
Jamieson, A.J. and Fujii, T. (2011). Trench connection. Biology Letters, 7, 641–643.CrossRefGoogle ScholarPubMed
Jamieson, A.J. and Yancey, P.H. (2012). On the validity of the Trieste flatfish; dispelling the myth. Biological Bulletin, 222, 171–175.CrossRefGoogle ScholarPubMed
Jamieson, A.J., Fujii, T., Solan, M. et al. (2009a). Liparid and Macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour. Proceedings of the Royal Society of London B, 276, 1037–1045.CrossRefGoogle ScholarPubMed
Jamieson, A.J., Fujii, T., Solan, M. et al. (2009b). First findings of decapod crustacea in the hadal-zone. Deep-Sea Research I, 56, 641–647.CrossRefGoogle Scholar
Jamieson, A.J., Fujii, T., Solan, M. and Priede, I.G. (2009c). HADEEP: free-falling landers to the deepest places on Earth. Marine Technology Society Journal, 43(5), 151–159.CrossRefGoogle Scholar
Jamieson, A.J., Solan, M. and Fujii, T. (2009d). Imaging deep-sea life beyond the abyssal zone. Sea Technology, 50(3), 41–46.Google Scholar
Jamieson, A.J., Fujii, T., Mayor, D.J., Solan, M. and Priede, I.G. (2010). Hadal trenches: the ecology of the deepest places on Earth. Trends in Ecology and Evolution, 25(3), 190–197.CrossRefGoogle ScholarPubMed
Jamieson, A.J., Kilgallen, N.M., Rowden, A.A. et al. (2011a). Bait-attending fauna of the Kermadec Trench, SW Pacific Ocean: evidence for an ecotone across the abyssal-hadal transition zone. Deep-Sea Research I, 58, 49–62.CrossRefGoogle Scholar
Jamieson, A.J., Gebruk, A., Fujii, T. and Solan, M. (2011b). Functional effects of the hadal sea cucumber Elpidia atakama (Holothuroidea, Elasipodida) reflect small-scale patterns of resource availability. Marine Biology, 158(12), 2695–2703.CrossRefGoogle Scholar
Jamieson, A.J., Fujii, T., Bagley, P.M. and Priede, I.G. (2011c). The scavenging dependency of the deepwater eel Synaphobranchus kaupii on the Portuguese dogfish Centroscymnus coelolepis. Journal of Fish Biology, 79, 205–216.CrossRefGoogle Scholar
Jamieson, A.J., Lörz, A.-N., Fujii, T. and Priede, I.G. (2012a). In situ observations of trophic behaviour and locomotion of Princaxelia amphipods (Crustacea, Pardaliscidae) at hadal depths in four West Pacific trenches. Journal of the Marine Biology Association of the United Kingdom, 91(1), 143–150.Google Scholar
Jamieson, A.J., Fujii, T. and Priede, I.G. (2012b). Locomotory activity and feeding strategy of the hadal munnopsid isopod Rectisura cf. herculea (Crustacea: Asellota) in the Japan Trench. Journal of Experimental Biology, 215, 3010–3017.CrossRefGoogle ScholarPubMed
Jamieson, A.J., Priede, I.G. and Craig, J. (2012c). Distinguishing between the abyssal macrourids Coryphaenoides yaquinae and C. armatus from in situ photography. Deep-Sea Research I, 64, 78–85.CrossRefGoogle Scholar
Jamieson, A.J., Lacey, N.C., Lörz, A.-N., Rowden, A.A. and Piertney, S.B. (2013). The supergiant amphipod Alicella gigantea (Crustacea: Alicellidae) from hadal depths in the Kermadec Trench, SW Pacific Ocean. Deep-Sea Research II. 92, 107–113.CrossRefGoogle Scholar
Jannasch, H.W. and Taylor, C.D. (1984). Deep-sea microbiology. Annual Review of Microbiology, 38, 487–514.CrossRefGoogle ScholarPubMed
Janβen, F., Treude, T. and Witte, U. (2000). Scavenger assembleges under differing trophic conditions: a case study in the deep Arabian Sea. Deep-Sea Research II, 47, 2999–3026.Google Scholar
Jenik, J. (1992). Ecotone and ecocline: two questionable concepts in ecology. Ekologia, 11(3), 243–250.Google Scholar
Jones, D.O.B., Bett, B.J., Wynn, R.B. and Masson, D.G. (2009). The use of towed camera platforms in deep-water science. Underwater Technology, 28(2), 41–50.CrossRefGoogle Scholar
Johnson, G.C. (1998). Deep water properties, velocities, and dynamics over ocean trenches. Journal of Marine Research, 56(2), 239–347.CrossRefGoogle Scholar
Jørgensen, B.B. (2012). Shrinking majority of the deep biosphere. Proceedings of the National Academy of Sciences, USA, 109(40), 15976–15977.CrossRefGoogle ScholarPubMed
Jørgensen, B.B. and D’Hondt, S. (2006). A starving majority deep beneath the seafloor. Science, 314, 932–934.CrossRefGoogle ScholarPubMed
Jumars, P.A. (1975). Environmental grain and polychaete species’ diversity in a bathyal benthic community. Marine Biology, 30(3), 253–266.CrossRefGoogle Scholar
Jumars, P.A. and Hessler, R.R. (1976). Hadal community structure: implications from the Aleutian Trench. Journal of Marine Research, 34, 547–560.Google Scholar
Kaartvedt, S., Van Dover, C.L., Mullineaux, L.S. Wiebe, P.H. and Bollens, S.M. (1994). Amphipods on a deep-sea hydrothermal treadmill. Deep-Sea Research I, 41(1), 179–195.CrossRefGoogle Scholar
Kaiser, M.J. and Moore, P.G. (1999). Obligate marine scavengers: do they exist?Journal of Natural History, 33, 475–481.CrossRefGoogle Scholar
Kamenskaya, O.E. (1981). The amphipods (Crustacea) from deep-sea trenches in the western part of the Pacific Ocean. Transactions of the P.P. Shirshov Institute of Oceanology, 115, 94–107. (In Russian.)Google Scholar
Kamenskaya, O.E. (1989). Peculiarities of the vertical distribution of komokiaceans in the Pacific Ocean. Transactions of the P.P. Shirshov Institute of Oceanology, 123, 55–58.Google Scholar
Karan, P.P. and Mather, Cotton (1985). Tourism and environment in the Mount Everest region. Geographical Review, 75(1), 93–95.CrossRefGoogle Scholar
Karig, D.E. and Sharman, G.F. (1975). Subduction and accretion in trenches. Earth Planetary Science Letters, 86, 377–389.Google Scholar
Kato, C. (2011). Distribution of piezophiles. In Extremophiles Handbook, ed. Horikoshi, K., Antranikian, G., Bull, A.T., Robb, F.T. and Stetter, K.O.. London: Springer, pp. 644–653.Google Scholar
Kato, C. and Bartlett, D.H. (1997). The molecular biology of barophilic bacteria. Extremophiles, 1, 111–116.CrossRefGoogle ScholarPubMed
Kato, C. and Horikoshi, K. (1996). Gene expression under high pressure. In Progress in Biotechnology 13, High Pressure Bioscience and Biotechnology, ed. Hayashi, R. and Balny, C.. Amsterdam: Elsevier Science, pp. 59–66.CrossRefGoogle Scholar
Kato, C. and Nogi, Y. (2001). Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiology Ecology, 35(3), 223–230.CrossRefGoogle ScholarPubMed
Kato, C. and Qureshi, M.H. (1999). Pressure response in deep-sea piezophilic bacteria. Journal of Molecular Microbiology and Biotechnology, 1(1), 87–92.Google ScholarPubMed
Kato, C., Sato, T. and Horikoshi, K. (1995a). Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodiversity and Conservation, 4, 1–9.CrossRefGoogle Scholar
Kato, C., Smorawinska, M., Sato, T. and Horikoshi, K. (1995b). Cloning and expression in Escherichia coli of a pressure-regulated promoter region from a barophilic bacterium, stain DB6705. Journal of Marine Biotechnology, 2, 125–129.Google Scholar
Kato, C., Suzuki, S., Hata, S., Ito, T. and Horikoshi, K. (1995c). The properties of a protease activated by high pressure from Sprosarcina sp. strain DSK25 isolated from deep-sea sediment. JAMSTEC Research, 32, 7–13.Google Scholar
Kato, C., Masui, N. and Horikoshi, K. (1996). Properties of obligately barophilic bacteria isolated from a sample of deep-sea sediment from the Izu-Bonin Trench. Journal of Marine Biotechnology, 4, 96–99.Google Scholar
Kato, C., Li, L., Tamaoka, J. and Horikoshi, K. (1997). Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles, 1, 117–123.CrossRefGoogle Scholar
Kato, C., Li, L., Nogi, Y. et al. (1998). Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Applied Environmental Microbiology, 64, 1510–1513.Google Scholar
Kaufmann, R.S. (1994). Structure and function of chemoreceptors in scavenging lysianassoid amphipods. Journal of Crustacean Biology, 14(1), 54–71.CrossRefGoogle Scholar
Kaufmann, R.S. and Smith, K.L. (1997). Activity patterns of mobile epibenthic megafauna at an abyssal site in the eastern North Pacific: results from a 17-month time-lapse photographic study. Deep-Sea Research, 44, 559–579.CrossRefGoogle Scholar
Kawabe, M. (1993). Deep water properties and circulation in the western North Pacific. In Deep Ocean Circulation: Physical and Chemical Aspects, ed. Teramoto, T.. Amsterdam: Elsevier, pp. 17–37.CrossRefGoogle Scholar
Kawabe, M. and Fujio, S. (2010). Pacific Ocean circulation based on observation. Journal of Oceanography, 66, 389–403.CrossRefGoogle Scholar
Kawabe, M., Fujio, S. and Yanagimoto, D. (2003). Deep-water circulation at low latitudes in the western North Pacific. Deep-Sea Research I, 50(5), 631–656.CrossRefGoogle Scholar
Kearey, P. and Vine, F.J. (1990). Global Tectonics. Oxford: Blackwell Science.Google Scholar
Keller, N., Naumov, D. and Pasternak, F. (1975). Bottom deep-sea Coelenterata from the Gulf and Caribbean. Trudy Instituta Okeanologii, 100, 147–159.Google Scholar
Kelly, R.H. and Yancey, P.H. (1999). High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans. Biological Bulletin, 196, 18–25.CrossRefGoogle ScholarPubMed
Kemp, K.M., Jamieson, A.J., Bagley, P.M. et al. (2006). Consumption of a large bathyal food fall, a six month study in the north-east Atlantic. Marine Ecology Progress Series, 310, 65–76.CrossRefGoogle Scholar
Kendall, V.J. and Haedrich, R.L. (2006). Species richness in Atlantic deep-sea fishes assessed in terms of themed-domain effect and Rapoport’s rule. Deep-Sea Research I, 53(3), 506–515.CrossRefGoogle Scholar
Kennedy, H., Beggins, J., Duarte, C.M. et al. (2010). Seagrass sediments as a global carbon sink: isotopic constraints. Global Biogeochemical Cycles, 24, GB4026.CrossRefGoogle Scholar
Kiilerich, A. (1955). Bathymetric features of the Philippine Trench. Galathea Report, 1, 155–172.Google Scholar
Kikuchi, T. and Nemoto, T. (1991). Deep-sea shrimps of the genus Benthesicymus (Decapoda: Dendrobranchiata) from the western North Pacific. Journal of Crustacean Biology, 11(1), 64–89.CrossRefGoogle Scholar
Kilgallen, N.M. (in press). Three new species of Hirondellea (Crustacea, Amphipoda, Hirondelleidae) from hadal depths of the Peru–Chile Trench. Marine Biology Research.
Kiraly, S., Moore, J.A. and Jasinski, P.H. (2003). Deepwater and other sharks of the US Atlantic Ocean Exclusive Economic Zone. Marine Fisheries Review, 62, 1483–1491.Google Scholar
Kirkgaard, J.B. (1956). Benthic polychaeta from depths exceeding 6000 meters. Galathea Report, 2, 63–78.Google Scholar
Kirsch, P.E., Iverson, S.J. and Bowen, W.D. (2000). Effect of a low-fat diet on body composition and blubber fatty acids of captive juvenile harp seals (Phoca groenlandica). Physiological and Biochemical Zoology, 73, 45–59.CrossRefGoogle Scholar
Kitahashi, T., Kawamura, K., Veit-Köhler, G. et al. (2012). Assemblages of Harpacticoida (Crustacea: Copepoda) from the Ryukyu and Kuril Trenches, north-west Pacific Ocean. Journal of the Marine Biological Association of the United Kingdom, 92, 275–286.CrossRefGoogle Scholar
Kitahashi, T., Kawamura, K., Kojima, S. and Shimanaga, M. (2013). Assemblages gradually change from bathyal to hadal depth: a case study on harpacticoid copepods around the Kuril Trench (north-west Pacific Ocean). Deep-Sea Research I, 74, 39–47.CrossRefGoogle Scholar
Kitazato, H., Uematsui, K., Todo, Y. and Gooday, A.J. (2009). New species of Leptohalysis (Rhizaria, Foraminifera) from an extreme hadal site in the western Pacific Ocean. Zootaxa, 2059, 23–32.Google Scholar
Klages, M., Vopel, K., Bluhm, H. et al. (2001). Deep-sea food falls: first observation of a natural event in the Arctic Ocean. Polar Biology, 24, 292–295.CrossRefGoogle Scholar
Knauss, J.A. (1997). Introduction to Physical Oceanography, 2nd edn. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Knudsen, J. (1964). Scaphopoda and Gastropoda from depths exceeding 6000 m. Galathea Report, 7, 1–12.Google Scholar
Knudsen, J. (1970). The systematics and biology of abyssal and hadal Bivalvia. Galathea Report, 11, 1–241.Google Scholar
Kobayashi, H., Hatada, Y., Tsubouchi, T., Nagahama, T. and Takami, H. (2012). The hadal amphipod Hirondellea gigas possessing a unique cellulase for digesting wooden debris buried in the deepest seafloor. PLoS ONE, 7(8), e42727.CrossRefGoogle ScholarPubMed
Koltun, V.M. (1970). Sponges of the Arctic and Antarctic: a faunistic review. Symposia of the Zoological Society of London, 25, 285–297.Google Scholar
Koehler, R. (1909). Echinodermes provenant des campagnes du yacht ‘Princesse Alice’. Résultats des Campagnes Scientifiques du Prince Albert ler, Monaco, 34, 1–317.Google Scholar
Kohnen, W. (2009). Human exploration of the deep seas: fifty years and the inspiration continues. Marine Technology Society Journal, 43(5), 42–62.CrossRefGoogle Scholar
Kramp, P.L. (1956). Hydroids from depths exceeding 6000 meters. Galathea Report, 2, 17–20.Google Scholar
Kramp, P.L. (1959). Stephanoscyphus (Scyphozoa). Galathea Report, 1, 173–188.Google Scholar
Krylova, E.M. and Sahling, H. (2010). Vesicomyidae (Bivalvia): current taxonomy and distribution. PLoS ONE, 5(4), e9957.CrossRefGoogle ScholarPubMed
Kudiniva-Pasternak, R.K. (1978). Tanaidacea (Crustacea, Malacostraca) from the deep-sea trenches of the western part of the Pacific. Trudy Instituta Okeanologii, 108, 115–135.Google Scholar
Kullenberg, B. (1956). The technique of trawling. In The Galathea Deep Sea Expedition, ed. Bruun, A.F., Greve, S., Mielche, H. and Spärk, R.. London: George Allen and Unwin, pp. 112–118.Google Scholar
Kyo, M., Miyazaki, E., Tsukioka, S. et al. (1995). The sea trial of ‘KAIKO’, the full ocean depth research ROV. OCEANS ’95, 3, 1991–1996.Google Scholar
Lacey, N.C., Jamieson, A.J. and Søreide, F. (2013). Successful capture of ultradeep sea animals from the Puerto Rico Trench. Sea Technology, 54(3), 19–21.Google Scholar
Laist, D.W. (1987). Overview of the biological effects of lost and discarded plastic debris in the marine environment. Marine Pollution Bulletin, 18, 319.CrossRefGoogle Scholar
Lallemand, S. (1999). La subduction océanique. Pour la Science, 259, 108.Google Scholar
Lambshead, P.J.D. (2003). Marine nematode deep-sea biodiversity – hyperdiverse or hype?Journal of Biogeography, 30(4), 475–485.CrossRefGoogle Scholar
Lampitt, R.S. (1985). Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Research, 32, 885–897.CrossRefGoogle Scholar
Larsen, K. and Simomura, M. (2007a). Tanaidacea (Crustacea: Peracarida) from Japan III. The deep trenches; the Kuril–Kamchatka Trench and Japan Trench (Foreword). Zootaxa, 1599, 5–12.Google Scholar
Larsen, K. and Simomura, M. (2007b). Tanaidacea (Crustacea: Peracarida) from Japan II. Tanaidomorpha from the East China Sea, the West Pacific, and the Nansei Islands. Zootaxa, 1341, 29–48.Google Scholar
Laubier, L. (1985). Une contribution française aux recherches écologiques en mer profonde: bilan des plongées en bathyscaphes. Tethys, 11(3–4), 255–263.Google Scholar
Lauro, F.M., Chastain, R.A., Blankenship, L.E., Yayanos, A.A. and Bartlett, D.H. (2007). The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Applied Environmental Microbiology, 73, 838–845.CrossRefGoogle ScholarPubMed
Laxson, C.J., Condon, N.E., Drazen, J.C. and Yancey, P.H. (2011). Decreasing urea:trimethylamine n-oxide ratios with depth in Chondrichthyes: a physiological depth limit?Physiological and Biochemical Zoology, 84(5), 494–505.CrossRefGoogle ScholarPubMed
Lay, T., Kanamori, H., Ammon, C.J. et al. (2005). The Great Sumatra-Andaman earthquake of 26 December 2004. Science, 308(5725), 1127–1133.CrossRefGoogle ScholarPubMed
Le Pichon, X. (1968). Sea-floor spreading and continental drift. Journal of Geophysical Research, 73(12), 3661–3697.CrossRefGoogle Scholar
Leal, J.H. and Harasewych, M.G. (1999). Deepest Atlantic molluscs: hadal limpets (Mollusca, Gastropoda, Cocculiniformia) from the northern boundary of the Caribbean Plate. Invertebrate Biology, 118(2), 116–136.CrossRefGoogle Scholar
Lebrato, M. and Jones, D.O.B. (2009). Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnology and Oceanography, 54, 1197–1209.CrossRefGoogle Scholar
Lebrato, M., Pitt, K.A., Sweetman, A.K. et al. (2012). Jelly-falls historic and recent observations: a review to drive future research directions. Hydrobiologica, 690(1), 227–245.CrossRefGoogle Scholar
Lecroq, B., Gooday, A.J., Cedhagen, T., Sabbatini, A. and Pawlowski, J. (2009a). Molecular analyses reveal high levels of eukaryote richness associated with enigmatic deep-sea protists (Komokiacea). Marine Biodiversity, 39, 45–55.CrossRefGoogle Scholar
Lecroq, B., Gooday, A.J., Tsuchiya, M. and Pawlowski, J. (2009b). A new genus of xenophyophores (Foraminifera) from Japan Trench: morphological description, molecular phylogeny and elemental analysis. Zoological Journal of the Linnean Society, 156(3), 455–464.CrossRefGoogle Scholar
Lee, J.E. (2012). Ocean’s deep, dark trenches to get their moment in the spotlight. Science, 336, 141–142.CrossRefGoogle ScholarPubMed
Lee, R.F., Hagen, W. and Kattner, G. (2006). Lipid storage in marine zooplankton. Marine Ecology Progress Series, 307, 273–306.CrossRefGoogle Scholar
Lee, W.Y. and Arnold, C.R. (1983). Chronic toxicity of ocean-dumped pharmaceutical wastes to the marine amphipod Amphithoe valida. Marine Pollution Bulletin, 14, 150–153.CrossRefGoogle Scholar
Lehtonen, K.K. (1996). Ecophysiology of the benthic amphipod Monoporeia affinis in an open-sea of the northern Baltic Sea: seasonal variations in body composition, with bioenergetic considerations. Marine Ecology Progress Series, 143, 87–98.CrossRefGoogle Scholar
Lemche, H. (1957). A new living deep-sea mollusc of the Cambro-Devonian class Monoplacophora. Nature, 179, 413–416.CrossRefGoogle Scholar
Lemche, H., Hansen, B., Madsen, F.J. Tendal, O.S. and Wolff, T. (1976). Hadal life as analysed from photographs. Videnskabelige Meddelelser Fra Dansk Naturhistorik Forening, 139, 263–336.Google Scholar
Lerche, D. and Nozaki, Y. (1998). Rare earth elements of sinking particulate matter in the Japan Trench. Earth and Planetary Science Letters, 159, 71–86.CrossRefGoogle Scholar
Levin, L.A. (1991). Interactions between metazoans and large, agglutinated protozoans: implications for the community structure of deep-sea benthos. American Zoologist, 31, 886–900.CrossRefGoogle Scholar
Levin, L.A. (2005). Ecology of cold seep sediments: interactions of fauna with flow, chemistry, and microbes. Oceanography and Marine Biology, 43, 1–46.Google Scholar
Levin, L.A. and Dayton, P.K. (2009). Ecological theory and continental margins: where shallow meets deep. Trends in Ecology and Evolution, 24(11), 606–617.CrossRefGoogle ScholarPubMed
Li, Z.H., Xu, Z.Q. and Gerya, T.V. (2001). Flat versus steep subduction: contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth and Planetary Science Letters, 301, 65–77.CrossRefGoogle Scholar
Litzov, M.A., Bailey, M.A., Prahl, F.G. and Heintz, R. (2006). Climate regime shifts and reorganization of fish communities: the essential fatty acid limitation hypothesis. Marine Ecology Progress Series, 315, 1–11.CrossRefGoogle Scholar
Liu, F., Cui, W.C. and Li, X.Y. (2010). China’s first deep manned submersible, JIAOLONG. Science China Earth Science, 53, 1407–1410.CrossRefGoogle Scholar
Longhurst, A. (2007). Ecological Geography of the Sea, 2nd edn. London: Academic Press.Google Scholar
Longhurst, A., Sathyendranath, S., Platt, T. and Caverhill, C. (1995). An estimate of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research, 17(6), 1245–1271.CrossRefGoogle Scholar
Lörz, A.-N. (2010). Trench treasures: the genus Princaxelia (Pardaliscidae, Amphipoda). Zoologica baetica, 21, 65–84.Google Scholar
Lörz, A.-N., Berkenbusch, K., Nodder, S. et al. (2012). A review of deep-sea benthic biodiversity associated with trench, canyon and abyssal habitats below 1500 m depth in New Zealand waters. New Zealand Aquatic Environment and Biodiversity Report, 92, 133p.Google Scholar
Lutz, M.J., Caldeira, K., Dunbar, R.B. and Behrenfeld, M.J. (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112, C10.CrossRefGoogle Scholar
Lutz, R.A. and Falkowski, P.G. (2012). A dive to Challenger Deep. Science, 336, 301–302.CrossRefGoogle ScholarPubMed
MacDonald, A.G. (1978). Further studies on the pressure tolerance of deep-sea crustacean, with observations using a new high pressure trap. Marine Biology, 45, 9–21.CrossRefGoogle Scholar
MacDonald, A.G. (1984a). The effect of pressure on the molecular structure and physiological functions of cell membranes. Philosophical Transactions of the Royal Society London B, 304, 47–68.CrossRefGoogle Scholar
MacDonald, A.G. (1984b). Homeoviscous theory under pressure. I. The fatty acid composition of Tetrahymena pyriformis NT-l grown at high pressure. Biochimica Biophysica Acta, 775, 141–149.CrossRefGoogle Scholar
MacDonald, A.G. (1997). Hydrostatic pressure as an environmental factor in life processes. Comparative Biochemistry and Physiology, 116A, 291–297.CrossRefGoogle Scholar
MacDonald, A.G. and Cossins, A.R. (1985). The theory of homeoviscous adaptation of membranes applied to deep-sea animals. Society of Experimental Biology Symposium, 39, 301–322.Google ScholarPubMed
MacDonald, A.G. and Fraser, P.J. (1999). The transduction of very small hydrostatic pressures. Comparative Biochemistry and Physiology, 122, 13–36.CrossRefGoogle ScholarPubMed
MacDonald, A.G. and Gilchrist, I. (1980). Effects of hydraulic decompression and compression on deep sea amphipods. Comparative Biochemistry and Physiology, 67A, 149–153.CrossRefGoogle Scholar
MacDonald, A.G. and Gilchrist, I. (1982). Pressure tolerance of deep-sea amphipods collected at their ambient pressure. Comparative Biochemistry and Physiology, 71A, 349–352.CrossRefGoogle Scholar
Macdonald, K.S.I.I.I., Yampolsky, L. and Duffy, J.E. (2005). Molecular and morphological evolution of the amphipod radiation in Lake Baikal. Molecular and Phylogenetic Evolution, 35, 323–343.CrossRefGoogle ScholarPubMed
MacDonell, M.T. and Colwell, R.R. (1985). Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Systematic and Applied Microbiology, 6(2), 171–182.CrossRefGoogle Scholar
MacElroy, R.D. (1974). Some comments on the evolution of extremophiles. Biosystems, 6, 74–75.CrossRefGoogle Scholar
Machida, Y. (1989). Record of Abyssobrotula galathea (Ophidiidae: Ophidiiformes) from the Izu-Bonin Trench, Japan. Bulletin of Marine Science and Fisheries, Kochi University, Japan, 11, 23–25.Google Scholar
Machida, Y. and Tachibana, Y. (1986). A new record of Bassozetus zenkevitchi (Ophidiidae, Ophidiiformes) from Japan. Japanese Journal of Ichthyology, 32, 437–439.Google Scholar
Madigan, M.T. and Marrs, B.L. (1997). Extremophiles. Scientific American, 276, 82–87.CrossRefGoogle ScholarPubMed
Madsen, F.J. (1955). Holothurioidea. Reports on the Swedish Deep-Sea Expedition, 2, Zoology, 12, 151–173.Google Scholar
Madsen, F.J. (1956). The Echinoidea, Asteroidea, and Ophiuroidea at depths exceeding 6000 metres. Galathea Report, 2, 23–32.Google Scholar
Madsen, F.J. (1961). On the zoogeography and origin of the abyssal fauna in view of the knowledge of the Porcellanasteridae. Galathea Report, 4, 177–218.Google Scholar
Magaard, L. and McKee, W.D. (1973). Semi-diurnal tidal currents at ‘site D’. Deep-Sea Research, 30, 805–833.Google Scholar
Mahaut, M.L., Sibuet, M. and Shirayama, Y. (1995). Weight-dependent respiration rates in deep-sea organisms. Deep-Sea Research I, 42, 1575–1582.CrossRefGoogle Scholar
Malyutina, M.V. (2003). Revision of Storthyngura Vanhöffen, 1914 (Crustacea: Isopods: Munnopsidae) with descriptions of three new genera and four new species from the deep South Atlantic. Organisms, Diversity and Evolution, 13, 1–101.Google Scholar
Mantovani, R. (1909). L’Antarctide, Je m’instruis. La science pour tous, 38, 595–597.Google Scholar
Mantyla, A.W. and Reid, J.L. (1978). Measurements of water characteristics at depths greater than 10 km in the Marianas Trench. Deep-Sea Research, 25, 169–173.CrossRefGoogle Scholar
Mantyla, A.W. and Reid, J.L. (1983). Abyssal characteristics of the world ocean waters. Deep-Sea Research, 30, 805–833.CrossRefGoogle Scholar
Markle, D.F. and Olney, J.E. (1990). Systematics of the pearlfishes (Pisces: Carapidae). Bulletin of Marine Science, 47, 269–410.Google Scholar
Marshall, N.B. (1954). Aspects of Deep Sea Biology. New York: Philosophical Library.Google Scholar
Marteinsson, V.T., Reysenbach, A.-L., Birrien, J.-L. and Prieur, D. (1999). A stress protein is induced in the deep-sea barophilic hyperthermophile Thermococcus barophilus when grown under atmospheric pressure. Extremophiles, 3, 277–282.CrossRefGoogle ScholarPubMed
Martin, D.D., Bartlett, D.H. and Roberts, M.F. (2002). Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles, 6, 507–514.CrossRefGoogle ScholarPubMed
Martin, J. and Miquel, J.-C. (2010). High downward flux of mucilaginous aggregates in the Ligurian Sea during summer 2002. Similarities with the mucilage phenomenon in the Adriatic Sea. Marine Ecology, 31, 393–406.Google Scholar
Maruyama, A., Honda, D., Yamamoto, H., Kitamura, K. and Higashihara, T. (2000). Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. International Journal of Systematic and Evolutionary Microbiology, 50, 835–846.CrossRefGoogle ScholarPubMed
Masson, D.G. (2001). Sedimentary processes shaping the eastern slope of the Faeroe-Shetland Channel. Continental Shelf Research, 21, 825–857.CrossRefGoogle Scholar
Masuda, H., Amaoka, K., Araga, C., Uyeno, T. and Yoshino, T. (1984). The Fishes of the Japanese Archipelago, Vol. 1. Tokyo: Tokai University Press.Google Scholar
Mayer, A.M., Glaser, K.B., Cuevas, C. et al. (2010). The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends in Pharmacological Sciences, 31(6), 255–265.CrossRefGoogle ScholarPubMed
McCain, C.M. (2009). Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18, 346–360.CrossRefGoogle Scholar
McCain, C.M. (2010). Global analysis of reptile elevational diversity. Global Ecology and Biogeography, 19, 541–553.Google Scholar
McClain, C.R. and Etter, R.J. (2005). Mid-domain models as predictors of species diversity patterns: bathymetric diversity gradients in the deep sea. Oikos, 109, 555–566.CrossRefGoogle Scholar
McClain, C.R. and Hardy, S.M. (2010). The dynamics of biogeographic ranges in the deep sea. Proceedings of the Royal Society of London B, 277, 3533–3546.CrossRefGoogle ScholarPubMed
McClain, C.R., Johnson, N.A. and Rex, M.A. (2004). Morphological disparity as a biodiversity metric in lower bathyal and abyssal gastropod assemblages. Evolution, 58, 338–348.Google ScholarPubMed
Meek, R.P. and Childress, J.J. (1973). Respiration and the effect of pressure in the mesopelagic fish Anoplogaster cornuta (Beryciformes). Deep-Sea Research, 20, 1111–1118.Google Scholar
Menard, H.W. (1958). Development of median elevations in ocean basins. Bulletin of the Geological Society of America, 69, 1179–1186.CrossRefGoogle Scholar
Menard, H.W. (1966). Fracture zones and offsets of the East Pacific Rise. Journal of Geophysics Research, 71, 682–685.CrossRefGoogle Scholar
Menard, H.W. and Smith, S.M. (1966). Hypsometry of ocean basins. Journal of Geophysical Research, 71, 4305–4325.CrossRefGoogle Scholar
Menzies, R.J. (1965). Conditions for the existence of life at the abyssal sea floor. Oceanography and Marine Biology Annual Review, 3, 195–210.Google Scholar
Menzies, R.J. and George, R.Y. (1967). A re-evaluation of the concept of hadal or ultra-abyssal fauna. Deep-Sea Research, 14, 703–723.Google Scholar
Menzies, R.J., Ewing, M., Worzel, J.L. and Clarke, A.H. (1959). Ecology of the Recent Monoplacophora. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 48(4), 529–545.CrossRefGoogle Scholar
Menzies, R.J., Smith, L. and Emery, K.O. (1963). A combined underwater camera and bottom grab: a new tool for investigation of deep-sea benthos. Oikos, 10(2), 168–182.CrossRefGoogle Scholar
Menzies, R.J., George, R.Y. and Rowe, G.T. (1973). Abyssal Environment and Ecology of the World’s Oceans. New York: John Wiley and Sons.Google Scholar
Merrett, N.R. (1987). A zone of faunal change in assemblages of abyssal demersal fish in the eastern North Atlantic: a response to seasonality in production?Biological Oceanography, 5, 137–151.Google Scholar
Merrett, N.R. and Haedrich, R.L. (1997). Deep-sea Demersal Fish and Fisheries. London: Chapman and Hall.Google Scholar
Mironov, A.N. (2000). New taxa of stalked crinoids from the suborder Bourgueticrinina (Echinodermata, Crinoidea). Zoologichesky Zhurnal, 79, 712–728. (In Russian.)Google Scholar
Messing, C.G., Neumann, A.C. and Lang, J.C. (1990). Biozonation of deepwater lithoherms and associated hardgrounds in the northeastern Straits of Florida. Palaios, 5, 15–33.CrossRefGoogle Scholar
Mikagawa, T. and Aoki, M. (2001). An outline of R/V Kairei and recent activity of the multichannel seismic reflection survey system (MCS) and ROV Kaikō. Journal of Marine Science and Technology, 6, 42–49.CrossRefGoogle Scholar
Momma, H., Watanbe, M., Hashimoto, K. and Tashiro, S. (2004). Loss of the full ocean depth ROV Kaikō, Part 1: ROV Kaikō, a review. Proceedings of the 14th International Offshore and Polar Engineering Conference Volume II, 191–193.
Monaco, A., Biscaye, P., Soyer, J., Pocklington, R. and Heussner, S. (1990). Particle fluxes and ecosystem response on a continental margin: the 1985}1988 Mediterranean ECOMARGE experiment. Continental Shelf Research, 10, 809–839.CrossRefGoogle Scholar
Monastersky, R. (2012). Dive master. Nature, 486, 194–196.CrossRefGoogle Scholar
Moore, D.R. (1963). Turtle grass in the deep sea. Science, 139, 1234–1235.Google Scholar
Morgan, J.W. (1968). Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research, 73(6), 1959–1982.CrossRefGoogle Scholar
Morton, J.E. (1959). The habits and feeding organs of Dentalium entalis. Journal of the Marine Biological Association of the United Kingdom, 38, 225–238.CrossRefGoogle Scholar
Mountfort, D.O., Rainey, F.A., Burghardt, J., Kaspar, H.F. and Stackebrandt, E. (1998). Psychromonas antarctica gen. nov., sp. nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, Antarctica. Archives of Microbiology, 169, 231–238.CrossRefGoogle ScholarPubMed
Murashima, T., Nakajoh, H., Yoshida, H., Yamauchi, N. and Sezoko, H. (2004). 7000 m class ROV KAIKŌ7000. Proceedings of the OCEANS ’04MTS/IEEE, 2, 812–817.Google Scholar
Murashima, T., Kakajoh, H. and Takami, H. (2009). 11,000m class free fall mooring system. Oceans 2009: Europe, 1–5.CrossRef
Murray, J. (1888). On the height of the land and the depth of the ocean. Scottish Geographic Magazine, 4, S.1.CrossRefGoogle Scholar
Murray, J. and Hjort, J. (1912). The Depths of the Oceans. London: Macmillan and Company.Google Scholar
Murray, J.W. (2007). Biodiversity of living benthic Foraminifera: how many species are there?Marine Micropaleontology, 64(3–4), 163–176.CrossRefGoogle Scholar
Nakajoh, H., Murashima, T. and Yoshida, H. (2005). 7000 m operable deep-sea ROV system KAIKO7000. Proceedings of the OMAE 2005, Halkidiki, Greece.Google Scholar
Nakanishi, M. and Hashimoto, J. (2011). A precise bathymetric map of the world’s deepest seafloor, Challenger Deep in the Mariana Trench. Marine Geophysics Research, 32, 455–463.CrossRefGoogle Scholar
Nakasone, K., Ikegami, A., Kato, C., Usami, R. and Horikoshi, K. (1998). Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles, 2, 149–154.CrossRefGoogle ScholarPubMed
Nakasone, K., Ikegami, A., Kawano, H. et al. (2002). Transcriptional regulation under pressure conditions by the RNA polymerase s54 factor with a two component regulatory system in Shewanella violacea. Extremophiles, 6, 89–95.Google Scholar
Nanba, N., Morihana, H., Nakamura, E. and Watanabe, N. (1990). Development of deep submergence research vehicle ‘SHINKAI 6500’. Technology Review Mitsubishi Heavy Industry Ltd, 27, 157–168.Google Scholar
Naoi, M., Seko, M. and Sumita, K. (2009). Earthquake risk and housing prices in Japan: evidence before and after massive earthquakes. Regional Science and Urban Economics, 39, 658–669.CrossRefGoogle Scholar
Naylor, E. (1985). Tidally rhythmic behaviour of marine animals. Symposium of the Society of Experimental Biology, 39, 63–93.Google ScholarPubMed
Newman, K.R., Cormier, M.-H., Weissel, J.K. et al. (2008). Active methane venting observed at giant pockmarks along the US mid-Atlantic shelf break. Earth and Planetary Science Letters, 267(1–2), 341–352.CrossRefGoogle Scholar
Nichols, D.S., Nichols, P.D. and McMeekin, T.A. (1993). Polyunsaturated fatty acids in Antarctic bacteria. Antarctic Science, 5, 149–160.CrossRefGoogle Scholar
Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J. and Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiolology and Molecular Biology Reviews, 64, 548–572.CrossRefGoogle ScholarPubMed
Nicol, J.A.C., Lee, W.Y. and Hannebaum, N. (1978). Toxicity of Puerto Rican organic waste materials on marine invertebrates. Final Report to National Oceanic and Atmospheric Administration/Ocean Dumping and Monitoring Program, Marine Science Institute, University of Texas, Port Aransas. 37 pp.
Nielsen, J.G. (1964). Fishes from depths exceeding 6000 meters. Galathea Report, 7, 113–124.Google Scholar
Nielsen, J.G. (1975). A review of the oviparous ophidioid fishes of the genus Leucicorus, with description of a new Atlantic species. Trudy Instituta Oceanologii, 100, 106–123.Google Scholar
Nielsen, J.G. (1977). The deepest living fish Abyssobrotula galathea: a new genus and species of oviparous ophidiids (Pisces, Brotulidae). Galathea Report, 14, 41–48.Google Scholar
Nielsen, J.G. (1986). Ophidiidae. In Fishes of the North-eastern Mediterranean, ed. Whitehead, P.J.P., Bauchot, M.L., Hureau, J.C., Nielsen, J. and Tortonese, E.. Paris: UNESCO, Chaucer, pp. 1158–1166.Google Scholar
Nielsen, J.G. and Merrett, N.R. (2000). Revision of the cosmopolitan deep-sea genus Bassozetus (Pisces: Ophidiidae) with two new species. Galathea Report, 18, 7–56.Google Scholar
Nielson, J.G. and Munk, C. (1964). A hadal fish (Bassogigas profundissimus) with a functional swimbladder. Nature, 204, 594–595.CrossRefGoogle Scholar
Nielsen, J.G., Cohen, D.M., Markle, D.F. and Robins, C.R. (1999). Ophidiiform fishes of the world (Order Ophidiiformes): an annotated and illustrated catalogue of pearlfishes, cusk-eels, brotulas and other ophidiiform fishes known to date. FAO Fisheries Synopsis, 125, 18.Google Scholar
Newell, I.M. (1967). Abyssal Halacaridae (Acari) from the southeast Pacific. Pacific Insects, 9(4), 693–708.Google Scholar
Nogi, Y. and Kato, C. (1999). Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles, 3, 71–77.CrossRefGoogle ScholarPubMed
Nogi, Y., Kato, C. and Horikoshi, K. (1998a). Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. Journal of General and Applied Microbiology, 44, 289–295.CrossRefGoogle ScholarPubMed
Nogi, Y., Kato, C. and Horikoshi, K. (1998b). Taxonomic studies of deep-sea barophilic Shewanella species, and Shewanella violacea sp. nov., a new barophilic bacterial species. Archives of Microbiology, 170, 331–338.CrossRefGoogle Scholar
Nogi, Y., Kato, C. and Horikoshi, K. (2002). Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. International Journal of Systematic and Evolutionary Microbiology, 52, 1527–1532.Google ScholarPubMed
Nogi, Y., Hosoya, S., Kato, C. and Horikoshi, K. (2004). Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. International Journal of Systematic and Evolutionary Microbiology, 54, 1627–1631.CrossRefGoogle ScholarPubMed
Nogi, Y., Hosoya, S., Kato, C. and Horikoshi, K. (2007). Psychromonas hadalis sp. nov., a novel piezophilic bacterium isolated from the bottom of the Japan Trench. International Journal of Systematic and Evolutionary Microbiology, 57, 1360–1364.CrossRefGoogle ScholarPubMed
Nozaki, Y. and Ohta, Y. (1993). Rapid and frequent trubidite accumulation in the bottom of Izu-Ogasawara Trench: chemical and radiochemical evidence. Earth and Planetary Science Letters, 120, 345–360.CrossRefGoogle Scholar
Nozaki, Y., Yamada, M., Nakanishi, T. et al. (1998). The distribution of radionuclides and some trace metals in the water columns of the Japan and Bonin trenches. Oceanologica acta, 21(3), 469–484.CrossRefGoogle Scholar
Nybelin, O. (1951). Introduction and station list. Reports of the Swedish Deep-Sea Expedition, 2, Zoology, 1, 1–28.Google Scholar
Nyssen, F., Brey, T., Lepoint, G. et al. (2002). A stable isotope approach to the eastern Weddell Sea trophic web: focus on benthic amphipods. Polar Biology, 25, 280–287.Google Scholar
Oguri, K., Kawamura, K., Sakaguchi, A. et al. (2013). Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki Earthquake. Scientific Reports, 3, 1915.CrossRefGoogle ScholarPubMed
Oji, T., Ogawa, Y., Hunter, A.W. and Kitazawa, K. (2009). Discovery of dense aggregations of stalked crinoids in Izu-Ogasawara Trench, Japan. Zoological Science, 26, 406–408.CrossRefGoogle ScholarPubMed
Oliphant, A., Thatje, S., Brown, A. et al. (2011). Pressure tolerance of the shallow-water caridean shrimp Palaemonetes varians across its thermal tolerance window. Journal of Experimental Biology, 214, 1109–1117.CrossRefGoogle ScholarPubMed
Orr, J.W., Sinclair, E.H. and Walker, W.W. (2005). Bassozetus zenkevitchi (Ophidiidae: teleostei) and Paraliparis paucidens (Liparidae: teleostei): new records for Alaska from the Bering Sea. Northwestern Naturalist, 86, 65–71.CrossRefGoogle Scholar
Ortelius, A. (1596). Thesaurus Geographicus. Antwerp: Plantin.Google Scholar
Osborn, K.J., Kuhnz, L.A., Priede, I.G. et al. (2012). Diversification of acron worms (Hemichordata, Enteropneusta) revealed in the deep sea. Proceedings of the Royal Society London B, 279(1733), 1646–1654.CrossRefGoogle Scholar
Osterberg, C., Carey, A.G. and Curl, H. (1963). Acceleration of sinking rates of radionucleides in the ocean. Nature, 200, 1276–1277.CrossRefGoogle Scholar
Otosaka, S. and Noriki, S. (2000). REEs and Mn/Al ratio of settling particles: horizontal transport or particulate material in the northern Japan Trench. Marine Chemistry, 72, 329–342.CrossRefGoogle Scholar
Owens, W.B. and Warren, B.A. (2001). Deep circulation in the Pacific Ocean. Deep-Sea Research I, 48(4), 959–993.CrossRefGoogle Scholar
Owre, H.B. and Bayer, F.M. (1970). The deep-sea gulper Eurypharynx pelecanoides Vaillant 1882 (order Lyomeri) from the Hispaniola basin. Bulletin of Marine Science, 20, 186–192.Google Scholar
Palmer, J.D. and Williams, B.G. (1986). Comparative studies of tidal rhythms: II. The duel clock control of the locomotor rhythms of two decapod crustaceans. Marine Behaviour and Physiology, 12, 269–278.CrossRefGoogle Scholar
Palumbi, S.R. (1994). Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics, 25, 547–572.CrossRefGoogle Scholar
Panzeri, D., Caroli, P. and Haack, B. (2013). Sagarmatha Park (Mt Everest) porter survey and analysis. Tourism Management, 36, 26–34.CrossRefGoogle Scholar
Paterson, G.L.J., Doner, S., Budaeva, N. et al. (2009). A census of abyssal polychaetes. Deep-Sea Research II, 56, 1739–1746.CrossRefGoogle Scholar
Pathom-aree, W., Nogi, Y., Sutcliffe, I.C. et al. (2006). Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. International Journal of Systematic and Evolutionary Microbiology, 56, 1233–1237.CrossRefGoogle ScholarPubMed
Paul, A.Z. (1973). Trapping and recovery of living deep-sea amphipods from the Arctic Ocean floor. Deep-Sea Research, 20, 289–290.Google Scholar
Pausch, S., Below, D. and Hardy, K. (2009). Under high pressure: spherical glass flotation and instrument housings in deep ocean research. Marine Technology Society Journal, 43(5), 105–109.CrossRefGoogle Scholar
Pavlov, D.S., Sadkovskii, R.V., Kostin, V.V. and Lupandin, A.I. (2000). Experimental study of young fish distribution and behaviour under combined influence of baro-, photo- and thermo-gradients. Journal of Fish Biology, 57, 69–81.CrossRefGoogle Scholar
Peck, L. and Chapelle, G. (1999). Amphipod gigantism dictated by oxygen availability? A reply to John I. Spicer and Kevin J. Gaston. Ecology Letters, 2, 401–403.Google Scholar
Peck, L.S., Webb, K.E. and Bailey, D.M. (2004). Extreme sensitivity of biological function to temperature in Antarctic marine species. Functional Ecology, 18, 625–630.CrossRefGoogle Scholar
Peele, E.R., Singleton, F.L., Deming, J.W., Cavari, B. and Colwell, R.R. (1981). Effects of pharmaceutical wastes on microbial populations in surface waters at the Puerto Rico dump site in the Atlantic Ocean. Applied Environmental Microbiology, 41, 873–879.Google Scholar
Pennec, J.-P., Wardle, C.S., Harper, A.A. and MacDonald, A.G. (1988). Effects of high hydrostatic pressure on the isolated hearts of shallow water and deep-sea fish: results of Challenger cruise 6BI 85. Comparative Biochemistry and Physiology, 89A, 215–218.CrossRefGoogle Scholar
Pérès, J.M. (1965). Apercu sur les resultats de deux plongees effectuees dans le ravin de Puerto-Rico par le bathyscaphe Archimède. Deep-Sea Research, 12, 883–891.Google Scholar
Perrone, F.M., Dell’Anno, A., Danovaro, R., Della Croce, N. and Thurston, M.H. (2002). Population biology of Hirondellea sp nov (Amphipoda: Gammaridea: Lysianassoidea) from the Atacama Trench (south-east Pacific Ocean). Journal of the Marine Biology Association of the United Kingdom, 82(3), 419–425.CrossRefGoogle Scholar
Perrone, F.M., Della Croce, N. and Dell’Anno, A. (2003). Biochemical composition and trophic strategies of the amphipod Eurythenes gryllus at hadal depths (Atacama Trench, South Pacific). Chemistry and Ecology, 19(6), 441–449.CrossRefGoogle Scholar
Pettersson, H. (1948). The Swedish Deep-Sea expedition. Nature, 162, 324–325.CrossRefGoogle Scholar
Phillips, R.J. and Hansen, V.L. (1998). Geological evolution of Venus: rises, plains, plumes, and plateaus, Science, 279, 1492–1497.CrossRefGoogle Scholar
Phleger, C.F. and Soutar, A. (1971). Free vehicles and deep-sea biology. American Zoologist, 11, 409–418.CrossRefGoogle Scholar
Piccard, J. and Dietz, R.S. (1961). Seven Miles Down. London: Longman.Google Scholar
Pineda, J. (1993). Boundary effects on the vertical ranges of deepsea benthic species. Deep-Sea Research I, 40, 2179–2192.CrossRefGoogle Scholar
Porebski, S.J., Meischner, D. and Görlich, K. (1991). Quaternary mud turbidites from the South Shetland Trench (West Antarctica): recognition and implications for turbidite facies modelling. Sedimentology, 38, 691–715.CrossRefGoogle Scholar
Pörtner, H.O. (2002). Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology A, 132, 739–761.CrossRefGoogle ScholarPubMed
Pradillon, F. and Gaill, F. (2007). Pressure and life: some biological strategies. Review of Environmental Science and Biotechnology, 6, 181–195.CrossRefGoogle Scholar
Pratt, R.M. (1962). The ocean bottom. Science, 138, 492–495.CrossRefGoogle ScholarPubMed
Priede, I.G. and Merrett, N.R. (1998). The relationship between numbers of fish attracted to baited cameras and population density: studies on demersal grenadiers Coryphaenoides (Nematonurus) armatus in the abyssal NE Atlantic Ocean. Fisheries Research, 36(2–3), 133–137.CrossRefGoogle Scholar
Priede, I.G. and Smith, K.L. (1986). Behaviour of the abyssal grenadier, Coryphaenoides yaquinae, monitored using ingestible acoustic transmitters in the Pacific Ocean. Journal of Fish Biology, 29, 199–206.CrossRefGoogle Scholar
Priede, I.G., Bagley, P.M., Armstrong, J.D., Smith, K.L. and Merrett, N.R. (1991). Direct measurement of active dispersal of food-falls by abyssal demersal fishes. Nature, 351, 647–649.CrossRefGoogle Scholar
Priede, I.G., Bagley, P.M. and Smith, K.L. (1994). Seasonal change in activity of abyssal demersal scavenging grenadiers Coryphaenoides (Nematonurus) armatus in the eastern North Pacific Ocean. Limnology and Oceanography, 39, 279–285.CrossRefGoogle Scholar
Priede, I.G., Deary, A.R., Bailey, D.M. and Smith, K.L. (2003). Low activity and seasonal change in population size structure of grenadiers in oligotrophic abyssal North Pacific Ocean. Journal of Fish Biology, 63, 187–196.CrossRefGoogle Scholar
Priede, I.G., Bagley, P.M., Way, S., Herring, P.J. and Partridge, J.C. (2006a). Bioluminescence in the deep sea: free-fall lander observations in the Atlantic Ocean off Cape Verde. Deep-Sea Research I, 53, 1272–1283.CrossRefGoogle Scholar
Priede, I.G., Froese, R., Bailey, D.M. et al. (2006b). The absence of sharks from abyssal regions of the world’s oceans. Proceedings of the Royal Society London B, 273, 1435–1441.CrossRefGoogle ScholarPubMed
Priede, I.G., Gobold, J.A., King, N.J. et al. (2010). Deep-sea demersal fish species richness in the Porcupine Seabight, NE Atlantic Ocean: global and regional patterns. Marine Ecology, 31(1), 247–260.CrossRefGoogle Scholar
Prior, D.B., Bornhold, B.D., Wiseman, W.J. and Lowe, D.R. (1987). Turbidity current activity in a British Columbia fjord. Science, 237, 1330–1333.CrossRefGoogle Scholar
Pytkowicz, R.M. (1970). On the carbonate compensation depth in the Pacific Ocean. Geochimica et Cosmochimica Acta, 34, 836–839.CrossRefGoogle Scholar
Querellou, J., Borresen, T., Boyen, C. et al. (2010). Marine biotechnology: a new vision and strategy for Europe. Marine Board-ESF Position Paper 15, 1–96.Google Scholar
Radchenkco, V.I. (2007). Mesopelagic fish community supplies ‘biological pump’. Raffles Bulletin of Zoology, 14, 265–271.Google Scholar
Rahmstorf, S. (2006). Thermohaline ocean circulation. In Encyclopaedia of Quaternary Sciences, ed. Elias, S.A.. Amsterdam: Elsevier, pp. 739–750.Google Scholar
Ramaswany, V., Kumar, B.V., Parthiban, G., Ittekkot, V. and Nair, R.R. (1997). Lithogenic fluxes in the Bay of Bengal measured by sediment traps. Deep-Sea Research, 44, 793–810.CrossRefGoogle Scholar
Ramirez-Llodra, E., Tyler, P.A., Baker, M.A. et al. (2011). Man and the last great wilderness: human impact on the deep sea. PLoS ONE, 6(7), e22588.CrossRefGoogle ScholarPubMed
Rass, T.S., Grigorash, V.A., Spanovskaya, V.D. and Shcherbachev, Y.N. (1955). Deep-sea bottom fishes caught on the 14th cruise of NLS Akademik Kurchatov. Trudy Instituta Okeanologii, 100, 337–347.Google Scholar
Rathburn, A.E., Levin, L.A., Tryon, M. et al. (2009). Geological and biological heterogeneity of the Aleutian margin (1965–4822m). Progress in Oceanography, 80, 22–50.CrossRefGoogle Scholar
Raupach, M. J., Mayer, C., Malyutina, M. and Wägele, J.-W. (2009). Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proceedings of the Royal Society of London B, 276, 799–808.CrossRefGoogle ScholarPubMed
Reid, D.G. and Naylor, E. (1990). Entrainment of biomodal circatidal rhythms in the shore crab Carcinus maenus. Journal of Biological Rhythms, 5, 333–347.CrossRefGoogle Scholar
Reinhardt, S.B. and Van-Vleet, E.S. (1985). Lipid composition of Antarctic midwater invertebrates. Antarctic Journal of the United States, 19(5), 139–141.Google Scholar
Rex, M.A., McClain, C.R., Johnston, N.A. et al. (2005). A source–sink hypothesis for abyssal biodiversity. American Naturalist, 165, 163–178.Google ScholarPubMed
Reymer, A. and Schubert, G. (1984). Phanerozoic addition rates to the continental crust and crustal growth, Tectonics, 3, 63–77.CrossRefGoogle Scholar
Rice, A.L., Aldred, R.G., Billett, D.S.M. and Thurston, M.H. (1979). The combined use of an epibenthic sledge and a deep-sea camera to give quantitative relevance to macro-benthos samples. Ambio Special Report, 6, 59–72.Google Scholar
Rice, A.L., Billett, D.S.M., Fry, J. et al. (1986). Seasonal deposition of phytodetritus to the deep-sea floor. Proceedings of the Royal Society of London B, 88, 265–279.Google Scholar
Richardson, M.D., Briggs, K.B., Bowles, F.A. and Tietjen, J.H. (1995). A depauperate benthic assemblage from the nutrient poor sediments of the Puerto-Rico Trench. Deep-Sea Research I, 42(3), 351–364.CrossRefGoogle Scholar
Ridgwell, A. and Zeebe, R. (2005). The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth and Planetary Science Letters, 234, 299–315.CrossRefGoogle Scholar
Rittmann, B.E. and McCarty, P.L. (2001). Environmental Biotechnology. New York: McGraw-Hill.Google Scholar
Robison, B.H., Reisenbichler, K.R. and Sherlock, R.E. (2005). Giant larvacean houses, rapid carbon transport to the deep seafloor. Science, 308, 1609–1611.CrossRefGoogle Scholar
Rocha-Olivares, A., Fleeger, J.W. and Foltz, D.W. (2001). Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Molecular Biology and Evolution, 18, 1088–1102.CrossRefGoogle ScholarPubMed
Rogers, A.D. (2000). The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep-Sea Research II, 47, 119–148.CrossRefGoogle Scholar
Romankevich, E.A., Vetrov, A.A. and Peresypkin, V.I. (2009). Organic matter of the world ocean. Russian Geology and Geophysics, 50, 299–307.CrossRefGoogle Scholar
Romm, J. (1994). A new forerunner for continental drift. Nature, 367, 407–408.CrossRefGoogle Scholar
Rosen, B.R. (1988). Biogeographical patterns: a perceptual overview. In Analytical Biogeography; An Integrated Approach to the Study of Animal and Plant Distributions, ed. Myers, A.A. and Giller, P.S.. London: Chapman and Hall, pp. 23–55.Google Scholar
Rothschild, L.I. and Mancinelli, R.L. (2001). Life in extreme environments. Nature, 409, 1092–1101.CrossRefGoogle ScholarPubMed
Roule, L. (1913). N otice préliminaire sur Grimaldichthys profundissimus nov. gen., nov. sp. Poisson abyssal recueilli `a 6.035 m`etres de profondeur dans l’Océan Atlantique par S.A.S. le Prince de Monaco. Bulletin de l’Institut Oceanographique (Monaco), 261, 1–8.Google Scholar
Rouse, G.W. (2001). A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida): formerly the phyla Pogonophora and Vestimentifera. Zoological Journal of the Linnean Society, 132(1), 55–80.CrossRefGoogle Scholar
Roussel, E.G., Bonavita, M.A.C., Querellou, J. et al. (2008). Extending the sub-sea-floor biosphere. Science, 320(5879), 1046.CrossRefGoogle ScholarPubMed
Rowe, G.T. and Clifford, C.H. (1973). Modifications of the Birge–Ekman box corer for use with SCUBA or deep submergence research vessels. Limnology and Oceanography, 18, 172–175.Google Scholar
Ruhl, H.A. (2007). Abundance and size distribution dynamics of abyssal epibenthic megafauna in the northeast Pacific. Ecology, 88(5), 1250–1262.CrossRefGoogle ScholarPubMed
Ruhl, H.A. and SmithJr, K.L. (2004). Shifts in deep-sea community structure linked to climate and food supply. Science, 305, 513–515.CrossRefGoogle ScholarPubMed
Ruhl, H.A., Ellena, J.A. and Smith, K.L. (2008). Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proceedings of the National Academy of Sciences, USA, 105(44), 17006–17011.CrossRefGoogle ScholarPubMed
Ruhl, H.A., André, M., Beranzoli, L. et al. (2011). Societal need for improved understanding of climate change, anthropogenic impacts, and geo-hazard warning drive development of ocean observatories in European seas. Progress in Oceanography, 91(1), 1–33.CrossRefGoogle Scholar
Sabbatini, A., Morigi, C., Negri, A. and Gooday, A.J. (2002). Soft-shelled benthic Foraminifera from a hadal site (7800m water depth) in the Atacama Trench (SE Pacific): preliminary observations. Journal of Micropalaeontology, 21, 131–135.CrossRefGoogle Scholar
Saidova, Kh.M. (1970). Benthic foraminifers of the Kuril–Kamchatka Trench area. In Fauna of the Kuril–Kamchatka Trench and its Environment. Academy of Sciences of the USSR. Proceedings of the Shirshov Institute of Oceanology, Bogorov, V.G. ed. 86, 144–173.Google Scholar
Saidova, Kh.M. (1975). Benthic Foraminifera of the Pacific Ocean, Vol. 3. Moscow: Institut Okeanologii P.P. Shirshova.Google Scholar
Sainte-Marie, B. (1992). Foraging of scavenging deep-sea lysianassoid amphipods. In Deep-sea Food Chains in the Global Carbon Cycle, ed. Rowe, G.T. and Pariente, V.. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 105–124.CrossRefGoogle Scholar
Sainte-Marie, B. and Hargrave, B.T. (1987). Estimation of scavenger abundance and distance of attraction to bait. Marine Biology, 94, 431–443.CrossRefGoogle Scholar
Samerotte, A.L., Drazen, J.C., Brand, G.L., Seibel, B.A. and Yancey, P.H. (2007). Correlation of trimethylamine oxide and habitat depth within and among species of teleost fish: an analysis of causation. Physiological and Biochemical Zoology, 80, 197–208.CrossRefGoogle ScholarPubMed
Sanders, H.L. (1968). Marine benthic diversity: a comparative study. American Naturalist, 102, 243−282.CrossRefGoogle Scholar
Scarratt, D.J. (1965). Oredation on lobsters (Homarus americanus) by Anonyx sp. (Crustacea, Amphipoda). Journal of the Fisheries Research Board of Canada, 22, 1103–1104.CrossRefGoogle Scholar
Scheidegger, A.E. (1953). Examination of the physics of theories of orogenesis. GSA Bulletin, 64, 127–150.CrossRefGoogle Scholar
Schizas, N.V., Street, G.T., Coull, B.C., Chandler, G.T. and Quattro, J.M. (1999). Molecular population structure of the marine benthic copepod Microarthridion littorale along the south-eastern and Gulf coasts of the USA. Marine Biology, 135, 399–405.CrossRefGoogle Scholar
Schlacher, T.A., Schlacher-Hoenlinger, M.A, Williams, A. et al. (2007). Richness and distribution of sponge megabenthos in continental margin canyons off southeastern Australia. Marine Ecology Progress Series, 340, 73–88.CrossRefGoogle Scholar
Schmidt, W.E. and Siegel, E. (2011). Free descent and on bottom ADCM measurements in the Puerto-Rico Trench, 19.77ºN, 67.40ºW. Deep-Sea Research I, 58(9), 970–977.CrossRefGoogle Scholar
Schmitz, W.J. (1995). On the interbasin-scale thermohaline circulation. Reviews of Geophysics, 33(2), 151–173.CrossRefGoogle Scholar
Scholl, D.W., Christensen, M.N., yon Huene, R. and Marlow, M.S. (1970). Peru–Chile trench sediments and sea-floor spreading. Geology Society of America Bulletin, 81, 1339–1360.CrossRefGoogle Scholar
Schotte, M., Kensley, B.F. and Shilling, S. (1995 onwards). World List of Marine, Freshwater and Terrestrial Crustacea Isopoda. Washington DC: National Museum of Natural History Smithsonian Institution. Available at: .Google Scholar
Schwabe, E. (2008). A summary of abyssal and hadal Monoplacophora and Polyplacophora (Mollusca). Zootaxa, 1866, 205–222.Google Scholar
Seibel, B.A. and Drazen, J.C. (2007). The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philosophical Transactions of the Royal Society London B, 362, 2061–2078.CrossRefGoogle ScholarPubMed
Sexton, E.W. (1924). The moulting and growth-stages of Gammarus, with descriptions of the normals and intersexes of G. cheureuxi. Journal of the Marine Biological Association of the United Kingdom, 13, 340–401.CrossRefGoogle Scholar
Shcherbachev, Y.N. and Tsinovsky, V.D. (1980). New finds of deep-sea brotulids Abyssobrotula galathea Nielsen, Acanthonus armatus Günther, and Typhlonus nasus Günther (Pisces, Ophidiiformes) in the Pacific and Indian Oceans. Bulletin of the Moscow Society Natural Experiments, Biology Department, 85, 53–57.Google Scholar
Shirayama, Y. (1984). The abundance of deep-sea meiobenthos in the western Pacific in relation to environmental factors. Oceanologica Acta, 7(1), 113–121.Google Scholar
Shirayama, Y. and Fukushima, T. (1995). Comparisons of deep-sea sediments and overlying water collected using multiple corer and box corer. Journal of Oceanography, 51, 75–82.CrossRefGoogle Scholar
Shulenberger, E. and Hessler, R.R. (1974). Scavenging abyssal benthic amphipods trapped under oligotrophic Central North Pacific Gyre waters. Marine Biology, 28, 185–187.CrossRefGoogle Scholar
Siebenaller, J.F., Somero, G.N. and Haedrich, R.L. (1982). Biochemical characteristics of macrourid fishes differing in their depths of distribution. Biological Bulletin, 163, 240–249.CrossRefGoogle Scholar
Siedler, G., Holfort, J., Zenk, W., Muller, T.J. and Csernok, T. (2004). Deep-water flow in the Mariana and Caroline Basins. Journal of Physical Oceanography, 34(3), 566–581.CrossRefGoogle Scholar
Simonato, F., Campanaro, S., Lauro, F.M. et al. (2006). Piezophilic adaptation: a genomic point of view. Journal of Biotechnology, 126, 11–25.CrossRefGoogle ScholarPubMed
Simpson, D.C., O’Connor, T.P. and Park, P.K. (1981). Deep-ocean dumping of industrial wastes. In Marine Environmental Pollution, Vol. 2, Dumping and Mining, ed. Geyer, R.A.. New York: Elsevier Scientific, pp. 379–400.CrossRefGoogle Scholar
Sirenko, B.I. (1977). Vertical distribution of chitons of the genus Lepidopleurus (Lepidopleuridae) and its new ultraabyssal species. Zoologiceskij Zurnal, 56(7), 1107–1110.Google Scholar
Sirenko, B.I. (1988). A new genus of deep sea chitons Ferreiraella gen. n. (Lepidopleurida, Leptochitonidae) with a description of a new ultra-abyssal species. Zoologiceskij Zurnal, 67(12), 1776–1786.Google Scholar
Sluiter, C.-P. (1912). Gephyriens (Sipunculides et Echiurides) provenant des campagnes de la Princess-Alice (1989–1910). Résultats des campagnes scientifiques accompliés par le Prince Albert I, 36, 1–27.Google Scholar
Smith, C.R. and Baco, A.M. (2003). Ecology of whale falls at the deep-sea floor. Oceanography and Marine Biology Annual Review, 41, 311–354.Google Scholar
Smith, C.R. and Demopoulos, A.W.J. (2003). The deep Pacific Ocean floor. In Ecosystems of the World 28, Ecosystems of the Deep Sea, ed. Tyler, P.A.. Amsterdam: Elsevier, pp. 179–218.Google Scholar
Smith, C.R., Kukert, H., Wheatcroft, R.A., Jumars, P.A. and Deming, J.W. (1989). Vent fauna on whale remains. Nature, 341, 27–28.CrossRefGoogle Scholar
Smith, C.R., De Leo, F.C., Bernardino, A.F., Sweetman, A.K. and Arbizu, P.M. (2008). Abyssal food limitation, ecosystem structure and climate change. Trends in Ecology and Evolution, 23, 518–528.CrossRefGoogle ScholarPubMed
Smith, K.L. (1992). Benthic boundary layer communities and carbon cycling at abyssal depths in the central North Pacific. Limnology and Oceanography, 37, 1034–1056.CrossRefGoogle Scholar
Smith, K.L. and Hessler, R.R. (1974). Respiration of benthopelagic fishes: in-situ measurements at 1230 meters. Science, 184, 72–73.CrossRefGoogle ScholarPubMed
Smith, K.L. and Howard, J.D. (1972). Comparison of a grab sampler and large volume corer. Limnology and Oceanography, 28, 882–898.CrossRefGoogle Scholar
Smith, K.L. and Baldwin, R.J. (1984). Vertical distribution of the necrophagous amphipods, Eurythenes gryllus, in the North Pacific: spatial and temporal variation. Deep-Sea Research, 31(10), 1179–1196.CrossRefGoogle Scholar
Smith, K.L., White, G.A., Laver, M.B., McConnaughey, R.R. and Meador, J.P. (1979). Free vehicle capture of abyssopelagic animals. Deep-Sea Research, 26A, 57–64.CrossRefGoogle Scholar
Smith, K.L., Kaufmann, R.S. and Wakefield, W.W. (1993). Mobile megafaunal activity monitored with a time-lapse camera in the abyssal North Pacific. Deep-Sea Research, 40, 2307–2324.CrossRefGoogle Scholar
Smith, K.L., Kaufmann, R.S., Baldwin, R.J. and Carlucci, A.F. (2001). Pelagic-benthic coupling in the abyssal eastern North Pacific: an 8-year time-series study of food supply and demand. Limnology and Oceanography, 46, 543–556.CrossRefGoogle Scholar
Smith, K.L., Holland, N.D. and Ruhl, H.A. (2005). Enteropneust production of spiral fecal trails on the deep-sea floor observed with time-lapse photography. Deep-Sea Research I, 52(7), 1228–1240.CrossRefGoogle Scholar
Smith, K.L., Baldwin, R.J., Ruhl, H.A. et al. (2006). Climate effect on food supply to depths greater than 4000 meters in the northeast Pacific. Limnology and Oceanography, 51(1), 166–176.CrossRefGoogle Scholar
Smith, K.L., Ruhl, H.A., Bett, B.J. et al. (2009). Climate, carbon cycling and deep-ocean ecosystems. Proceedings of the National Academy of Sciences, USA, 106, 19211–19218.CrossRefGoogle ScholarPubMed
Snelgrove, P.V.R. (2010). Discoveries of the Census of Marine Life, Making Ocean Life Count. Cambridge: Cambridge University Press.Google Scholar
Soltwedel, T., von Juterzenka, K., Premke, K. and Klages, M. (2003). What a lucky shot! Photographic evidence for a medium-sized natural food-fall at the deep-seafloor. Oceanologica Acta, 26, 623–628.CrossRefGoogle Scholar
Somero, G.N. (1992). Adaptations to high hydrostatic pressure. Annual Review of Physiology, 54, 557–577.CrossRefGoogle ScholarPubMed
Somero, G.N. and Siebenaller, J.F. (1979). Inefficient lactate dehydrogenases of deep-sea fishes. Nature, 282, 100–102.CrossRefGoogle ScholarPubMed
Soong, K. and Mok, H.K. (1994). Size and maturity stage observations of the deep-sea isopod Bathynomus doederleini Ortmann, 1894 (Flabellifera: Cirolanidae), in Eastern Taiwan. Journal of Crustacean Biology, 14, 72–79.CrossRefGoogle Scholar
Søreide, F. (2012). Ultradeep-sea exploration in the Puerto-Rico Trench. Sea Technology, 53(12), 54–57.Google Scholar
Søreide, F. and Jamieson, A.J. (2013). Ultradeep-sea exploration in the Puerto Rico Trench. Proceedings of the Oceans ‘13, MTS/IEEE, San Diego.Google Scholar
Spengler, A. and Costa, M.F. (2008). Methods applied in studies of benthic marine debris. Marine Pollution Bulletin, 56(2), 226–230.CrossRefGoogle ScholarPubMed
Spicer, J.I. and Gaston, K.J. (1999). Amphipod gigantism dictated by oxygen availability?Ecology Letters, 2, 397–403.CrossRefGoogle Scholar
Staiger, J.C. (1972). Bassogigas profundissimus (Pisces; Brotulidae) from the Puerto Rico Trench. Bulletin of Marine Science, 22, 26–33.Google Scholar
Starr, M., Therriault, J.-C., Conan, G.Y., Comeau, M. and Robichaud, G. (1994). Larval release in the sub-euphotic zone invertebrate triggered by sinking phytoplankton particles. Journal of Plankton Research, 16, 1137–1147.CrossRefGoogle Scholar
Steele, D.H. and Steele, V.J. (1991). The structure and organization of the gills of gammaridean Amphipoda. Journal of Natural History, 25(4), 1247–1258.CrossRefGoogle Scholar
Steele, V.J. and Steele, D.H. (1970). The biology of Gammarus (Crustacea, Amphipoda) in the northwestern Atlantic II. Gammarus setosus Dementieva. Canadian Journal of Zoology, 38, 659–671.CrossRefGoogle Scholar
Stein, D.L. (1985). Towing large nets by single warp at abyssal depths: methods and biological results. Deep-Sea Research, 32, 183–200.CrossRefGoogle Scholar
Stein, D.L. (2005). Descriptions of four new species, redescription of Paraliparis membranaceus, and additional data on species of the fish family Liparidae (Pisces, Scorpaeniformes) from the west coast of South America and the Indian Ocean. Zootaxa, 1019, 1–25.CrossRefGoogle Scholar
Stern, R.J. (2002). Subduction zones, Reviews of Geophysics, 40(4), 1012.CrossRefGoogle Scholar
Stockton, W.L. (1982). Scavenging amphipods from under the Ross Ice Shelf, Antarctica. Deep-Sea Research, 29, 819–835.CrossRefGoogle Scholar
Stockton, W.L. and DeLaca, T.E. (1982). Food falls in the deep sea: occurrence, quality, and significance. Deep-Sea Research, 29, 157–169.CrossRefGoogle Scholar
Stoddart, H.E. and Lowry, J.K. (2004). The deep-sea lysianassoid genus Eurythenes (Crustacea, amphipoda, Eurytheneidae n. fam.). Zoosystema, 26(3), 425–468.Google Scholar
Stommel, H. (1958). The abyssal circulation. Deep-Sea Research, 5, 80–82.CrossRefGoogle Scholar
Stowasser, G., McAllen, R., Pierce, G.J. et al. (2009). Trophic position of deep-sea fish – assessment through fatty acid and stable isotope analysis. Deep-Sea Research I, 56, 812–826.CrossRefGoogle Scholar
Strong, E.E. and Harasewych, M.G. (1999). Anatomy of the hadal limpet Macleaniella moskalevi (Gastropoda, Cocculinoidea). Invertebrate Biology, 118(2), 137–148.CrossRefGoogle Scholar
Suess, E., Bohrmann, G., von Huene, R. et al. (1998). Fluid venting in the eastern Aleutian subduction zone. Journal of Geophysical Research, 103, 2597–2614.CrossRefGoogle Scholar
Sullivan, K.M. and Smith, K.L. (1982). Energetics of sablefish, Anoplopoma fimbria, under laboratory conditions. Canadaian Journal of Fisheries and Aquatics Sciences, 39, 1012–1020.CrossRefGoogle Scholar
Sullivan, K.M. and Somero, G.N. (1980). Enzyme activities of fish skeletal muscle and brain as influenced by depth of occurrence and habits of feeding and locomotion. Marine Biology, 60, 91–99.CrossRefGoogle Scholar
Svavarsson, J., Strömberg, J.-O. and Brattegard, T. (1993). The deep-sea asellote (Isopoda, Crustacea) fauna of the Northern Seas: species composition, distributional patterns and origin. Journal of Biogeography, 20, 537–555.CrossRefGoogle Scholar
Sweetman, A.K. and Chapman, A. (2011). First observations of jelly-falls at the seafloor in a deep-sea fjord. Deep-Sea Research I, 58, 1206–1211.CrossRefGoogle Scholar
Taft, B.A., Hayes, S.P., Friedrich, G.E. and Codispoti, L.A. (1991). Flow of abyssal water into the Samoa Passage. Deep-Sea Research, 38, 128–130.CrossRefGoogle Scholar
Taira, K. (2006). Super-deep CTD measurements in the Izu-Ogasawara Trench and a comparison of geostrophic shears with direct measurements. Journal of Oceanography, 62, 753–758.CrossRefGoogle Scholar
Taira, K., Kitagawa, S., Yamashiro, T. and Yanagimoto, D. (2004). Deep and bottom currents in the Challenger Deep, Mariana Trench, measured with super-deep current meters. Journal of Oceanography, 60, 919–926.CrossRefGoogle Scholar
Taira, K., Yanagimoto, D. and Kitagawa, S. (2005). Deep CTD casts in the Challenger Deep, Mariana Trench. Journal of Oceanography, 61(3), 446–454.CrossRefGoogle Scholar
Takagawa, S. (1995). Advanced technology used in Shinkai 6500 and full ocean depth ROV Kaikō. Marine Technology Society Journal, 29(3), 15–25.Google Scholar
Takagawa, S., Aoki, T. and Kawana, I. (1997). Diving to Mariana Trench by Kaikō. Recent Advances in Marine Science and Technology, 96, 89–96.Google Scholar
Takahashi, T. and Broecker, W.S. (1977). Mechanisms for calcite dissolution on the sea floor. In The Fate of Fossil Fuel CO2 in the Oceans. Marine Science, Vol. 6, ed. Anderson, N.R. and Malahoff, A.. New York: Plenum, pp. 455–477.CrossRefGoogle Scholar
Takami, H., Inoue, A., Fuji, F. and Horikoshi, K. (1997). Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiology Letters, 152(2), 279–285.CrossRefGoogle ScholarPubMed
Takashima, R., Nishi, H., Huber, B.T. and Leckie, R.M. (2006). Greenhouse world and the mesozoic ocean. Oceanography, 19(4) 82–92.CrossRefGoogle Scholar
Tamburri, M.N. and Barry, J.P. (1999). Adaptations for scavenging by three diverse bathyal species, Eptatretus stouti, Neptunea amianta and Orchomebe obtusus. Deep-Sea Research I, 46, 2079–2093.CrossRefGoogle Scholar
Tashiro, S., Watanbe, M. and Momma, H. (2004). Loss of the full ocean depth ROV Kaikō, Part 2: search for the ROV Kaikō vehicle. Proceedings of the 14th International Offshore and Polar Engineering Conference, 2, 194–198.Google Scholar
Teitjen, J.H., Deming, J.W., Rowe, G.T., Macko, S. and Wilke, R.J. (1989). Meiobenthos of the Hatteras Abyssal Plain and Puerto-Rico Trench: abundance, biomass and associations with bacteria and particulate fluxes. Deep-Sea Research, 36(10) 1567–1577.CrossRefGoogle Scholar
Tendal, O.S. (1972). A monograph of the Xenophyoporia. Galathea Report, 12, 7–100.Google Scholar
Tendal, O.S. and Gooday, A.J. (1981). Xenophyophoria (Rhizopoda, Protozoa) in bottom photographs from the bathyal and abyssal NE Atlantic. Oceanologica Acta, 4, 415–422.Google Scholar
Tendal, O.S. and Hessler, R.R. (1977). An introduction to the biology and systematics of Komokiacea (Textulariina, Foraminiferida). Galathea Report, 14, 165–194.Google Scholar
Tengberg, A., De Bovee, F., Hall, P. et al. (1995) Benthic chamber and profiling landers in oceanography: a review of design, technical solutions and functioning, Progress in Oceanography, 35, 253–294.CrossRefGoogle Scholar
Tengberg, A., Andersson, U., Hall, P. et al. (2005). Intercalibration of benthic flux chambers II: hydrodynamic characterization and flux comparisons of 14 different designs. Marine Chemistry, 94, 147–173.CrossRefGoogle Scholar
Thiel, H. (1966). Quantitative Untersuchungen über die Meiofauna des Tiefseebodens. Veröffentlichungen des Instituts für Meeresforschung Bremerhaven, Sonderband, 2, 131–148.Google Scholar
Thiel, H. (1972). Meiofauna und struktur der benthischen Lebens gemeinschaft des Iberischen Tiefseebeckens. ‘Meteor’ Forschungsergebnisse, 12, 36–51.Google Scholar
Thistle, D. (2003). The deep-sea floor: an overview. In Ecosystems of the World 28, Ecosystems of the Deep Sea, ed. Tyler, P.A.. Amsterdam: Elsevier, pp. 5–37.Google Scholar
Thompson, R.C. (2006). Plastic debris in the marine environment: consequences and solutions. In Marine Nature Conservation in Europe, ed. Krause, J.C., Nordheim, H. and Brager, S.. Stralsund, Germany: Bundesamt fur Naturschutz, pp.107–115.Google Scholar
Thomson, C.W. (1873). The Depths of the Sea. London: MacMillan.Google Scholar
Thomson, C.W. and Murray, J. (1895). Report on the Results of the Voyage of H.M.S. Challenger during the Years 1873–76, Narrative, Vol. A(1). London: HM Stationery Office.Google Scholar
Thornburg, T.M. and Kulm, L.D. (1987). Sedimentation in the Chile Trench: depositional morphologies, lithofacies, and stratigraphy. Geological Society of America Bulletin, 98, 33–52.2.0.CO;2>CrossRefGoogle Scholar
Thorson, G. (1957). Sampling the benthos. In Treatise on Marine Ecology and Paleoecology, ed. Hedgepeth, J.. New York: Geological Society of America, pp. 61–86.Google Scholar
Thunell, R., Tappa, E., Varela, R. et al. (1999). Increased marine sediment suspension and fluxes following an earthquake. Nature, 398, 233–236.CrossRefGoogle Scholar
Thurston, M.H. (1979). Scavenging abyssal amphipods from the north-east Atlantic Ocean. Marine Biology, 51, 55–68.CrossRefGoogle Scholar
Thurston, M.H. (1990). Abyssal necrophagous amphipods (Crustacea: Amphipoda) in the northeast and tropical Atlantic Ocean. Progress in Oceanography, 24, 257–274.CrossRefGoogle Scholar
Thurston, M.H., Bett, B.J. and Rice, A.L. (1995). Abyssal megafaunal necrofages: latitudinal differences in the eastern North Atlantic Ocean. Internationale Revue der gesamten Hydrobiologie, 80(2), 267–286.CrossRefGoogle Scholar
Thurston, M.H., Petrillo, M. and Della Croce, N. (2002). Population structure of the necrophagous amphipod Eurtythenes gryllus (Amphipods: Gammaridea) from the Atacama Trench (south-east Pacific Ocean). Journal of the Marine Biological Association of the United Kingdom, 82, 205–211.CrossRefGoogle Scholar
Tiefenbacher, L. (2001). Recent samples of mainly rare decapod crustacean taken from the deep-sea floor of the southern West Europe Basin. Hydrobiologia, 449, 59–70.CrossRefGoogle Scholar
Tietjen, J.H. (1989). Ecology of deep-sea nematodes from the Puerto Rico Trench area and Hatteras Abyssal Plain. Deep-Sea Research A, 36(10), 1579–1594.CrossRefGoogle Scholar
Tietjen, J.H., Deming, J.W., Rowe, G.T., Mackie, S. and Wilke, R.J. (1989). Meiobenthos of the Hatteras Abyssal Plain and Puerto Rico Trench: abundance, biomass and associations with bacteria and particulate fluxes. Deep-Sea Research I, 36, 1567–1577.CrossRefGoogle Scholar
Tilston, H. (2011). Biogeography of deep-sea trenches. MSc thesis, University of Southampton, UK.
Tobriner, S. (2006). Bracing for Disaster: Earthquake-resistant Architecture and Engineering in San Francisco, 1838–1933. Berkeley, CA: Heyday Books.Google Scholar
Todo, Y., Kitazato, H., Hashimoto, J. and Gooday, A.J. (2005). Simple Foraminifera flourish at the ocean’s deepest point. Science, 307, 689.CrossRefGoogle ScholarPubMed
Toggweiler, J.R., Russell, J.L. and Carson, S.R. (2006). Midlatitude westerlies, atmospheric CO2, and climate change. Paleoceanography, 21(2), PA2005.CrossRefGoogle Scholar
Tomczak, M. and Godfrey, J.S. (1994). Regional Oceanography: An Introduction. London: Pergamon.Google Scholar
Tosatto, M. (2009). Charting a course from the Marianas Trench Marine National Monument. Marine Technology Society Journal, 43(5), 161–163.CrossRefGoogle Scholar
Truede, T., Janssen, F., Queisser, W. and Witte, U. (2002). Metabolism and decompression tolerance of scavenging lysianassoid deep-sea amphipods. Deep-Sea Research I, 49, 1281–1289.CrossRefGoogle Scholar
Tselepides, A. and Lampadariou, N. (2004). Deep-sea meiofaunal community structure in the Eastern Mediterranean: are trenches benthic hotspots?Deep-Sea Research I, 51, 833–847.CrossRefGoogle Scholar
Turner, J.T. (2002). Zooplankton faecal pellets, marine snow and sinking phytoplankton blooms. Aquatic Microbiology and Ecology, 27, 57–102.CrossRefGoogle Scholar
Turner, R.D. (1973). Wood-boring bivalves, opportunistic species in the deep sea. Science, 180, 1377–1379.CrossRefGoogle ScholarPubMed
Turnewitsch, R., Falahat, S., Stehlikova, J. et al. (in prep). Recent sediment dynamics in hadal trenches: evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics. Deep-Sea Research I.
Tyler, P.A. (1995). Conditions for the existence of life at the deep-sea floor: an update. Oceanography and Marine Biology: Annual Review, 33, 221–244.Google Scholar
Tyler, P.A. (2003). Epilogue: exploration, observation and experimentation. In Ecosystems of the World 28, Ecosystems of the Deep Sea, ed. Tyler, P.A.. Amsterdam: Elsevier, pp. 473–476.Google Scholar
Tyler, P.A. and Young, C.M. (1998). Temperature and pressure tolerances in dispersal stages of the genus Echinus (Echinodermata: Echonoidea): prerequisties for deep-sea invasion and speciation. Deep-Sea Research II, 45, 253–277.CrossRefGoogle Scholar
Tyler, P., Amaro, T., Arzola, R. et al. (2009). Europe’s Grand Canyon: Nazaré Submarine Canyon. Oceanography, 22, 46–57.CrossRefGoogle Scholar
UNESCO (2009). Global Open Oceans and Deep Seabed (GOODS) – Biogeographic Classification. IOC Technical Series, 84. Paris: UNESCO-IOC.Google Scholar
Ushakov, P.V. (1952). Study of deep-sea fauna. Priroda, 6, 100–102.Google Scholar
Van der Maarel, E. (1990). Ecotones and ecoclines are different. Journal of Vegetation Science, 1(1), 135–138.CrossRefGoogle Scholar
Van Dover, C.L. and Fry, B. (1994). Microorganisms as food resources at deep-sea hydrothermal vents. Limnology and Oceanography, 39(1), 51–57.CrossRefGoogle Scholar
Vardaro, M.F., Ruhl, H.A. and Smith, K.L. (2009). Climate variation, carbon flux, and bioturbation in the abyssal North Pacific. Limnology and Oceanography, 54(6), 2081–2088.CrossRefGoogle Scholar
Vetter, E.W. and Dayton, P.K. (1998). Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep-Sea Research II, 45, 25–54.CrossRefGoogle Scholar
Villalobos, F.B., Tyler, P.A. and Young, C.M. (2006). Temperature and pressure tolerance of embryos and larvae of the Atlantic seastars Asterias rubens and Marthasterias glacialis (Echinodermata: Asteroidea): potential for deep-sea invasion. Marine Ecology Progress Series, 314, 109–117.CrossRefGoogle Scholar
Vine, F.J. and Matthews, D.H. (1963). Magnetic anomalies over oceanic ridges. Nature 199(4897), 947–949.CrossRefGoogle Scholar
Vinogradov, M.E. (1962). Quantitative distribution of deep-sea plankton in the western Pacific and its relation to deep-water circulation. Deep-Sea Research, 8, 251–258.CrossRefGoogle Scholar
Vinogradova, N.G. (1979). The geographical distribution of the abyssal and hadal (ultra-abyssal) fauna in relation to the vertical zonation of the ocean. Sarsia, 64(1–2), 41–49.CrossRefGoogle Scholar
Vinogradova, N.G. (1997). Zoogeography of the abyssal and hadal zones. Advances in Marine Biology, 32, 325–387.CrossRefGoogle Scholar
Vinogradova, N.G., Gebruk, A.V. and Romanov, V.N. (1993a). Some new data on the Orkney Trench ultra abyssal fauna. The Second Polish Soviet Antarctic Symposium, 213–221.
Vinogradova, N.G., Belyaev, G.M., Gebruk, A.V. et al. (1993b). Investigations of Orkney Trench in the 43rd cruise of R/V Dmitriy Mendeleev. Geomorphology and bottom sediments, benthos. In The Deep-sea Bottom Fauna in the Southern Part of the Atlantic Ocean, ed. Vinogradova, N.G.. Moscow: Nauka, pp. 127–253.Google Scholar
Vogel, S. (1981). Life in Moving Fluids. Boston, MA: Willard Grant Press.Google Scholar
Von Huene, R. and Scholl, D.W. (1991). Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Reviews of Geophysics, 29, 279–316.CrossRefGoogle Scholar
Von Huene, R. and Shor, G.G. (1969). The structure and tectonic history of the eastern Aleutian Trench. Geology Society of America Bulletin, 80, 1889–1902.CrossRefGoogle Scholar
Waelbroeck, C., Labeyrie, L., Michel, E. et al. (2001). Sea-level and deep water temperature changes derived from benthic Foraminifera isotopic records. Quarterly Scientific Review, 21, 295–305.Google Scholar
Wagner, H.-J., Kemp, K., Mattheus, U. and Priede, I.G. (2007). Rhythms at the bottom of the deep sea: cyclic current flow changes and melatonin patterns in two species of demersal fish. Deep-Sea Research I, 54, 1944–1956.CrossRefGoogle Scholar
Wakeham, S.G., Lee, C., Farrington, J.W. and Gagosian, R.B. (1984). Biogeochemistry of particulate organic matter in the oceans: results from sediment trap experiments. Deep-Sea Research A, 31, 509–528.CrossRefGoogle Scholar
Wakeham, S.G., Hedges, J.I., Lee, C., Peterson, M.L. and Hernes, P.J. (1997). Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean. Deep-Sea Research II, 44, 2131–2162.CrossRefGoogle Scholar
Walsh, D. (2009). In the beginning… A personal view. Marine Technology Society Journal, 43, 9–14.CrossRefGoogle Scholar
Wann, K.T. and MacDonald, A.G. (1980). The effects of pressure on excitable cells. Comparative Biochemistry and Physiology, 66, 1–12.CrossRefGoogle Scholar
Warrant, E.J. and Locket, N.A. (2004). Vision in the deep-sea. Biological Reviews, 79, 671–712.CrossRefGoogle ScholarPubMed
Warren, B.A. (1981). Deep circulation of the world ocean. In Evolution of Physical Oceanography, ed. Warren, B. and Wunsch, C.. Boston, MA: Massachusetts Institute of Technology, pp. 6–40.Google Scholar
Warren, B.A., and Owens, W.B. (1985). Some preliminary results concerning deep northern-boundary currents in the North Pacific. Progress in Oceanography, 14, 537–551.CrossRefGoogle Scholar
Warren, B.A. and Owens, W.B. (1988). Deep currents in the central subarctic Pacific Ocean. Journal of Physical Oceanography, 18(4), 529–551.2.0.CO;2>CrossRefGoogle Scholar
Watanbe, M., Tashiro, S. and Momma, H. (2004). Loss of the full ocean depth ROV Kaikō. Part 3: the cause of secondary cable fracture. Proceedings of the 14th International Offshore and Polar Engineering Conference, 2, 199–202.Google Scholar
Watling, L., Guinotte, J., Clarke, M.R. and Smith, C.R. (2013). A proposed biogeography of the deep ocean floor. Progress in Oceanography, 111, 91–112.CrossRefGoogle Scholar
Webb, T.J., Berghe, E.V. and O’Dor, R. (2010). Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE, 5(8), e10223.CrossRefGoogle ScholarPubMed
Weber, G. and Drickamer, H.G. (1999). The effect of high pressure upon proteins and other biomolecules. Quarterly Review of Biophysics, 16, 89–112.CrossRefGoogle Scholar
Wegener, A. (1912). Die Entstehung der Kontinente: Dr. A. Petermanns Mitteilungen aus Justus Perthes. Geographischer Anstalt, 63, 185–195, 253–256, 305–309.Google Scholar
Weiser, W. (1956). Free-living marine nematodes III. Axonolaimoidea and Monhysteroidea. Acta Universitatis Lund, 52(13), 1–115.Google Scholar
Welch, T.J., Farewell, A., Neidhardt, F.C. and Bartlett, D.H. (1993). Stress response in Escherichia coli induced by elevated hydrostatic pressure, Journal of Bacteriology, 175, 7170–7177.CrossRefGoogle ScholarPubMed
White, B.N. (1987). Oceanic anoxic events and allopatric speciation in the deep sea. Biological Oceanography, 5, 243–259.Google Scholar
White, D.A., Roeder, D.H., Nelson, T.H. and Crowell, J.C. (1970). Subduction. Geological Society of America Bulletin, 81, 3431–3432.CrossRefGoogle Scholar
Whitman, W.B., Coleman, D.C. and Wiebe, W.J. (1998). Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences, USA, 95, 6578–6583.CrossRefGoogle ScholarPubMed
Whitworth, T., Warren, B.A., Nowlin, W.D., Rutz, S.B., Pillsbury, R.D. and Moore, M.I. (1999). On the deep western-boundary current in the Southwest Pacific Ocean. Progress in Oceanography, 43(1), 1–54.CrossRefGoogle Scholar
Wickramasinghe, N., Wallis, J. and Wallis, D. (2013). Panspermia: evidence from astronomy to meteorites. Modern Physics Letters A, 28(14), 1330009.CrossRefGoogle Scholar
Wigham, B.D., Hudson, I.R., Billett, D.S.M. and Wolff, G.A. (2003). Is long-term change in the abyssal Northeast Atlantic driven by qualitative changes in export flux? Evidence from selective feeding in deep-sea holothurians. Progress in Oceanography, 59, 409–441.CrossRefGoogle Scholar
Wigley, R.L. (1967). Comparative efficiencies of Van Veen and Smith–McIntyre grab samplers as revealed by motion pictures. Ecology, 48, 168–169.CrossRefGoogle Scholar
Williams, J.T. and Machida, Y. (1992). Echiodon anchipterus: a valid western Pacific species of the pearlfish family Carapidae with comments on Eurypleuron. Japanese Journal of Ichthyology, 38, 367–373.Google Scholar
Wilson, G.D.F. (1999). Some of the deep-sea fauna is ancient. Crustaceana, 72, 1019–1030.CrossRefGoogle Scholar
Wilson, G.D.F. and Hessler, R.R. (1987). Speciation in the deep sea. Annual Review of Ecology and Systematics, 18, 185–207.CrossRefGoogle Scholar
Wilson, G.D.F. and Thistle, D. (1985). Amuletta, a new genus for llyarachna abyssorum Richardson, 1911 (Isopoda: Asellota: Eurycopidae). Journal of Crustacean Biology, 5, 350–360.CrossRefGoogle Scholar
Wilson, R.R. and Smith, K.L. (1984). Effect of near-bottom currents on detection of bait by the abyssal grenadier fishes, Coryphaenoides spp. recorded in situ with a video camera on a free vehicle. Marine Biology, 84, 83–91.CrossRefGoogle Scholar
Wilson, R.R. and Waples, R.S. (1983). Distribution, morphology, and biochemical genetics of Coryphaenoides armatus and C. yaquinae (Pisces: Macrouridae) in the central and eastern North Pacific. Deep-Sea Research, 30, 1127–1145.CrossRefGoogle Scholar
Wilson, T.J. (1965). A new class of faults and their bearing on continental drift. Nature, 207(4995), 343–347.CrossRefGoogle Scholar
Wingstrand, K.G. (1985). On the anatomy and relationships of recent Monoplacophora. Galathea Report, 16, 7–94.Google Scholar
Wiseman, J.D.H. and Ovey, C.D. (1953). Definitions of features on the deep-sea floor. Deep-Sea Research, 1, 11–16.CrossRefGoogle Scholar
Wiseman, J.D.H. and Ovey, C.D. (1954). Proposed names of features on the deep-sea floor, 1. The Pacific Ocean. Deep-Sea Research, 2, 93–106.CrossRefGoogle Scholar
Wishner, K., Levin, L., Gowing, M. and Mullineaux, L. (1990). Involvement of the oxygen minimum in benthic zonation on a deep seamount. Nature, 346, 57–59.CrossRefGoogle Scholar
Wolff, T. (1956). Crustacea Tanaidacea from depths exceeding 6000 meters. Galathea Report, 2, 187–241.Google Scholar
Wolff, T. (1960). The hadal community, an introduction. Deep-Sea Research, 6, 95–124.CrossRefGoogle Scholar
Wolff, T. (1961). The deepest recorded fishes. Nature, 190, 283–284.CrossRefGoogle Scholar
Wolff, T. (1962). The systematics and biology of bathyal and abyssal Isopoda Asellota. Galathea Report, 6, 1–320.Google Scholar
Wolff, T. (1970). The concept of the hadal or ultra-abyssal fauna. Deep Sea Research, 17, 983–1003.Google Scholar
Wolff, T. (1976). Utilization of seagrass in the deep sea. Aquatic Botany, 2, 161–174.CrossRefGoogle Scholar
Wong, Y.M. and Moore, P.G. (1995). Biology of feeding in the scavenging isopod Natatolana borealis (Isopoda: Cirolanidae). Ophelia, 43(3), 181–196.CrossRefGoogle Scholar
Worthington, L.V. (1976). On the North Atlantic Circulation. Johns Hopkins Oceanographic Studies Vol. VI. Baltimore, MD and London: The Johns Hopkins University Press.Google Scholar
Worzel, J.L. and Ewing, M. (1954). Gravity anomalies and structure of the West Indies – 2. Bulletin of the Geological Society of America, 65, 195–200.CrossRefGoogle Scholar
Yamamoto, J., Nobetsu, T., Iwamori, T. and Sakurai, Y. (2009). Observations of food falls off the Shiretoko Peninsula, Japan, using a remotely operated vehicle. Fisheries Science, 75, 513–515.CrossRefGoogle Scholar
Yancey, P.H. (2005). Organic osmolytes as compatible, metabolic, and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology, 208, 2819–2830.CrossRefGoogle ScholarPubMed
Yancey, P.H. and Siebenaller, J.F. (1999). Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis. Journal of Experimental Biology, 202, 3597–3360.Google ScholarPubMed
Yancey, P.H., Fyfe-Johnson, A.L., Kelly, R.H., Walker, V.P. and Aunon, M.T. (2001). Trimethylamine oxide counteracts effects of hydrostatic pressure on proteins of deep-sea teleosts. Journal of Experimental Zoology, 289, 172–176.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Yancey, P.H., Rhea, M.D., Kemp, K.M. and Bailey, D.M. (2004). Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure. Cellular and Molecular Biology, 50, 371–376.Google ScholarPubMed
Yancey, P.H., Gerringer, M.E., Drazen, J.C., Rowden, A.A. and Jamieson, A.J. (in press). Marine fish are biochemically constrained from inhabiting deepest ocean depths. Proceedings of the National Academy of Sciences, USA.
Yang, T.-H. and Somero, G.N. (1993). The effects of feeding and food deprivation on oxygen consumption, muscle protein concentration and activities of energy metabolism enzymes in muscle and brain of shallow-living (Scorpaena guttata) and deep-living (Sebastolobus alascanus) scorpaenid fishes. Journal of Experimental Biology, 181, 213–232.Google Scholar
Yano, Y., Nakayama, A., Ishihara, K. and Saito, H. (1998). Adapative changes in membrane lipids of barophilic bacteria in repsonse to changes in growth pressure. Applied and Environmental Microbiology, 64(2), 479–485.Google Scholar
Yayanos, A.A. (1976). Determination of the pressure-volume-temperature (PVT) surface of Isopar-M: a quantitative evaluation of its use to float deep-sea instruments. Deep-Sea Research, 23, 989–993.Google Scholar
Yayanos, A.A. (1977). Simply actuated closure for a pressure vessel: design for use to trap deep-sea animals. Review of Scientific Instruments, 48, 786–789.CrossRefGoogle Scholar
Yayanos, A.A. (1978). Recovery and maintence of live amphipods at a pressure of 508 bars from an ocean depth of 5700 metres. Science, 200, 1056–1059.CrossRefGoogle Scholar
Yayanos, A.A. (1981). Reversible inactivation of deep-sea amphipods (Paralicella caperesa) by a decompression from 601 bars to atmospheric pressure. Comparative Biochemistry and Physiology, 69A, 563–565.CrossRefGoogle Scholar
Yayanos, A.A. (1986). Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proceedings of the National Academy of Sciences, USA, 83, 9542–9546.CrossRefGoogle ScholarPubMed
Yayanos, A.A. (1995). Microbiology to 10 500 meters in the deep sea. Annual Review of Microbiology, 49, 777–805.CrossRefGoogle ScholarPubMed
Yayanos, A.A. (2009). Recovery of live amphipods at over 102 MPa from the Challenger Deep. Marine Technology Society Journal, 43(5), 132–136.CrossRefGoogle Scholar
Yayanos, A.A. and Dietz, A.S. (1983). Death of a hadal deep-sea bacterium after decompression. Science, 220, 497–498.CrossRefGoogle ScholarPubMed
Yayanos, A.A. and Nevenzel, J.C. (1978). Rising-particle hypothesis: rapid ascent of matter from the deep ocean. Naturwissenschaften, 65, 255–256.CrossRefGoogle Scholar
Yayanos, A.A., Dietz, A.S. and Van Boxtel, R. (1979). Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science, 205(4408), 808–810.CrossRefGoogle ScholarPubMed
Yayanos, A.A., Dietz, A.S. and Van Boxtel, R. (1981). Depemdamce of reproduction rate on pressure as a hallmark of deep-sea bacteria. Applied Environmental Microbiology, 78, 5212–5215.Google Scholar
Yayanos, A.A., Dietz, A.S. and Van Boxtel, R. (1982). Obligately barophilic bacterium from the Mariana trench. Proceedings of the National Academy of Sciences, USA, 44(6), 1356.Google Scholar
Yeh, J. and Drazen, J.C. (2009). Depth zonation and bathymetric trends of deep-sea megafaunal scavengers of the Hawaiian Islands. Deep-Sea Research I, 56, 251–266.CrossRefGoogle Scholar
Yoshida, H., Ishibashi, S., Watanabe, Y. et al. (2009). The ABISMO mud and water sampling ROV for surveys at 10,000 m depth. Marine Technology Society Journal, 43(5), 87–96.CrossRefGoogle Scholar
Young, C.M., Tyler, P.A. and Fenaux, L. (1997). Potential for deep-sea invasion by Mediterranean shallow water echinoids: pressure and temperature as stage-specific dispersal barriers. Marine Ecology Progress Series, 154, 197–209.CrossRefGoogle Scholar
Zeigler, J.M., Athearn, W.D. and Small, H. (1957). Profiles across the Peru–Chile Trench. Deep-Sea Research, 4, 238–249.CrossRefGoogle Scholar
Zenkevich, L.A. (1954). Erforschungen der Tiefseefauna im nordwestlichen Teil des Stillen Ozeans. Union of Antarctic Science and Biology, Series B, 16, 72–85.Google Scholar
Zenkevich, L.A. (1967). Study of the Fauna of the Seas and Oceans. Development of Biology in the USSR. Moscow: Nauka.Google Scholar
Zenkevitch, L.A. and Birstein, J.A. (1953). On the problem of the antiquity of the deep-sea fauna. Deep-Sea Research, 7, 10–23.CrossRefGoogle Scholar
Zenkevitch, L.A. and Birstein, J.A. (1956). Studies of the deep water fauna and related problems. Deep-Sea Research, 4(1), 54–65.CrossRefGoogle Scholar
Zenkevitch, L.A., Birstein, Y.A. and Beliaev, G.M. (1955). Studies of Kuril–Kamchatka Basin benthic fauna. Trudy Instituta Okeanologii, 12, 345–381.Google Scholar
Zezina, O.N. (1997). Biogeography of the bathyal zone. Advances in Marine Biology, 32, 389–426.CrossRefGoogle Scholar
ZoBell, C.E. (1952). Bacterial life at the bottom of the Philippine Trench. Science, 115(2993), 507–508.CrossRefGoogle ScholarPubMed
ZoBell, C.E. and Johnson, F.H. (1949). The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. Journal of Bacteriology, 57, 179–189.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alan Jamieson, University of Aberdeen
  • Book: The Hadal Zone
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139061384.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alan Jamieson, University of Aberdeen
  • Book: The Hadal Zone
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139061384.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alan Jamieson, University of Aberdeen
  • Book: The Hadal Zone
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139061384.019
Available formats
×