Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T20:21:51.858Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 March 2023

Nicholas Lancaster
Affiliation:
Desert Research Institute, Nevada
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlbrandt, T. S., 1974. Comparison of textures and structures to distinguish eolian environments, Kilpecker dune field, Wyoming. Mountain Geologist, 12, 6163.Google Scholar
Ahlbrandt, T. S., 1979. Textural parameters of eolian deposits. In McKee, E. D. (Ed.), A Study of Global Sand Seas. United States Geological Survey Professional Paper 1052, pp. 2151.Google Scholar
Ahlbrandt, T. S., Fryberger, S. G., 1981. Sedimentary features and significance of interdune deposits. In Ethridge, F. G., Flores, R. M. (Eds.), Recent and Ancient Nonmarine Depositional Environments: Models for Exploration. Society of Economic Palaeontologists and Mineralogists, Tulsa, OK, pp. 293314.CrossRefGoogle Scholar
Al-Masrahy, M. A., Mountney, N. P., 2013. Remote sensing of spatial variability in aeolian dune and interdune morphology in the Rub’ Al-Khali, Saudi Arabia. Aeolian Research, 11, 155170.Google Scholar
Alimen, H., Buron, M., Chavaillon, J., 1958. Caracteres granulometriques des profils transversaux de quelques dunes d’Erg de Sahara Nord-occidental. Comptes Rendus de l’Academie des Sciences, 247, 17581761.Google Scholar
Allen, J. R. L., 1968. The nature and origin of bed-form hierarchies. Sedimentology, 10, 161182.Google Scholar
Allen, P. A., Verlander, J. E., Burgess, P. M., Audet, D. M., 2000. Jurassic giant erg deposits, flexure of the United States continental interior, and timing of the onset of Cordilleran shortening. Geology, 28, 159162.Google Scholar
Allgaier, A., 2008. Aeolian sand transport and vegetation cover. In Breckle, S.-W., Yair, A., Veste, M. (Eds.), Arid Dune Ecosystems: The Nizzana Sands in the Negev Desert. Springer, Berlin, Heidelberg, pp. 211224.CrossRefGoogle Scholar
Allison, R., 1988. Sediment types and sources in the Wahiba Sands. In Dutton, R. W. (Ed.), Scientific Results of the Royal Geographical Society’s Oman Wahiba Sands Project 1985–1987. Journal of Oman Studies, Special Report, 3, Office of the Advisor for Conservation of the Environment, Muscat, Oman, pp. 161168.Google Scholar
Amir, R., Kinast, S., Tsoar, H., et al., 2014. The effect of wind and precipitation on vegetation and biogenic crust covers in the Sde-Hallamish sand dunes. Journal of Geophysical Research: Earth Surface, 119, 437450.CrossRefGoogle Scholar
Anderson, R. S., 1987. A theoretical model for aeolian impact ripples. Sedimentology, 34, 943956.Google Scholar
Anderson, R. S., 1988. The pattern of grainfall deposition in the lee of aeolian dunes. Sedimentology, 35, 175188.Google Scholar
Anderson, R. S., 1990. Eolian ripples as examples of self-organization in geomorphological systems. Earth Science Reviews, 29, 7796.Google Scholar
Anderson, R. S., 1996. The attraction of sand dunes. Nature, 379, 2425.CrossRefGoogle Scholar
Anderson, R. S., Haff, P. K., 1991. Wind modification and bed response during saltation of sand in air. Acta Mechanica, Supplement, 1, 2152.CrossRefGoogle Scholar
Andreotti, B., Claudin, P., Douady, S., 2002a. Selection of dune shapes and velocities. Part II: A two-dimensional modelling. European Physical Journal B, 28, 341352.CrossRefGoogle Scholar
Andreotti, B., Claudin, P., Douady, S., 2002b. Selection of dune shapes and velocities Part I: Dynamics of sand, wind, and barchans. European Physical Journal B, 28, 321339.Google Scholar
Andreotti, B., Claudin, P., Pouliquen, O., 2006. Aeolian sand ripples: Experimental study of fully developed states. Physical Review Letters, 96, 028001.Google Scholar
Andreotti, B., Claudin, P., Pouliquen, O., 2010. Measurements of the aeolian sand transport saturation length. Geomorphology, 123, 343348.Google Scholar
Andreotti, B., Fourriere, A., Ould-Kaddour, F., Murray, B., Claudin, P., 2009. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer. Nature, 457, 11201123.Google Scholar
Andrews, S., 1981. Sedimentology of Great Sand Dunes, Colorado. In Ethridge, F. P., Flores, R. M. (Eds.), Recent and Ancient Nonmarine Depositional Environments: Models for Exploration. The Society of Economic Paleontologists and Mineralogists, Tulsa, OK, pp. 279291.CrossRefGoogle Scholar
Anthonsen, K. L., Clemmensen, L. B., Jensen, J. H., 1996. Evolution of a dune from crescentic to parabolic form in response to short-term climatic changes: Råberg Mile, Skagen Odde, Denmark. Geomorphology, 17, 6377.Google Scholar
Anton, D., Vincent, P., 1986. Parabolic dunes of the Jafurah Desert, Eastern Province, Saudi Arabia. Journal of Arid Environments, 11, 187198.CrossRefGoogle Scholar
Argüello Scotti, A., Veiga, G. D., 2019. Sedimentary architecture of an ancient linear megadune (Barremian, Neuquén Basin): Insights into the long-term development and evolution of aeolian linear bedforms. Sedimentology, 66, 21912213.Google Scholar
Ash, J. E., Wasson, R. J., 1983. Vegetation and sand mobility in the Australian desert dunefield. Zeitschrift fur Geomorphologie Supplement, 45, 725.Google Scholar
Ashkenazy, Y., Yizhaq, H., Tsoar, H., 2011. Sand dune mobility under climate change in the Kalahari and Australian deserts. Climate Change, 112, 901923.Google Scholar
Ashley, G. M., 1990. Classification of large-scale subaqueous bedforms: A new look at an old problem. Journal of Sedimentary Petrology, 60, 160172.Google Scholar
Atkinson, O. A. C., Thomas, D. S. G., Goudie, A. S., Bailey, R. M., 2011. Late Quaternary chronology of major dune ridge development in the northeast Rub’ al-Khali, United Arab Emirates. Quaternary Research, 76, 93105.Google Scholar
Atkinson, O. A. C., Thomas, D. S. G., Goudie, A. S., Parker, A. G., 2012. Holocene development of multiple dune generations in the northeast Rub’ al-Khali, United Arab Emirates. The Holocene, 22, 179189.CrossRefGoogle Scholar
Ayoub, F., Leprince, S., Avouac, J. P., 2009. Co-registration and correlation of aerial photographs for ground deformation measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 551560.Google Scholar
Baas, A. C. W., 2007. Complex systems in aeolian geomorphology. Geomorphology, 91, 311331.CrossRefGoogle Scholar
Baas, A. C. W., Nield, J. M., 2007. Modelling vegetated dune landscapes. Geophysical Research Letters, 34, L06405.Google Scholar
Baas, A. C. W., Sherman, D. J., 2005. Formation and behavior of aeolian streamers. Journal of Geophysical Research: Earth Surface, 110, F03011.Google Scholar
Bacon, S. N., Lancaster, N., Stine, S., Rhodes, E. J., McCarley Holder, G. A., 2018. A continuous 4000-year lake-level record of Owens Lake, south-central Sierra Nevada, California, USA. Quaternary Research, 90, 276302.Google Scholar
Baddock, M. C., Livingstone, I., Wiggs, G. F. S., 2007. The geomorphological significance of airflow patterns in transverse dune interdunes. Geomorphology, 87, 322336.Google Scholar
Baddock, M. C., Nield, J. M., Wiggs, G. F. S., 2018. Early-stage aeolian protodunes: Bedform development and sand transport dynamics. Earth Surface Processes and Landforms, 43, 339346.Google Scholar
Baddock, M. C., Wiggs, G. F. S., Livingstone, I., 2011. A field study of mean and turbulent flow characteristics upwind, over and downwind of barchan dunes. Earth Surface Processes and Landforms, 36, 14351448.Google Scholar
Bagnold, R. A., 1941. The Physics of Blown Sand and Desert Dunes. Chapman and Hall, London.Google Scholar
Bagnold, R. A., 1951. Sand formations in southern Arabia. Geographical Journal, 117, 7886.Google Scholar
Bagnold, R. A., 1953. Forme des dunes de sable et regime des vents, Actions Eoliennes. Colloques Internationaux, Centre National de Researches Scientifiques, Paris, pp. 2332.Google Scholar
Baitis, E., Kocurek, G., Smith, V., et al., 2014. Definition and origin of the dune-field pattern at White Sands, New Mexico. Aeolian Research, 15, 269287.CrossRefGoogle Scholar
Balme, M. R., Berman, D., Bourke, M. C., Zimbelman, J. R., 2008. Transverse Aeolian Ridges (TARs) on Mars. Geomorphology, 101, 703720.Google Scholar
Banham, S. G., Gupta, S., Rubin, D. M., et al., 2018. Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars. Sedimentology, 65, 9931042.Google Scholar
Barchyn, T. E., Hugenholtz, C. H., 2012a. Predicting vegetation-stabilized dune field morphology. Geophysical Research Letters, 39, L17403.Google Scholar
Barchyn, T. E., Hugenholtz, C. H., 2012b. A process-based hypothesis for the barchan–parabolic transformation and implications for dune activity modelling. Earth Surface Processes and Landforms, 37, 14561462.Google Scholar
Barchyn, T. E., Hugenholtz, C. H., 2013a. Dune field reactivation from blowouts: Sevier Desert, UT, USA. Aeolian Research, 11, 7584.Google Scholar
Barchyn, T. E., Hugenholtz, C. H., 2013b. Reactivation of supply-limited dune fields from blowouts: A conceptual framework for state characterization. Geomorphology, 201, 172182.Google Scholar
Barndorff-Nielsen, O., Dalsgaard, K., Halcreen, C., et al., 1982. Variation in particle size distribution over a small dune. Sedimentology, 29, 5565.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E., Christiansen, C., 1985. The hyperbolic shape triangle and classification of sand sediments. In Barndorff-Nielsen, O. E., Møller, J. T., Rasmussen, K. R., Willetts, B. B. (Eds.), Proceedings of International Workshop on the Physics of Blown Sand. University of Aarhus, Aarhus, pp. 649676.Google Scholar
Barnes, J. W., Lorenz, R. D., Radebaugh, J., et al., 2015. Production and global transport of Titan’s sand particles. Planetary Science, 4, 119.Google Scholar
Bateman, M. D., Bryant, R. G., Foster, I. D. L., Livingstone, I., Parsons, A. J., 2012. On the formation of sand ramps: A case study from the Mojave Desert. Geomorphology, 161–162, 93109.Google Scholar
Beladjine, D. , Ammi, M. , Oger, L. , Valance, A. , 2007. Collision process between an incident bead and a three-dimensional granular packing. Physical Review E, 75, 061305.Google Scholar
Bellair, P., 1953. Sables desertiques et morphologie eolienne, Proceedings of the 19th International Geological Congress, Algiers, pp. 113117.Google Scholar
Belly, Y., 1964. Sand Movement by Wind. U.S. Army Corps of Engineers, Coastal Engineering Research Center, Technical Memo, 1, Addendum III, 24 pp.Google Scholar
Besler, H., 1975. Messungen zur mobilitat von Dunensanden am nordland der Dunen-Namib (sudwestafrika). Wurzburger Geographische Arbeiten, 43, 135147.Google Scholar
Besler, H., 1980. Die Dunen-Namib: Entstehung und Dynamik eines Ergs. Stuttgarter. Geographische Studien, 96, 241.Google Scholar
Besler, H., 1982. The north-eastern Rub’ al Khali within the borders of the United Arab Emirates. Zeitschrift fur Geomorphology, 26, 495504.Google Scholar
Besler, H. (Ed.), 2008. The Great Sand Sea in Egypt. Developments in Sedimentology, 59. Elsevier.Google Scholar
Besler, H., Lancaster, N., Bristow, C., et al., 2013. Helga’s Dune: 40 years of dune dynamics in the Namib Desert. Geografiska Annaler: Series A, Physical Geography, 95, 361368.Google Scholar
Besly, B., Romain, H. G., Mountney, N. P., 2018. Reconstruction of linear dunes from ancient aeolian successions using subsurface data: Permian Auk Formation, Central North Sea, UK. Marine and Petroleum Geology, 91, 118.CrossRefGoogle Scholar
Beveridge, C., Kocurek, G., Ewing, R., et al., 2006. Development of spatially diverse and complex dune-field patterns: Gran Desierto Dune Field, Sonora, Mexico. Sedimentology, 53, 13911409.Google Scholar
Bhattachan, A., D’Odorico, P., Okin, G. S., Dintwe, K., 2013. Potential dust emissions from the Southern Kalahari’s dunelands. Journal of Geophysical Research: Earth Surface, 118, 307314.Google Scholar
Bishop, M. A., 2010. Nearest neighbor analysis of mega-barchanoid dunes, Ar Rub’ al Khali, sand sea: The application of geographical indices to the understanding of dune field self-organization, maturity and environmental change. Geomorphology, 120, 186194.Google Scholar
Bishop, M. A., 2013. Dune field development, interactions and boundary conditions for crescentic and stellate megadunes of the Al Liwa Basin, the Empty Quarter. Earth Surface Processes and Landforms, 38, 183191.Google Scholar
Bishop, S. R., Momiji, H., Carretero-Gonzalez, R., Warren, A., 2002. Modelling desert dune fields based on discrete dynamics. Discrete Dynamics in Nature and Society, 7, 717.CrossRefGoogle Scholar
Blount, G., Lancaster, N., 1990. Development of the Gran Desierto Sand Sea. Geology, 18, 724728.2.3.CO;2>CrossRefGoogle Scholar
Blount, G., Smith, M. O., Adams, J. B., Greeley, R., Christensen, P. R., 1990. Regional aeolian dynamics and sand mixing in the Gran Desierto: Evidence from Landsat Thematic Mapper images. Journal of Geophysical Research, 95, 1546315482.Google Scholar
Blum, M., Kocurek, G., Deynoux, M., et al., 1998. Quaternary wadi, lacustrine, aeolian depositional cycles and sequences, Chott Rharsa basin, southern Tunisia. In Alsharan, A. S., Glennie, K. W., Whittle, G. L., Kendall, C. G. S. C. (Eds.), Quaternary Deserts and Climatic Change. Balkema, Rotterdam/Brookfield, pp. 539552.Google Scholar
Bo, T.-L., Zheng, X.-J., 2013. Wind speed-up process on the windward slope of dunes in dune fields. Computers & Fluids, 71, 400405.Google Scholar
Bogle, R., Redsteer, M. H., Vogel, J., 2015. Field measurement and analysis of climatic factors affecting dune mobility near Grand Falls on the Navajo Nation, southwestern United States. Geomorphology, 228, 4151.Google Scholar
Bolles, K., Forman, S. L., Sweeney, M., 2017. Eolian processes and heterogeneous dust emissivity during the 1930s Dust Bowl Drought and implications for projected 21st-century megadroughts. The Holocene, 27, 15781588.CrossRefGoogle Scholar
Bougan, S., Greeley, R., 1985. “Microdunes” and Other Aeolian Bedforms in High-Density Atmospheres, International Workshop on the Physics of Blown Sand, Aarhus, Denmark, pp. 369376.Google Scholar
Bourke, M. C., Goudie, A. S., 2009. Varieties of barchan form in the Namib Desert and on Mars. Aeolian Research, 1, 4554.Google Scholar
Bourke, M. C., Lancaster, N., Fenton, L. K., et al., 2010. Extraterrestrial dunes: An introduction to the special issue on planetary dune systems. Geomorphology, 121, 114.Google Scholar
Bowler, J. M., 1983. Lunettes as indices of hydrogeologic change: A review of Australian evidence. Proceedings of the Royal Society of Victoria, 95, 147168.Google Scholar
Bowler, J. M., Kotsonis, A., Lawrence, C. R., 2006. Environmental evolution of the Mallee region, Western Murray Basin. Proceedings of the Royal Society of Victoria, 118(2): 161210.Google Scholar
Breed, C. S., 1977. Terrestrial analogs of the Hellespontus dunes, Mars. Icarus, 30, 326340.CrossRefGoogle Scholar
Breed, C. S., Breed, W. J., 1979. Dunes and other windforms of central Australia (and a comparison with linear dunes on the Moenkopi Plateau, Arizona). In El-Baz, F., Warner, D. M. (Eds.), Apollo-Soyuz Test Project vol 2: Earth Observations and Photography. National Technical Information Service, Washington DC.Google Scholar
Breed, C. S., Fryberger, S. G., Andrews, S., et al., 1979. Regional studies of sand seas using LANDSAT (ERTS) imagery. In McKee, E. D. (Ed.), A Study of Global Sand Seas. Professional Paper 1052. United States Geological Survey, pp. 305398.Google Scholar
Breed, C. S., Grow, T., 1979. Morphology and distribution of dunes in sand seas observed by remote sensing. In McKee, E. D. (Ed.), A Study of Global Sand Seas. Professional Paper 1052. United States Geological Survey, pp. 253304.Google Scholar
Breed, C. S., McCauley, J. F., Davis, P. A., 1987a. Ripple Blankets, Geomorphic Evidence for Regional Sand Sheet Deposits on Mars, Lunar and Planetary Science Conference XVIII, p. 126.Google Scholar
Breed, C. S., McCauley, J. F., Davis, P. A., 1987b. Sand sheets of the eastern Sahara and ripple blankets on Mars. In Frostick, L. E., Reid, I. (Eds.), Desert Sediments: Ancient and Modern. Blackwell Scientific Publications, Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne, pp. 337359.Google Scholar
Breton, C., Lancaster, N., Nickling, W. G., 2008. Magnitude and frequency of grain flows on a desert sand dune. Geomorphology, 95, 518523.Google Scholar
Bridges, N. T., Sullivan, R., Newman, C. E., et al., 2017. Martian aeolian activity at the Bagnold Dunes, Gale Crater: The view from the surface and orbit. Journal of Geophysical Research: Planets, 122, 20772110.Google Scholar
Bristow, C., Pugh, J., Goodall, T., 1996. Internal structure of aeolian dunes in Abu Dhabi determined using ground penetrating radar. Sedimentology, 43, 9951004.Google Scholar
Bristow, C. S., Armitage, S. J., 2015. Dune ages in the sand deserts of the southern Sahara and Sahel. Quaternary International, 410, 4657.Google Scholar
Bristow, C. S., Bailey, S. D., Lancaster, N., 2000. Sedimentary structure of linear sand dunes. Nature, 406, 5659.CrossRefGoogle ScholarPubMed
Bristow, C. S., Duller, G. A. T., Lancaster, N., 2005. Combining ground penetrating radar surveys and optical dating to determine dune migration in Namibia. Journal of the Geological Society (London), 162, 315321.Google Scholar
Bristow, C. S., Duller, G. A. T., Lancaster, N., 2007. Age and dynamics of linear dunes in the Namib Desert. Geology, 35, 555558.Google Scholar
Bristow, C. S., Lancaster, N., 2004. Movement of a small slipfaceless dome dune in the Namib Sand Sea, Namibia. Geomorphology, 59, 189196.Google Scholar
Bristow, S. C., 2019. Bounding surfaces in a barchan dune: Annual cycles of deposition? Seasonality or Erosion by Superimposed Bedforms? Remote Sensing, 11(8), 965.Google Scholar
Brookfield, M., 1970. Dune trends and wind regime in Central Australia. Zeitschrift für Geomorphologie Supplement, 10, 121158.Google Scholar
Brookfield, M. E., 1977. The origin of bounding surfaces in ancient aeolian sandstones. Sedimentology, 24, 303332.Google Scholar
Buckland, C. E., Thomas, D. S. G., Bailey, R. M., 2019. Complex disturbance-driven reactivation of near-surface sediments in the largest dunefield in North America during the last 200 years. Earth Surface Processes and Landforms, 44, 27942809.Google Scholar
Bullard, J., 2010. Bridging the gap between field data and global models: Current strategies in aeolian research. Earth Surface Processes and Landforms, 35, 496499.Google Scholar
Bullard, J. E., McTainsh, G. H., 2003. Aeolian-fluvial interactions in dryland environments: Scales, concepts and Australia case study. Progress in Physical Geography, 27, 471501.Google Scholar
Bullard, J. E., Nash, D. J., 1998. Linear dune pattern variability in the vicinity of dry valleys in the southwest Kalahari. Geomorphology, 23, 3554.Google Scholar
Bullard, J. E., Thomas, D. S. G., Livingstone, I., Wiggs, G. F. S., 1995. Analysis of linear sand dune morphological variability, southwestern Kalahari Desert. Geomorphology, 11, 189203.Google Scholar
Bullard, J. E., Thomas, D. S. G., Livingstone, I., Wiggs, G. F. S., 1997. Dunefield activity and interactions with climatic variability in the southwest Kalahari Desert. Earth Surface Processes and Landforms, 22, 165174.Google Scholar
Bullard, J. E., White, K., Livingstone, I., 2011. Morphometric analysis of aeolian bedforms in the Namib Sand Sea using ASTER data. Earth Surface Processes and Landforms, 36(11),15341549.Google Scholar
Burkinshaw, J. R., Illenberger, W. K., Rust, I. C., 1993. Wind speed profiles over a reversing transverse dune. In Pye, K. (Ed.), The Dynamics and Environmental Context of Aeolian Sedimentary Systems. Geological Society, London, pp. 2536.Google Scholar
Byrne, S., Murray, B. C., 2002. North polar stratigraphy and the paleo-erg of Mars. Journal of Geophysical Research: Planets, 107, 5044.Google Scholar
Cailleux, A., 1952. L’indice de emousee des grais de sable et gres. Review de Geomorphologie Dynamique, 2, 7887.Google Scholar
Capot-Rey, R., 1947. Dry and humid morphology in the western erg. Geographical Review, 35, 391407.Google Scholar
Capot-Rey, R., Gremion, M., 1964. Remarques sur quelques sables Sahariens. Travaux de l’Institut de Recherches Sahariennes, 23, 153163.Google Scholar
Chandler, C. K., Radebaugh, J., McBride, J. H., et al., 2022. Near-surface structure of a large linear dune and an associated crossing dune of the northern Namib Sand Sea from Ground Penetrating Radar: Implications for the history of large linear dunes on Earth and Titan. Aeolian Research, 57, 100813.Google Scholar
Charnay, B., Barth, E., Rafkin, S., et al., 2015. Methane storms as a driver of Titan’s dune orientation. Nature Geoscience, 8, 362366.Google Scholar
Chase, B., 2009. Evaluating the use of dune sediments as a proxy for palaeo-aridity: A southern African case study. Earth-Science Reviews, 93, 3145.Google Scholar
Chen, J., Zhang, D., Yang, X., Lehmkuhl, F., Jiang, W., 2022. The effects of seasonal wind regimes on the evolution of reversing barchanoid dunes. Journal of Geophysical Research: Earth Surface, 127, e2021JF006489.Google Scholar
Chen, X. Y., Bowler, J. M., Magee, J. W., 1991. Aeolian landscapes in central Australia: Gypsiferous and quartz dune environments from Lake Amadeus. Sedimentology, 38, 519538.Google Scholar
Chen, Y., Yizhaq, H., Mason, J. A., Zhang, X., Xu, Z., 2021. Dune bistability identified by remote sensing in a semi-arid dune field of northern China. Aeolian Research, 53, 100751.Google Scholar
Chojnacki, M., Banks, M. E., Fenton, L. K., Urso, A. C., 2019. Boundary condition controls on the high-sand-flux regions of Mars. Geology, 47, 427430.Google Scholar
Claudin, P., Andreotti, B., 2006. A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth and Planetary Science Letters, 252, 3044.Google Scholar
Claudin, P., Wiggs, G., Andreotti, B., 2013. Field evidence for the upwind velocity shift at the crest of low dunes. Boundary-Layer Meteorology, 148, 195206.Google Scholar
Clemmensen, L. B., 1987. Complex star dunes and associated aeolian bedforms, Hopeman Sandstone (Permo-Triassic), Moray Firth Basin, Scotland. In Frostick, L. E., Reid, I. (Eds.), Desert Sediments: Ancient and Modern. Blackwell Scientific Publications, Oxford, pp. 213231.Google Scholar
Cohen, T. J., Nanson, G. C., Larsen, J. R., et al., 2010. Late Quaternary aeolian and fluvial interactions on the Cooper Creek Fan and the association between linear and source-bordering dunes, Strzelecki Desert, Australia. Quaternary Science Reviews, 29, 455471.Google Scholar
Cooke, R. U., Goudie, A. S., Warren, A., 1993. Desert Geomorphology. UCL Press, London.Google Scholar
Cooper, W. S., 1958. Coastal Sand Dunes of Oregon and Washington. Geological Society of America Memoir, 72, 167.Google Scholar
Corbett, I., 1993. The modern and ancient pattern of sandflow through the southern Namib deflation basin. International Association of Sedimentologists Special Publication, 16, 4560.Google Scholar
Cornwall, C., Jackson, D. W. T., Bourke, M. C., Cooper, J. A. G., 2018. Morphometric analysis of slipface processes of an aeolian dune: Implications for grain-flow dynamics. Sedimentology, 65, 20342054.Google Scholar
Cosgrove, G. I. E., Colombera, L., Mountney, N. P., 2021a. Eolian stratigraphic record of environmental change through geological time. Geology, 50, 289294.Google Scholar
Cosgrove, G. I. E., Colombera, L., Mountney, N. P., 2021b. The role of subsidence and accommodation generation in controlling the nature of the aeolian stratigraphic record. Journal of the Geological Society, 179, jgs2021–042.Google Scholar
Courrech du Pont, S., Narteau, C., Gao, X., 2014. Two modes for dune orientation. Geology, 42, 743746.Google Scholar
Crocker, R. L., 1946. The soil and vegetation of the Simpson Desert and its borders. Transactions of the Royal Society of South Australia, 70, 235258.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, N., Sandler, A., 2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quaternary Research, 70, 275282.Google Scholar
Crouvi, O., Schepanski, K., Amit, R., Gillespie, A. R., Enzel, Y., 2012. Multiple dust sources in the Sahara Desert: The importance of sand dunes. Geophysical Research Letters, 39, L13401.Google Scholar
Cupp, K., Lancaster, N., Nickling, W. G., 2005. Lee slope processes on a small artificial flow-transverse dune. Eos, Transactions American Geophysical Union, 86(52, Fall Meeting Supplement), Abstract H51C-0386.Google Scholar
Cutts, J. A., Smith, R. S. U., 1973. Aeolian deposits and dunes on Mars. Journal of Geophysical Research, 78, 41394154.Google Scholar
Davis, J. M., Banham, S. G., Grindrod, P. M., et al., 2020. Morphology, development, and sediment dynamics of elongating linear dunes on Mars. Geophysical Research Letters, 47, e2020GL088456.Google Scholar
Delorme, P., Wiggs, G., Baddock, M., et al., 2020a. Proto-dune formation under a bimodal wind regime, EGU General Assembly 2020, Online, 4–8 May 2020, pp. 182.Google Scholar
Delorme, P., Wiggs, G. F. S., Baddock, M. C., et al., 2020b. Dune initiation in a bimodal wind regime. Journal of Geophysical Research: Earth Surface, 125, e2020JF005757.Google Scholar
Derickson, D., Kocurek, G., Ewing, R. C., Bristow, C. S., 2008. Origin of a complex and spatially diverse dune-field pattern, Algodones, southeastern California. Geomorphology, 99, 186204.Google Scholar
Diniega, S., Kreslavsky, M., Radebaugh, J., et al., 2017. Our evolving understanding of aeolian bedforms, based on observation of dunes on different worlds. Aeolian Research, 26, 527.Google Scholar
Dong, Z., Qian, G., Lv, P., Hu, G., 2013. Investigation of the sand sea with the tallest dunes on Earth: China’s Badain Jaran Sand Sea. Earth-Science Reviews, 120, 2039.Google Scholar
Dong, Z., Qinan, G., Lu, P., Luo, W., Wang, H., 2009. Turbulence fields in the lee of two-dimensional transverse dunes simulated in a wind tunnel. Earth Surface Processes and Landforms, 34, 204216.Google Scholar
Dong, Z., Wang, T., Wang, X., 2004. Geomorphology of megadunes in the Badain Jaran Desert. Geomorphology, 60, 191204.Google Scholar
Dong, Z., Wei, Z., Qian, G., et al., 2010. “Raked” linear dunes in the Kumtagh Desert, China. Geomorphology, 123, 122128.Google Scholar
Duller, G. A. T., 2004. Luminescence dating of Quaternary sediments: Recent developments. Journal of Quaternary Science, 19, 182192.Google Scholar
Durán, O., Claudin, P., Andreotti, B., 2011. On aeolian transport: Grain-scale interactions, dynamical mechanisms and scaling laws. Aeolian Research, 3, 243270.Google Scholar
Durán, O., Herrmann, H. J., 2006. Vegetation against dune mobility. Physical Review Letters, 97, 188001.Google Scholar
Durán, O., Parteli, E. J. R., Herrmann, H. J., 2010. A continuous model for sand dunes: Review, new developments and application to barchan dunes and barchan dune fields. Earth Surface Processes and Landforms, 35, 15911600.Google Scholar
East, A. E., Sankey, J. B., 2020. Geomorphic and sedimentary effects of modern climate change: Current and anticipated future conditions in the western United States. Reviews of Geophysics, 58, e2019RG000692.Google Scholar
Eastwood, E., Nield, J., Baas, A., Kocurek, G., 2011. Modelling controls on aeolian dune-field pattern evolution. Sedimentology, 58, 13911406.Google Scholar
Eastwood, E. N., Kocurek, G., Mohrig, D., Swanson, T., 2012. Methodology for reconstructing wind direction, wind speed and duration of wind events from aeolian cross-strata. Journal of Geophysical Research, 117, F03035.Google Scholar
Edgell, H. S., 2006. Arabian Deserts Nature Origin and Evolution. Springer, Dordrect.Google Scholar
Edgett, K. S., Blumberg, D. G., 1994. Star and linear dunes on Mars. Icarus, 112, 448464.Google Scholar
Edgett, K. S., Lancaster, N., 1993. Volcaniclastic aeolian dunes. Journal of Arid Environments, 25, 271297.Google Scholar
Edwards, B. L., Webb, N. P., Brown, D. P., et al., 2019. Climate change impacts on wind and water erosion on US rangelands. Journal of Soil and Water Conservation, 74, 405.Google Scholar
El Baz, F., Maxwell, T. A. (Eds.), 1982. Desert Landforms of Egypt: A Basis for Comparison with Mars. NASA, Washington DC.Google Scholar
El-Sayed, M. I., 2000. The nature and possible origin of mega-dunes in Liwa, Ar Rub’ Al Khali, UAE. Sedimentary Geology, 134, 304330.Google Scholar
Elbelrhiti, H., 2012. Initiation and early development of barchan dunes: A case study of the Moroccan Atlantic Sahara desert. Geomorphology, 138, 181188.Google Scholar
Elbelrhiti, H., Andreotti, B., Claudin, P., 2008. Barchan dune corridors: Field characterization and investigation of control parameters. Journal of Geophysical Research, Earth Surface, 113, F02S15.Google Scholar
Elbelrhiti, H., Claudin, P., Andreotti, B., 2005. Field evidence for surface-wave-induced instability of sand dunes. Nature, 437, 720723.CrossRefGoogle ScholarPubMed
Ellis, J. T., Sherman, D. J., 2013. Fundamentals of Aeolian Sediment Transport: Wind-Blown Sand. In Shroder, John F, (Ed.) Treatise on Geomorphology 11.6. Academic Press, San Diego, pp. 85108.Google Scholar
Ellwein, A. L., Mahan, S. A., McFadden, L. D., 2015. Impacts of climate change on the formation and stability of late Quaternary sand sheets and falling dunes, Black Mesa region, southern Colorado Plateau, USA. Quaternary International, 362, 87107.Google Scholar
Embabi, N. S., 1982. Barchans of the Kharga Depression. In El Baz, F., Maxwell, T. A. (Eds.), Desert Landforms of Egypt: A Basis for Comparison with Mars. NASA, Washington DC, pp. 141156.Google Scholar
Embabi, N. S., Mostafa, A. A., Mahmoud, A. M. A., Azab, M. A., 2012. Geomorphology of Ghard Abu Moharik Sand Sea in Egypt. Bulletin Geographical Society of Egypt.Google Scholar
Engel, M., Boesl, F., Brückner, H., 2018. Migration of Barchan Dunes in Qatar–Controls of the Shamal, Teleconnections, Sea-Level Changes and Human Impact. Geosciences, 8, 240.Google Scholar
Ewing, R. C., Kocurek, G., Lake, L. W., 2006. Pattern analysis of dune-field parameters. Earth Surface Processes and Landforms, 31, 11761191.Google Scholar
Ewing, R. C., 2020. White Sands. In Lancaster, N., Hesp, P. (Eds.), Inland Dunes of North America. Springer International Publishing, Cham, pp. 207237.Google Scholar
Ewing, R. C., Hayes, A. G., Lucas, A., 2015a. Sand dune patterns on Titan controlled by long-term climate cycles. Nature Geoscience, 8, 1519.Google Scholar
Ewing, R. C., Kocurek, G., 2010a. Aeolian dune interactions and dune-field pattern formation: White Sands Dune Field, New Mexico. Sedimentology, 57, 11991219.Google Scholar
Ewing, R. C., Kocurek, G., 2010b. Aeolian dune-field pattern boundary conditions. Geomorphology, 114, 175187.Google Scholar
Ewing, R. C., Lapotre, M. G. A., Lewis, K. W., et al., 2017. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars. Journal of Geophysical Research: Planets, 122, 25442573.Google Scholar
Ewing, R. C., McDonald, G. D., Hayes, A. G., 2015b. Multi-spatial analysis of aeolian dune-field patterns. Geomorphology, 240, 4453.Google Scholar
Ewing, R. C., Peyret, A.-P. B., Kocurek, G., Bourke, M., 2010. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars. Journal of Geophysical Research, 115, E08005.Google Scholar
Farrant, A. R., Duller, G. A. T., Parker, A. G., et al., T., 2015. Developing a framework of Quaternary dune accumulation in the northern Rub’ al-Khali, Arabia. Quaternary International, 382, 132144.Google Scholar
Fenton, L. K., 2005. Potential sand sources for the dunefields in Noachis Terra, Mars. Journal of Geophysical Research, 110, E110004.Google Scholar
Fenton, L. K., 2006. Dune migration and slip face advancement in the Rabe Crater dune field, Mars. Geophysical Research Letters, 33, L20201.Google Scholar
Finkel, H. J., 1959. The barchans of Southern Peru. Journal of Geology, 67, 614647.Google Scholar
Fisher, A., Hesse, P. P., 2019. The response of vegetation cover and dune activity to rainfall, drought and fire observed by multitemporal satellite imagery. Earth Surface Processes and Landforms, 44, 29572967.Google Scholar
Fitzsimmons, K. E., 2007. Morphological variability in the linear dunefields of the Strzelecki and Tirari deserts, Australia. Geomorphology, 91, 146160.Google Scholar
Fitzsimmons, K. E., Nowatzki, M., Dave, A. K., Harder, H., 2020. Intersections between wind regimes, topography and sediment supply: Perspectives from aeolian landforms in Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 540, 109531.Google Scholar
Fitzsimmons, K. E., Rhodes, E. J., Magee, J. W., Barrows, T. T., 2007. The timing of linear dune actiity in the Strzelecki and Tirari deserts. Quaternary Science Reviews, 26, 25982616.Google Scholar
Folk, R., 1970. Longitudinal dunes of the northwestern edge of the Simpson Desert, Northern Territory, Australia, 1. Geomorphology and grain size relationships.Sedimentology, 16, 554.Google Scholar
Folk, R. L., 1966. A review of grain size parameters. Sedimentology, 6, 7393.Google Scholar
Folk, R. L., 1976a. Reddening of desert sands: Simpson Desert, N.T. Australia. Journal of Sedimentary Petrology, 46, 604615.Google Scholar
Folk, R. L., 1976b. Rollers and ripples in sand, streams and sky: Rhythmic alteration of transverse and longitudinal vortices in three orders. Sedimentology, 23, 649669.Google Scholar
Folk, R. L., 1978. Angularity and silica coatings of Simpson Desert sand grains, Northern Territory, Australia. Journal of Sedimentary Petrology, 48, 611624.Google Scholar
Forman, S. L., Marin, L., Pierson, J., et al., 2005. Aeolian sand depositional records from western Nebraska: Landscape responses to droughts in the past 1500 years. The Holocene, 15, 973981.Google Scholar
Forman, S. L., Oglesby, R., Webb, R. S., 2001. Temporal and spatial patterns of Holocene dune activity on the Great Plains of North America: Megadroughts and climate links. Global and Planetary Change, 29, 129.Google Scholar
Forman, S. L., Spaeth, M., Marin, L., et al., 2006. Episodic Late Holocene dune movements on the sand sheet area, Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado, USA. Quaternary Research, 66, 119132.Google Scholar
Foroutan, M., Zimbelman, J. R., 2016. Mega-ripples in Iran: A new analog for transverse aeolian ridges on Mars. Icarus, 274, 99105.Google Scholar
Frank, A., Kocurek, G., 1994. Effects of atmospheric conditions on wind profiles and aeolian sand transport with an example from White Sands National Monument. Earth Surface Processes and Landforms, 19, 735745.Google Scholar
Frank, A., Kocurek, G., 1996a. Airflow up the stoss slope of sand dunes: Limitations of current understanding. Geomorphology, 17, 4754.Google Scholar
Frank, A., Kocurek, G., 1996b. Towards a model for airflow on the lee side of aeolian dunes. Sedimentology, 43, 451458.Google Scholar
Friedman, G. M., 1962. On sorting, sorting coefficients, and the log normality of the grain-size distribution of sandstones. Journal of Geology, 70, 737753.Google Scholar
Fryberger, S., Ahlbrandt, T., Andrews, S., 1979. Origin, sedimentary features, and significance of low-angle eolian “sand sheet” deposits, Great Sand Dunes National Monument and vicinity, Colorado. Journal of Sedimentary Petrology, 49, 733746.Google Scholar
Fryberger, S., Goudie, A. S., 1981. Arid Geomorphology. Progress in Physical Geography, 5, 420428.Google Scholar
Fryberger, S. G., Ahlbrandt, T. S., 1979. Mechanisms for the formation of aeolian sand seas. Zeitschrift für Geomorphologie, 23, 440460.Google Scholar
Fryberger, S. G., Al-Sari, A. M., Clisham, T. J., 1983. Eolian dune, interdune, sand sheet and siliciclastic sabkha sediments of an offshore prograding sand sea, Dhahran area, Saudi Arabia. American Association of Petroleum Geologists Bulletin, 67, 280312.Google Scholar
Fryberger, S. G., Al-Sari, A. M., Clisham, T. J., Rizoi, S. A. R., Al-Hinai, K. G., 1984. Wind sedimentation in the Jafarah sand sea, Saudi Arabia. Sedimentology, 31, 413431.Google Scholar
Fryberger, S. G., Dean, 1979. Dune forms and wind regimes. In McKee, E. D (Ed.), A Study of Global Sand Seas: United States Geological Survey, Professional Paper. U.S.G.S. Professional Paper, pp. 137140.Google Scholar
Fryberger, S. G., Hesp, P., Hastings, K., 1992. Aeolian granule ripple deposits, Namibia. Sedimentology, 39, 319331.Google Scholar
Gadal, C., Narteau, C., Courrech du Pont, S., Rozier, O., Claudin, P., 2019. Incipient bedforms in a bidirectional wind regime. Journal of Fluid Mechanics, 862, 490516.Google Scholar
Gadal, C., Narteau, C., Courrech du Pont, S., Rozier, O., Claudin, P., 2020a. Periodicity in fields of elongating dunes. Geology, 48, 343347.Google Scholar
Gadal, C., Narteau, C., Ewing, R. C., et al., 2020b. Spatial and temporal development of incipient dunes. Geophysical Research Letters, 40, e2020GL088919.Google Scholar
Gao, F., 2018. Morphodynamics of barchan and dome dunes under variable wind regimes. Geology, 48, 343347.Google Scholar
Gao, X., Narteau, C., Rozier, O., 2015a. Development and steady states of transverse dunes: A numerical analysis of dune pattern coarsening and giant dunes. Journal of Geophysical Research: Earth Surface, 120, 22002219.Google Scholar
Gao, X., Narteau, C., Rozier, O., Courrech du Pont, S., 2015b. Phase diagrams of dune shape and orientation depending on sand availability. Scientific Reports, 5, 14677.Google Scholar
Gao, X., Narteau, C., Rozier, O., 2016. Controls on and effects of armoring and vertical sorting in aeolian dune fields: A numerical simulation study. Geophysical Research Letters, 43, 26142622.Google Scholar
Gardner, R., Pye, K., 1981. Nature, origin and paleoenvironmental significance of red coastal and desert dune sands. Progress in Physical Geography, 5, 514534.Google Scholar
Gardner, R. A. M., 1988. Aeolianites and marine deposits of the Wahiba Sands: Character and palaeoenvironments. In Dutton, R. W. (Ed.), Scientific Results of the Royal Geographical Society’s Oman Wahiba Sands Project 1985–1987. Journal of Oman Studies, Special Report 3, Office of the Advisor for Conservation of the Environment, Muscat, Oman, pp. 7594.Google Scholar
Garzanti, E., Andó, S., Vezzoli, G., et al., 2012. Petrology of the Namib Sand Sea: Long-distance transport and compositional variability in the wind-displaced Orange Delta. Earth-Science Reviews, 112, 173189.Google Scholar
Garzanti, E., Resentini, A., Andò, S., et al., 2015. Physical controls on sand composition and relative durability of detrital minerals during ultra-long distance littoral and aeolian transport (Namibia and southern Angola). Sedimentology, 62, 971996.Google Scholar
Garzanti, E., Vermeesch, P., Andò, S., et al., 2013. Provenance and recycling of Arabian desert sand. Earth-Science Reviews, 120, 119.Google Scholar
Gay, S. P., Jr., 1999. Observations regarding the movement of barchan sand dunes in the Nazca to Tanaca area of southern Peru. Geomorphology, 27, 279294.Google Scholar
Gillette, D. A., Herbert, G., Stockton, P. H., Owen, P. R., 1996. Causes of the fetch effect in wind erosion. Earth Surface Processes and Landforms, 21, 641660.Google Scholar
Gillette, D. A., Stockton, P. H., 1989. The effect of nonerodible particles on the wind erosion of erodible surfaces. Journal of Geophysical Research, 94, 1288512893.Google Scholar
Gillies, J. A., Green, H., McCarley-Holder, G., et al., 2015. Using solid element roughness to control sand movement: Keeler Dunes, Keeler, California. Aeolian Research, 18, 3546.Google Scholar
Gillies, J. A., Nield, J. M., Nickling, W. G., 2014. Wind speed and sediment transport recovery in the lee of a vegetated and denuded nebkha within a nebkha dune field. Aeolian Research, 12, 135141.Google Scholar
Glennie, K. W., 1970. Desert Sedimentary Environments. Developments in Sedimentology, 14. Elsevier, Amsterdam.Google Scholar
Glennie, K. W., 1972. Permian Rotliegendes of northwest Europe interpreted in light of modern desert sedimentation studies 1. AAPG Bulletin, 56, 10481071.Google Scholar
Goudie, A. S., 1999. The history of desert dune studies over the past 100 years. In Goudie, A. S., Livingstone, I., Stokes, S. (Eds.), Aeolian Environments, Sediments, and Landforms. Wiley, Chichester, NY, pp. 113.Google Scholar
Goudie, A. S., 2013. Parabolic Dunes: Distribution, Form, Morphology and Change. Annals of the Arid Zone, 50, 17.Google Scholar
Goudie, A. S., 2020. Global barchans: A distributional analysis. Aeolian Research, 44, 100591.Google Scholar
Goudie, A. S., 2022. Nebkhas: An essay in aeolian biogeomorphology. Aeolian Research, 54, 100772.Google Scholar
Goudie, A. S., Allchin, B., Hegde, K. T. M., 1973. The Former Extensions of the Great Indian Sand Desert. The Geographical Journal, 139, 243257.Google Scholar
Goudie, A. S., Goudie, A. M., Viles, H. A., 2021. The distribution and nature of star dunes: A global analysis. Aeolian Research, 50, 100685.Google Scholar
Goudie, A. S., Thomas, D. S. G., 1985. Pans in southern Africa with particular reference to South Africa and Zimbabwe. Zeitschrift für Geomorphologie, 29, 119.Google Scholar
Goudie, A. S., Warren, A., Jones, D. K. C., Cooke, R. U., 1987. The character and possible origins of the aeolian sediments of the Wahiba Sands. Geographical Journal, 153, 231256.Google Scholar
Goudie, A. S., Watson, A., 1981. The shape of desert sand dune grains. Journal of Arid Environments, 4, 185190.Google Scholar
Greeley, R., Arvidson, R. E., Plaut, J. J., et al., 1992a. Aeolian features on Venus: Preliminary Magellan results. Journal of Geophysical Research, 97, 1331913345.Google Scholar
Greeley, R., Bender, K., Weitz, C. M., 1995. Wind-related features and processes on Venus: Summary of Magellan results. Icarus, 115, 399420.Google Scholar
Greeley, R., Iversen, J., Leach, R., et al., 1984. Windblown sand on Venus: Preliminary results of laboratory simulations. Icarus, 57, 152160.Google Scholar
Greeley, R., Iversen, J. D., 1985. Wind as a Geological Process. Cambridge University Press, Cambridge.Google Scholar
Greeley, R., Lancaster, N., Lee, S., Thomas, P., 1992b. Martian aeolian processes, sediments and features. In Kieffer, H., Jakosky, B. M., Snyder, C. W., Matthews, M. S. (Eds.), Mars. University of Arizona Press, Tucson, pp. 730767.Google Scholar
Grotzinger, J. P., Arvidson, R. E., Bell, J. F., et al., 2005. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 1172.Google Scholar
Grotzinger, J. P., Milliken, R. E., Grotzinger, J. P., Milliken, R. E., 2012. The Sedimentary Rock Record of Mars: Distribution, Origins, and Global Stratigraphy, Sedimentary Geology of Mars. SEPM Society for Sedimentary Geology.Google Scholar
Grove, A. T., 1958. The ancient erg of Hausaland, and similar formations on the south side of the Sahara. The Geographical Journal, 124, 526533.Google Scholar
Grove, A. T., 1969. Landforms and climatic change in the Kalahari and Ngamiland. The Geographical Journal, 135, 190212.Google Scholar
Grove, A. T., Warren, A., 1968. Quaternary landforms and climate on the south side of the Sahara. The Geographical Journal, 134, 189208.Google Scholar
Guan, C., Hasi, E., Zhang, P., et al., 2017. Parabolic dune development modes according to shape at the southern fringes of the Hobq Desert, Inner Mongolia, China. Geomorphology, 295, 645655.Google Scholar
Gunn, A., Gassanta, G., Di Liberio, L., et al., 2022. What sets aeolian dune height. Nature Communications, 13, 2401.Google Scholar
Gunn, A., Lancaster, N., Ewing, R., et al., 2019. Self-Building Landscapes: Sand Seas Grow by Steering Climate, AGU Fall Meeting Abstracts, abstract #EP34B-07. https://ui.adsabs.harvard.edu/abs/2019AGUFMEP34B..07G/abstractGoogle Scholar
Gunn, A., Wanker, M., Lancaster, N., et al., 2021. Circadian rhythm of dune-field activity. Geophysical Research Letters, 48, e2020GL090924.Google Scholar
Hack, J. T., 1941. Dunes of the Western Navajo County. Geographical Review, 31, 240263.Google Scholar
Haff, P. K., Presti, D. E., 1995. Barchan dunes of the Salton Sea region, California. In Tchakerian, V. P. (Ed.), Desert Aeolian Processes. Chapman and Hall, New York, pp. 153178.Google Scholar
Halfen, A. F., Johnson, W. C., 2013. A review of Great Plains dune field chronologies. Aeolian Research, 10, 135160.Google Scholar
Halfen, A. F., Johnson, W. C., Hanson, P. R., et al., 2012. Activation history of the Hutchinson dunes in east-central Kansas, USA during the past 2200 years. Aeolian Research, 5, 920.Google Scholar
Halfen, A. F., Lancaster, N., Wolfe, S. A., 2015. Interpretations and common challenges of aeolian records from North American dune fields. Quaternary International, 410, 7595.Google Scholar
Hall, S. A., Goble, R. G., 2015. OSL age and stratigraphy of the Strauss sand sheet, New Mexico, USA and Chihuahua, Mexico. Geomorphology, 241, 4254.Google Scholar
Hallet, B., 1990. Spatial self-organization in geomorphology: From periodic bedforms and patterned ground to scale-invariant topography. Earth Science Reviews, 29, 5776.Google Scholar
Hanebuth, T. J. J., Mersmeyer, H., Kudrass, H. R., Westphal, H., 2013. Aeolian to shallow-marine shelf architecture off a major desert since the Late Pleistocene (northern Mauritania). Geomorphology, 203, 132146.Google Scholar
Haney, E. M., Grolier, M. J., 1991. Geologic Map of Major Quaternary Eolian Features, Northern and Central Coastal Peru. United States Geological Survey, Miscellaneous Investigations, I-2162.Google Scholar
Hanna, S. R., 1969. The formation of longitudinal sand dunes by large helical eddies in the atmosphere. Journal of Applied Meteorology, 8, 874883.Google Scholar
Hardisty, J., Whitehouse, R. J. S., 1988. Evidence for a new sand transport process from experiments on Saharan dunes. Nature, 332, 532534.Google Scholar
Hartmann, D., Christiansen, C., 1988. Settling velocity distributions and sorting processes on a longitudinal sand dune. Earth Surface Processes and Landforms, 13, 649656.Google Scholar
Hastenrath, S., 1987. The barchan dunes of Southern Peru revisited. Zeitschrift für Geomorphologie, 31, 167178.Google Scholar
Hastenrath, S. L., 1967. The barchans of the Arequipa region, Southern Peru. Zeitschrift für Geomorphologie, 11, 300311.Google Scholar
Havholm, K. G., Kocurek, G., 1988. A preliminary study of the dynamics of a modern draa, Algodones, southeastern California, USA. Sedimentology, 35, 649669.Google Scholar
Haynes, C. V. J., 1989. Bagnold’s barchan: A 57-yr record of dune movement in the eastern Sahara and implications for dune origin and palaeoclimate since Neolithic times. Quaternary Research, 32, 153167.Google Scholar
Hayward, R. K., Fenton, L. K., Titus, T. N., 2014. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations. Icarus, 230, 3846.Google Scholar
Hersen, P., Anderson, K. H., Elbelrhiti, B., et al., 2004. Corridors of barchan dunes: Stability and size selection. Physical Review E, 69, 011301011312.Google Scholar
Hesp, P. A., 1981. The formation of shadow dunes. Journal of Sedimentary Petrology, 51, 101112.Google Scholar
Hesp, P. A., Hastings, K., 1998. Width, height and slope relationships and aerodynamic maintenance of barchans. Geomorphology, 22, 193204.Google Scholar
Hesse, P., 2011. Sticky dunes in a wet desert: Formation, stabilisation and modification of the Australian desert dunefields. Geomorphology, 134, 309325.Google Scholar
Hesse, P. P., 2016. How do longitudinal dunes respond to climate forcing? Insights from 25 years of luminescence dating of the Australian desert dunefields. Quaternary International, 410, 1129.Google Scholar
Hesse, P. P., Simpson, R. L., 2006. Variable vegetation cover and episodic sand movement on longitudinal desert dunes. Geomorphology, 81, 276291.Google Scholar
Hesse, P. P., Telfer, M. W., Farebrother, W., 2017. Complexity confers stability: Climate variability, vegetation response and sand transport on longitudinal sand dunes in Australia’s deserts. Aeolian Research, 25, 4561.Google Scholar
Hesse, R., 2009. Do swarms of migrating barchan dunes record paleoenvironmental changes? – A case study spanning the middle to late Holocene in the Pampa de Jaguay, southern Peru. Geomorphology, 104, 185190.Google Scholar
Holliday, V. T., 1997. Origin and evolution of lunettes on the High Plains of Texas and New Mexico. Quaternary Research, 47, 5469.Google Scholar
Holm, D. A., 1960. Desert geomorphology in the Arabian Peninsula. Science, 132, 13691379.Google Scholar
Howard, A. D., 1977. Effect of slope on the threshold of motion and its application to orientation of wind ripples. Geological Society of America Bulletin, 88, 853856.Google Scholar
Howard, A. D., 1985. Interaction of sand transport with topography and local winds in the northern Peruvian coastal desert. In Barndorff-Nielsen, O. E., Møller, J. T., Rasmussen, K. R., Willetts, B. B. (Eds.), Proceedings of International Workshop on the Physics of Blown Sand. University of Aarhus, Aarhus, pp. 511544.Google Scholar
Howard, A. D., Morton, J. B., Gad-el-Hak, M., Pierce, D. B., 1978. Sand transport model of barchan dune equilibrium. Sedimentology, 25, 307338.Google Scholar
Hu, Z., Gao, X., Lei, J., Zhou, N., 2021. Geomorphology of aeolian dunes in the western Sahara Desert. Geomorphology, 392, 107916.Google Scholar
Hugenholtz, C. H., Levin, N., Barchyn, T. E., Baddock, M., 2012. Remote Sensing and spatial analysis of aeolian sand dunes: A review and outlook. Earth Science Reviews, 111, 319334.Google Scholar
Hugenholtz, C. H., Whitehead, K., Brown, O. W., et al., 2013. Geomorphological mapping with a small unmanned aircraft system (UAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model. Geomorphology, 194, 1624.Google Scholar
Hugenholtz, C. H., Wolfe, S. A., 2005. Biogeomorphic model of dunefield activation and stabilization on the northern Great Plains. Geomorphology, 70, 5370.Google Scholar
Hunt, A. R. G., Day, M., Edgett, K. S., Chojnacki, M., 2022. The lithified aeolian dune field adjacent to the Apollinaris Sulci, Mars: Geological history and paleo-wind record. Icarus, 373, 114788.Google Scholar
Hunt, J. C. R., Leibovich, S., Richards, K. J., 1988. Turbulent shear flows over low hills. Quarterly Journal of the Royal Meteorological Society, 114, 14351470.Google Scholar
Hunter, R. E., 1977. Basic types of stratification in small eolian dunes. Sedimentology, 24, 361388.Google Scholar
Hunter, R. E., 1985. A kinematic model for the structure of lee-side deposits. Sedimentology, 32, 409422.Google Scholar
Hunter, R. E., Richmond, B. M., Alpha, T. R., 1983. Storm-controlled oblique dunes of the Oregon Coast. Geological Society of America Bulletin, 94, 14501465.Google Scholar
Hunter, R. E., Rubin, D. M., 1983. Interpreting cycling crossbedding, with an example from the Navajo Sandstone. In Brookfield, M. E., Ahlbrandt, T. S. (Eds.), Eolian Sediments and Processes. Developments in Sedimentology. Elsevier, Amsterdam, pp. 429454.Google Scholar
Isenberg, O., Yizhaq, H., Tsoar, H., et al., 2011. Megaripple flattening due to strong winds. Geomorphology, 131, 6984.Google Scholar
Jackson, D. W. T., Cooper, A., Green, A., et al., 2020. Reversing transverse dunes: Modelling of airflow switching using 3D computational fluid dynamics. Earth and Planetary Science Letters, 544, 116363.Google Scholar
Jackson II, R. G., 1975. Hierarchical attributes and a unifying model of bed forms composed of cohesionless material and produced by shearing flow. Geological Society of America Bulletin, 86, 15231533.Google Scholar
Jackson, P. S., Hunt, J. C. R., 1975. Turbulent wind flow over a low hill. Quarterly Journal of the Royal Meteorological Society, 101, 929955.Google Scholar
Jennings, J. N., 1968. A revised map of the desert dunes of Australia. Australian Geographer, 10, 408409.Google Scholar
Jensen, N. O., Zeman, O., 1985. Perturbations to mean wind and turbulence in flow over topographic forms. In Barndorff-Nielsen, O. E., Møller, J. T., Rasmussen, K. R., Willetts, B. B. (Eds.), Proceedings of International Workshop on the Physics of Blown Sand. University of Aarhus, Aarhus, pp. 351368.Google Scholar
Jerolmack, D. J., Brzinski, T. A., 2010. Equivalence of abrupt grain-size transitions in alluvial rivers and eolian sand seas. A hypothesis. Geology, 38, 719722.Google Scholar
Jerolmack, D. J., Ewing, R. C., Falcini, F., et al., 2012. Internal boundary layer model for the evolution of desert dune fields. Nature Geoscience, 5, 206209.Google Scholar
Jerolmack, D. J., Reitz, M. D., Martin, R. L., 2011. Sorting out abrasion in a gypsum dune field. J. Geophys. Res., 116, F02003.Google Scholar
Jiang, Q., Yang, X., 2019. Sedimentological and geochemical composition of aeolian sediments in the Taklamakan Desert: Implications for provenance and sediment supply mechanisms. Journal of Geophysical Research: Earth Surface, 124, F004990.Google Scholar
Johnson, W. C., Hanson, P. R., Halfen, A. F., Koop, A. N., 2020. The Central and Southern Great Plains. In Lancaster, N., Hesp, P. (Eds.), Inland Dunes of North America. Springer International Publishing, Cham, pp. 121179.Google Scholar
Jol, H. M., Bristow, C. S., 2003. GPR in sediments: Advice on data collection, basic processing and interpretation, a good practice guide. In Jol, H. M., Bristow, C. S. (Eds.), Ground Penetrating Radar in Sediments. Geological Society, London, pp. 927.Google Scholar
Kar, A., 1993. Aeolian processes and bedforms in the Thar Desert. Journal of Arid Environments, 25, 8396.Google Scholar
Katra, I., Yizhaq, H., Kok, J. F., 2014. Mechanisms limiting the growth of aeolian megaripples. Geophysical Research Letters, 41, 858865.Google Scholar
Kelley, R. D., 1984. Horizontal roll and boundary layer interrelationships observed over Lake Michigan. Journal of Atmospheric Science, 41, 18161826.Google Scholar
Kennedy, J. F., 1969. The formation of sediment ripples, dunes and antidunes. Annual Reviews of Fluid Mechanics, 1, 147169.Google Scholar
Khalaf, F. I., Misak, R., Al-Dousari, A. M., 1995. Sedimentological and morphological characteristics of some nabkha deposits in the northern coastal plain of Kuwait, Arabia. Journal of Arid Environments, 29, 267292.Google Scholar
Knight, M., Thomas, D. S. G., Wiggs, G. F. S., 2004. Challenges of calculating dunefield mobility over the 21st century. Geomorphology, 59, 197213.Google Scholar
Kocurek, G., 1984. Origin of first order bounding surfaces in aeolian sandstones: Reply. Sedimentology, 31, 125127.Google Scholar
Kocurek, G., 1988. First order and super bounding surfaces in eolian sequences: Bounding surfaces revisited. Sedimentary Geology, 56, 193206.Google Scholar
Kocurek, G., 1991. Interpretation of Ancient Eolian Sand Dunes. Annual Review of Earth and Planetary Sciences, 19, 4375.Google Scholar
Kocurek, G., 1998. Aeolian system response to external forcing factors: A sequence stratigraphic view of the Saharan region. In Alsharan, A. S., Glennie, K. W., Whittle, G. L., Kendall, C. G. S. C. (Eds.), Quaternary Deserts and Climatic Change. Balkema, Rotterdam/Brookfield, pp. 327338.Google Scholar
Kocurek, G., 2003. Limits on extreme eolian systems: Sahara of Mauritania and Jurassic Navajo Sandstone examples. In Chan, M. A., Archer, A. W. (Eds.), Extreme Depositional Environments: Mega End Members in Geologic Time. Geological Society of America, Boulder, CO, pp. 4352.Google Scholar
Kocurek, G., Carr, M., Ewing, R., et al., 2007. White Sands Dune Field, New Mexico: Age, dune dynamics, and recent accumulations. Sedimentary Geology, 197, 313331.Google Scholar
Kocurek, G., Dott, R. H. J., 1981. Distinctions and uses of stratification types in the interpretation of eolian sand. Journal of Sedimentary Petrology, 51, 579595.Google Scholar
Kocurek, G., Ewing, R. C., 2005. Aeolian dune field self-organization- implications for the formation of simple versus complex dune field patterns. Geomorphology, 72, 94105.Google Scholar
Kocurek, G., Ewing, R. C., Mohring, D., 2009. How do bedform patterns arise? New views on the role of bedform interactions within a set of boundary conditions. Earth Surface Processes and Landforms, 35, 5163.Google Scholar
Kocurek, G., Havholm, K. G., 1993. Eolian sequence stratigraphy: A conceptual framework. In Weimer, P., Posamentier, H. (Eds.), Siliciclastic Sequence Stratigraphy. American Association of Petroleum Geologists, Tulsa, OK, pp. 393409.Google Scholar
Kocurek, G., Havholm, K. G., Deynoux, M., Blakey, R. C., 1991. Amalgamated accumulations resulting from climatic and eustatic changes, Akchar Erg, Mauritania. Sedimentology, 38, 751772.Google Scholar
Kocurek, G., Lancaster, N., 1999. Aeolian system sediment state: Theory and Mojave Desert Kelso dune field example. Sedimentology, 46, 505515.Google Scholar
Kocurek, G., Lancaster, N., Carr, M., Frank, A., 1999. Tsondab Sandstone: Preliminary bedform reconstruction and comparison to modern Namib Sand Sea dunes. Journal of African Earth Sciences, 29, 629642.Google Scholar
Kocurek, G., Nielson, J., 1986. Conditions favourable for the formation of warm-climate aeolian sand sheets. Sedimentology, 33, 795816.Google Scholar
Kocurek, G., Townsley, M., Yeh, E., Havholm, K., Sweet, M. L., 1992. Dune and dunefield development on Padre Island, Texas, with implications for interdune deposition and water-table-controlled accumulation. Journal of Sedimentary Petrology, 62, 622635.Google Scholar
Kok, J. F., Bou Karam, D., Michaels, T. I., Diana Bou, K., 2012. The physics of wind-blown sand and dust. Reports on Progress in Physics, 75, 106901.Google Scholar
Krinsley, D. H., Trusty, P., 1985. Environmental interpretation of quartz grain surface textures. In Zuffa, G. G. (Ed.), Provenance of Arenites. Reidel, Dordrecht, pp. 213229.Google Scholar
Lancaster, N., 1978. The pans of the southern Kalahari, Botswana. Geographical Journal, 144, 8198.Google Scholar
Lancaster, N., 1980. The formation of seif dunes from barchans: Supporting evidence for Bagnold’s hypothesis from the Namib Desert. Zeitschrift für Geomorphologie, 24, 160167.Google Scholar
Lancaster, N., 1981a. Grain size characteristics of Namib Desert linear dunes. Sedimentology, 28, 115122.Google Scholar
Lancaster, N., 1981b. Palaeoenvironmental implications of fixed dune systems in southern Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 33, 327346.Google Scholar
Lancaster, N., 1982a. Dunes on the Skeleton Coast, SWA/Namibia: Geomorphology and grain size relationships. Earth Surface Processes and Landforms, 7, 575587.Google Scholar
Lancaster, N., 1982b. Linear dunes. Progress in Physical Geography, 6, 476504.Google Scholar
Lancaster, N., 1983. Controls of dune morphology in the Namib sand sea. In Ahlbrandt, T. S., Brookfield, M. E. (Eds.), Eolian Sediments and Processes. Developments in Sedimentology 38. Elsevier, Amsterdam, pp. 261289.Google Scholar
Lancaster, N., 1985a. Variations in wind velocity and sand transport rates on the windward flanks of desert sand dunes. Sedimentology, 32, 581593.Google Scholar
Lancaster, N., 1985b. Winds and sand movements in the Namib sand sea. Earth Surface Processes and Landforms, 10, 607619.Google Scholar
Lancaster, N., 1986. Grain size characteristics of linear dunes in the southwestern Kalahari. Journal of Sedimentary Petrology, 56, 395400.Google Scholar
Lancaster, N., 1987. Grain size characteristics of linear dunes in the southwestern Kalahari. Reply to comments by A. S. G. Thomas. Journal Sedimentary Petrology, 57, 573574.Google Scholar
Lancaster, N., 1988a. Controls of eolian dune size and spacing. Geology, 16, 972975.Google Scholar
Lancaster, N., 1988b. The development of large aeolian bedforms. Sedimentary Geology, 55, 6989.Google Scholar
Lancaster, N., 1988c. Development of linear dunes in the southwestern Kalahari, southern Africa. Journal of Arid Environments, 14, 233244.Google Scholar
Lancaster, N., 1989a. The dynamics of star dunes: An example from the Gran Desierto, Mexico. Sedimentology, 36, 273289.Google Scholar
Lancaster, N., 1989b. The Namib Sand Sea. Dune Forms, Processes, and Sediments. A. A. Balkema, Rotterdam.Google Scholar
Lancaster, N., 1989c. Star dunes. Progress in Physical Geography, 13(1),6792.Google Scholar
Lancaster, N., 1992. Relations between dune generations in the Gran Desierto, Mexico. Sedimentology, 39, 631644.Google Scholar
Lancaster, N., 1993. Origins and sedimentary features of supersurfaces in the northwestern Gran Desierto Sand Sea. IAS Special Publication, 16, 7186.Google Scholar
Lancaster, N., 1995. Origin of the Gran Desierto Sand Sea: Sonora, Mexico: Evidence from dune morphology and sediments. In Tchakerian, V. P. (Ed.), Desert Aeolian Processes. Chapman and Hall, New York, pp. 1136.Google Scholar
Lancaster, N., 1996. Field studies of sand patch initiation processes on the northern margin of the Namib Sand Sea. Earth Surface Processes and Landforms, 21, 947954.Google Scholar
Lancaster, N., 1997. Response of eolian geomorphic systems to minor climatic change: examples from the southern California deserts. Geomorphology, 19, 333347.Google Scholar
Lancaster, N., 1999. Geomorphology of desert sand seas. In Goudie, A. S., Livingstone, I., Stokes, S. (Eds.), Aeolian Environments, Sediments and Landforms. Chichester, John Wiley & Sons, pp. 4970.Google Scholar
Lancaster, N., 2007. Low latitude dune fields. In Elias, S. A. (Ed.), Encyclopedia of Quaternary Science. Elsevier, Amsterdam, pp. 626642.Google Scholar
Lancaster, N., 2014. Dune systems of the Namib Desert: A spatial and temporal perspective. Transactions of the Royal Society of South Africa, 69, 133137.Google Scholar
Lancaster, N., 2020. Dunefields of the Southwest Deserts. In Lancaster, N., Hesp, P. (Eds.), Inland Dunes of North America. Springer International Publishing, Cham, pp. 311337.Google Scholar
Lancaster, N., 2022. How much sand is there in desert sand seas and dunefields. Geological Society of America Abstracts with Programs. 54. DOI: https://doi.org/10.1130/abs/2022AM-381970Google Scholar
Lancaster, N., Baas, A., 1998. Influence of vegetation cover on sand transport by wind: Field studies at Owens Lake, California. Earth Surface Processes and Landforms, 23, 6982.Google Scholar
Lancaster, N., Baker, S., Bacon, S., McCarley-Holder, G., 2015. Owens Lake dune fields: Composition, sources of sand, and transport pathways. Catena, 134, 4149.Google Scholar
Lancaster, N., Greeley, R., 1990. Sediment volume in the North Polar Sand Seas of Mars. Journal of Geophysical Research, 95, 1092110928.Google Scholar
Lancaster, N., Greeley, R., Christensen, P. R., 1987. Dunes of the Gran Desierto Sand Sea, Sonora, Mexico. Earth Surface Processes and Landforms, 12, 277288.Google Scholar
Lancaster, N., Helm, P., 2000. A test of a climatic index of dune mobility using measurements from the southwestern United States. Earth Surface Processes and Landforms, 25, 197208.Google Scholar
Lancaster, N., Hesse, P., 2016. Geospatial analysis of climatic boundary conditions governing dune activity. Geological Society of America Abstracts with Programs, 48. DOI: https://doi.org/10.1130/ABS/2016AM-283707Google Scholar
Lancaster, N., Hesse, P., Telfer, M., 2017. Mapping the world’s inland sand dunes: A progress report. Geological Society of America Abstracts with Programs, 49. DOI: https://doi.org/10.1130/abs/2017AM-303254Google Scholar
Lancaster, N., Kocurek, G., Singhvi, A. K., et al., 2002. Late Pleistocene and Holocene dune activity and wind regimes in the western Sahara of Mauritania. Geology, 30, 991994.Google Scholar
Lancaster, N., McCarley-Holder, G., 2013. Decadal-scale evolution of a small dune field: Keeler Dunes, California 1944‚Äì2010. Geomorphology, 180–181, 281291.Google Scholar
Lancaster, N., Nickling, W. G., McKenna Neuman, C. K., Wyatt, V. E., 1996. Sediment flux and airflow on the stoss slope of a barchan dune. Geomorphology, 17, 5562.Google Scholar
Lancaster, N., Ollier, C. D., 1983. Sources of sand for the Namib Sand Sea. Zeitschrift für Geomorphologie Supplementband, 45, 7183.Google Scholar
Lancaster, N., Tchakerian, V. P., 1996. Geomorphology and sediments of sand ramps in the Mojave Desert. Geomorphology, 17, 151166.Google Scholar
Lancaster, N., Tchakerian, V. P., 2003. Late Quaternary eolian dynamics, Mojave Desert. California. In Enzel, Y., Wells, S. G., Lancaster, N. (Eds.), Paleoenvironments and Paleohydrology of the Mojave and Southern Great Basin Deserts. Geological Society of America, Boulder, CO, pp. 231249.Google Scholar
Lancaster, N., Thomas, D., 2016. Preface to QI special issue: Sand seas and dunefields of the world. Quaternary International, 410, 12.Google Scholar
Lancaster, N., Wolfe, S., Thomas, D., et al., 2016. The INQUA Dunes Atlas chronologic database. Quaternary International, 410, 310.Google Scholar
Langford, R. P., Rose, J. M., White, D. E., 2009. Groundwater salinity as a control on development of eolian landscape: An example from the White Sands of New Mexico. Geomorphology, 105, 3949.Google Scholar
Langston, G., McKenna Neuman, C., 2005. An experimental study on the susceptibility of crusted surfaces to wind erosion: A comparison of the strength properties of biotic and salt crusts. Geomorphology, 72, 4053.Google Scholar
Leighton, C. L., Bailey, R. M., Thomas, D. S. G., 2013a. The utility of desert sand dunes as Quaternary chronostratigraphic archives: Evidence from the northeast Rub’ al Khali. Quaternary Science Reviews, 78, 303318.Google Scholar
Leighton, C. L., Thomas, D. S. G., Bailey, R. M., 2013b. Allostratigraphy and Quaternary dune sediments: Not all bounding surfaces are the same. Aeolian Research, 11, 5560.Google Scholar
Leighton, C. L., Thomas, D. S. G., Bailey, R. M., 2014. Reproducibility and utility of dune luminescence chronologies. Earth-Science Reviews, 129, 2439.Google Scholar
Liu, S., Lang, X., Jiang, D., 2021. Time-varying responses of dryland aridity to external forcings over the last 21 ka. Quaternary Science Reviews, 262, 106989.Google Scholar
Liu, W., Liu, Z., Sun, J., et al., 2020. Onset of permanent Taklimakan Desert linked to the mid-Pleistocene transition. Geology, 48, 782786.Google Scholar
Livingstone, I., 1986. Geomorphological significance of wind flow patterns over a Namib linear dune. In Nickling, W. G. (Ed.), Aeolian Geomorphology. Boston, Allen and Unwin, pp. 97112.Google Scholar
Livingstone, I., 1987. Grain-size variation on a “complex” linear dune in the Namib Desert. In Frostick, L, Reid, I (Eds.), Desert Sediments: Ancient and Modern, pp. 281291.Google Scholar
Livingstone, I., 1989. Monitoring surface change on a Namib linear dune. Earth Surface Processes and Landforms, 14, 317332.Google Scholar
Livingstone, I., 1993. A decade of surface change on a Namib linear dune. Earth Surface Processes and Landforms, 18, 661664.Google Scholar
Livingstone, I., 2003. A twenty-one-year record of surface change on a Namib linear dune. Earth Surface Processes and Landforms, 28, 10251032.Google Scholar
Livingstone, I., Bristow, C., Bryant, R. G., et al., 2010. The Namib Sand Sea digital database of aeolian dunes and key forcing variables. Aeolian Research, 2, 93104.Google Scholar
Livingstone, I., Warren, A., 1996. Aeolian Geomorphology: An Introduction. Addison Wesley Longman, Harlow.Google Scholar
Livingstone, I., Wiggs, G. F. S., Weaver, C. M., 2007. Geomorphology of desert sand dunes: A review of recent progress. Earth Science Reviews, 80, 239257.Google Scholar
Logan, R. F., 1960. The Central Namib Desert, South West Africa. National Academy of Sciences, Washington DC.Google Scholar
Long, J. T., Sharp, R. P., 1964. Barchan dune movement in Imperial Valley, California. Geological Society of America Bulletin, 75, 149156.Google Scholar
Loope, D. B., 1984. Origin of extensive bedding planes in eolian sandstones: A defense of Stokes’ hypothesis – discussion. Sedimentology, 31, 123125.Google Scholar
Loope, D. B., Rowe, C. M., 2003. Long-lived pluvial episodes during deposition of the Navajo sandstone. Journal of Geology, 111, 223232.Google Scholar
Loope, D. B., Steiner, M. B., Rowe, C. M., Lancaster, N., 2004. Tropical westerlies over Pangean sand seas. Sedimentology, 51, 315322.Google Scholar
Lorenz, R. D., Wall, S., Radebaugh, J., et al., 2006. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science, 312, 724727.Google Scholar
Lorenz, R. D., Zimbelman, J. R., 2014. Dune Worlds. Springer.Google Scholar
Lu, H., Miao, X., Zhou, Y., et al., 2005. Late Quaternary aeolian activity in the Mu Us and Otindag dune fields (north China) and lagged response to insolation forcing. Geophysical Research Letters, 32, L21716.Google Scholar
, P., Narteau, C., Dong, Z., Rozier, O., Courrech du Pont, S., 2017. Unravelling raked linear dunes to explain the coexistence of bedforms in complex dunefields. Nature Communications, 8, 14239.Google Scholar
Lucas, A., Rodriguez, S., Narteau, C., et al., 2014. Growth mechanisms and dune orientation on Titan. Geophysical Research Letters, 41, 2014GL060971.Google Scholar
Mabbutt, J. A., Wooding, R. A., 1983. Analysis of longitudinal dune patters in the northwestern Simpson Desert, central Australia. Zeitschrift für Geomorphologie, 45, 5169.Google Scholar
Madigan, C. T., 1936. The Australian Sand-Ridge Deserts. Geographical Review, 26, 205227.Google Scholar
Madole, R. F., VanSistine, D. P., Romig, J. H., 2016. Geologic map of Great Sand Dunes National Park, Colorado. Scientific Investigations Map 3362, US Geological Survey Reston, VA.Google Scholar
Mainguet, M., 1983. Dunes vives, dunes fixées, dunes vêtues: une classification selon le bilan d’alimentation, le régime éolien et la dynamique des édifices sableux. Zeitschrift für Geomorphologie, Suppl. Bd. 45, 265285.Google Scholar
Mainguet, M., 1984. A classification of dunes based on aeolian dynamics and the sand budget. In El-Baz, F. (Ed.), Deserts and Arid Lands. Martinus Nijhoff, The Hague, pp. 3158.Google Scholar
Mainguet, M., 1985. Le Sahel, un laboratoire naturel pour l’etude du vent, mecanisme principal de la desertification. In Barndorff-Nielsen, O. E., Møller, J. T., Rasmussen, K. R., Willetts, B. B. (Eds.), Proceedings of International Workshop on the Physics of Blown Sand. University of Aarhus, Aarhus, pp. 545563.Google Scholar
Mainguet, M., Callot, Y., 1978. L’erg de Fachi-Bilma (Tchad-Niger). Mémoires et Documents CNRS, 18, 178 pp.Google Scholar
Mainguet, M., Chemin, M.-C., 1984. Les dunes pyramidales du Grand Erg Oriental. Travaux de l’Institut de Géographie de Reims, 59–60, 4960.Google Scholar
Mainguet, M., Chemin, M. C., 1983. Sand seas of the Sahara and Sahel: An explanation of their thickness and sand dune type by the sand budget principle. In Brookfield, M. E., Ahlbrandt, T. S. (Eds.), Eolian Sediments and Processes. Developments in Sedimentology. Elsevier, Amsterdam, pp. 353364.Google Scholar
Mainguet, M., Jacqueminet, C., 1984. Le Grand Erg Occidental et le Grand Erg Oriental. Travaux de l’Institut de Géographie de Reims, 59–60, 2948.Google Scholar
Maman, S., Blumberg, D. G., Tsoar, H., Mamedov, B., Porat, N., 2011. The Central Asian ergs: A study by remote sensing and geographic information systems. Aeolian Research, 3, 353366.Google Scholar
Marîn, L., Forman, S. L., Valdez, A., Bunch, F., 2005. Twentieth century dune migration at the Great Sand Dunes National Park and Preserve, Colorado, relation to drought variability. Geomorphology, 70, 163183.Google Scholar
Maroulis, J. C., Nanson, G. C., Price, D. M., Pietsch, T., 2007. Aeolian-fluvial interaction and climate change: Source-bordering dune development over the past 100ka on Cooper Creek, central Australia. Quaternary Science Reviews, 26, 384404.Google Scholar
Marticorena, B., Bergametti, G., Gillette, D., Belnap, J., 1997. Factors controlling threshold friction velocity in semiarid and arid areas of the United States. Journal of Geophysical Research, 102, 23,277–23,287.Google Scholar
Martin, R. L., Kok, J. F., 2017. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress. Science Advances, 3, e1602569.Google Scholar
Mason, J. A., Swinehart, J. B., Goble, R. J., Loope, D. B., 2004. Late-Holocene dune activity linked to hydrological drought, Nebraska Sand Hills, USA. The Holocene, 14, 209217.Google Scholar
Mason, J. A., Swinehart, J. B., Hanson, P. R., et al., 2011. Late Pleistocene dune activity in the central Great Plains, USA. Quaternary Science Reviews, 30, 38583870.Google Scholar
Mason, J. A., Swinehart, J. B., Loope, D. B., 2020. The Nebraska Sand Hills. In Lancaster, N., Hesp, P. (Eds.), Inland Dunes of North America. Springer International Publishing, Cham, pp. 181206.Google Scholar
Mason, J. A., Swinehart, J. B., Lu, H., et al., 2008. Limited change in dune mobility in response to a large decrease in wind power in semi-arid northern China since the 1970s. Geomorphology, 102, 351363.Google Scholar
Mason, P. J., Sykes, R. I., 1979. Flow over an isolated hill of moderate slope. Quarterly Journal of the Royal Meteorological Society, 105, 383395.Google Scholar
Maxwell, T., Haynes, C., 2001. Sand sheet dynamics and Quaternary landscape evolution of the Selima Sand Sheet, southern Egypt. Quaternary Science Reviews, 20, 16231647.Google Scholar
Maxwell, T. A., Haynes, C. V., Jr., 1989. Large-scale, low-amplitude bedforms (chevrons) in the Selima sand sheet, Egypt. Science, 243, 11791182.Google Scholar
Mayaud, J. R., Bailey, R. M., Wiggs, G. F. S., 2017a. A coupled vegetation/sediment transport model for dryland environments. Journal of Geophysical Research: Earth Surface, 122, 875900.Google Scholar
Mayaud, J. R., Bailey, R. M., Wiggs, G. F. S., 2017b. Modelled responses of the Kalahari Desert to 21st century climate and land use change. Scientific Reports, 7, 3887.Google Scholar
McDonald, R. R., Anderson, R. S., 1995. Experimental verification of aeolian saltation and lee side deposition models. Sedimentology, 42, 3956.Google Scholar
McEwan, I. K., Willetts, B. B., 1993. Sand transport by wind: A review of the current conceptual model. In Pye, K. (Ed.), Dynamics and Environmental Context of Aeolian Sedimentary Systems. Geological Society of London, Special Publication, London, pp. 716.Google Scholar
McEwan, I. K., Willetts, B. B., Rice, M. A., 1992. The grain/bed collision in sand transport by wind. Sedimentology, 39, 971983.Google Scholar
McKee, E., 1982. Sedimentary structures in dunes of the Namib Desert, South West Africa. Geological Society of America Special Paper, 188, 60 pp.Google Scholar
McKee, E., Tibbitts, G. C., Jr., 1964. Primary structures of a seif dune and associated deposits in Libya. Journal of Sedimentary Petrology, 34, 517.Google Scholar
McKee, E. D., 1966. Structures of dunes at White Sands National Monument, New Mexico (and a comparison with structures of dunes from other selected areas). Sedimentology, 7, 169.Google Scholar
McKee, E. D., 1979. Introduction to a study of global sand seas. In McKee, E. D. (Ed.), A Study of Global Sand Seas. Professional Paper 1052 United States Geological Survey, pp. 319.Google Scholar
McKee, E. D., Douglass, J. R., 1971. Growth and movement of dunes at White Sands National Monument, New Mexico. Professional Paper 750-D, United States Geological Survey.Google Scholar
McKee, E. D., Douglass, J. R., Rittenhouse, S., 1971. Deformation of lee-side laminae in eolian dunes. Geological Society of America Bulletin, 82, 359378.Google Scholar
McKenna Neuman, C., Bédard, O., 2017. A wind tunnel investigation of particle segregation, ripple formation and armouring within sand beds of systematically varied texture. Earth Surface Processes and Landforms, 42, 749762.Google Scholar
McKenna Neuman, C., Lancaster, N., Nickling, W. G., 1997. Relations between dune morphology, air flow, and sediment flux on reversing dunes, Silver Peak, Nevada. Sedimentology, 44, 11031114.Google Scholar
McKenna Neuman, C., Lancaster, N., Nickling, W. G., 2000. The effect of unsteady winds on sediment transport on the stoss slope of a transverse dune, Silver Peak, Nevada. Sedimentology, 47, 211226.Google Scholar
McKenna-Neuman, C., Nickling, W. G., 1989. A theoretical and wind tunnel investigation of the effect of capillary water on the entrainment of sediment by wind. Canadian Journal of Soil Science, 69, 7996.Google Scholar
McLean, S. R., Smith, J. D., 1986. A model for flow over two-dimensional bedforms. Journal of Hydraulic Engineering, 112, 300317.Google Scholar
Miao, X., Mason, J. A., Swinehart, J. B., et al., 2007. A 10,000 year record of dune activity, dust storms, and severe drought in the central Great Plains. Geology, 35, 119122.Google Scholar
Michel, P., 1978. Les modeles et depots du Sahara meridional et Sahel et du sud-ouest Africain; essai de comparison. Recherches Geographiques à Strasbourg, 5, 539.Google Scholar
Middleton, G. V., Southard, J. B., 1984. Mechanics of Sediment Movement. S.E.P.M., Tulsa, OK.Google Scholar
Momiji, H., Carretero-Gonzalez, R., Bishop, S. R., Warren, A., 2000. Simulation of the effect of wind speedup in the formation of transverse dune fields. Earth Surface Processes and Landforms, 25, 905918.Google Scholar
Momiji, H., Warren, A., 2000. Relations of sand trapping efficiency and migration speed of transverse dunes to wind velocity. Earth Surface Processes and Landforms, 25, 10691084.Google Scholar
Moore, J. M., Howard, A. D., Schenk, P. M., et al., 2015. Geology before Pluto: Pre-encounter considerations. Icarus, 246, 6581.Google Scholar
Mountney, N. P., 2012. A stratigraphic model to account for complexity in aeolian dune and interdune successions. Sedimentology, 59, 964989.Google Scholar
Muhs, D. R., 2004. Mineralogical maturity in dunefields of North America, Africa, and Australia. Geomorphology, 59, 247269.Google Scholar
Muhs, D. R., 2017. Evaluation of simple geochemical indicators of aeolian sand provenance: Late Quaternary dune fields of North America revisited. Quaternary Science Reviews, 171, 260296.Google Scholar
Muhs, D. R., Budahn, J. R., 2019. New geochemical evidence for the origin of North America’s largest dune field, the Nebraska Sand Hills, central Great Plains, USA. Geomorphology, 332, 188212.Google Scholar
Muhs, D. R., Bush, C. A., Cowherd, S. D., Mahan, S., 1995. Source of sand for the Algodones Dunes. In Tchakerian, V. P. (Ed.), Desert Aeolian Processes. Chapman and Hall, New York, pp. 3774.Google Scholar
Muhs, D. R., Holliday, V. T., 1995. Active dune sand on the Great Plains in the 19th century: Evidence from accounts of early explorers. Quaternary Research, 43, 118124.Google Scholar
Muhs, D. R., Holliday, V. T., 2001. Origin of late Quaternary dune fields on the Southern High Plains of Texas and New Mexico. Geological Society of America Bulletin, 113, 7587.Google Scholar
Muhs, D. R., Lancaster, N., Skipp, G. L., 2017. A complex origin for the Kelso Dunes, Mojave National Preserve, California, USA: A case study using a simple geochemical method with global applications. Geomorphology, 276, 222243.Google Scholar
Muhs, D. R., Maat, P. B., 1993. The potential response of eolian sands to Greenhouse Warming and precipitation reduction on the Great Plains of the United States. Journal of Arid Environments, 25, 351361.Google Scholar
Muhs, D. R., Pigati, J. S., Budahn, J. R., et al., 2018. Origin of last-glacial loess in the western Yukon-Tanana Upland, central Alaska, USA. Quaternary Research, 89, 797819.Google Scholar
Muhs, D. R., Reynolds, R. R., Been, J., Skipp, G., 2003. Eolian sand transport pathways in the southwestern United States: Importance of the Colorado River and local sources. Quaternary International, 104, 318.Google Scholar
Muhs, D. R., Roskin, J., Tsoar, H., et al., 2013. Origin of the Sinai–Negev erg, Egypt and Israel: Mineralogical and geochemical evidence for the importance of the Nile and sea level history. Quaternary Science Reviews, 69, 2848.Google Scholar
Muhs, D. R., Stafford, T. W., Cowherd, S. D., et al., 1996. Origin of the late Quaternary dunefields of northeast Colorado. Geomorphology, 17, 129150.Google Scholar
Muhs, D. R., Wolfe, S. A., 1999. Sand dunes of the northern Great Plains of Canada and the United States. In Lemmen, D. S., Vance, R. E. (Eds.), Holocene Climate and Environmental Change in the Palliser Triangle: A Geoscientific Context for Evaluating the Effects of Climate Change on the Southern Canadian Prairies. Geological Survey of Canada, Ottawa, pp. 183197.Google Scholar
Mulligan, K. R., 1988. Velocity profiles measured on the windward slope of a transverse dune. Earth Surface Processes and Landforms, 13, 573582.Google Scholar
Namikas, S. L., 2003. Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach. Sedimentology, 50, 303326.Google Scholar
Namikas, S. L., Sherman, D. J., 1995. A review of the effects of surface moisture content on aeolian sand transport. In Tchakerian, V. P. (Ed.), Desert Aeolian Processes. Springer Netherlands, Dordrecht, pp. 269293.Google Scholar
Nanson, G. C., Chen, X. Y., Price, D. M., 1995. Aeolian and fluvial evidence of changing climate and wind patterns during the past 100 ka in the western Simpson Desert, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 113, 87102.Google Scholar
Narteau, C., Zhang, D., Rozier, O., Claudin, P., 2009. Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms. Journal of Geophysical Research, 114, F03006.Google Scholar
Nickling, W. G., 1984. The stabilizing role of bonding agents on the entrainment of sediment by wind. Sedimentology, 31, 111117.Google Scholar
Nickling, W. G., 1993. Development and morphology of nebkhas, Mali, West Africa. Journal of Arid Environments, 28, 1330.Google Scholar
Nickling, W. G., Ecclestone, M., 1981. The effects of soluble salts on the threshold shear velocity of fine sand. Sedimentology, 28, 505510.Google Scholar
Nickling, W. G., McKenna Neuman, C., Lancaster, N., 2002. Grainfall processes in the lee of transverse dunes, Silver Peak, Nevada. Sedimentology, 49, 191211.Google Scholar
Nield, J., Baas, A. C. W., 2008a. Investigating parabolic and nebkha dune formation using a cellular automaton modelling approach. Earth Surface Processes and Landforms, 33, 724741.Google Scholar
Nield, J. M., Baas, A. C. W., 2008b. The influence of different environmental and climatic conditions on vegetated aeolian dune landscape development and response. Global and Planetary Change, 64, 7692.Google Scholar
Nield, J. M., Wiggs, G. F. S., Baddock, M. C., Hipondoka, M. H. T., 2017. Coupling leeside grainfall to avalanche characteristics in aeolian dune dynamics. Geology, 45, 271.Google Scholar
Nield, J. M., Wiggs, G. F. S., Squirrell, R. S., 2011. Aeolian sand strip mobility and protodune development on a drying beach: Examining surface moisture and surface roughness patterns measured by terrestrial laser scanning. Earth Surface Processes and Landforms, 36, 513522.Google Scholar
Nielson, J., Kocurek, G., 1986. Climbing zibars of the Algodones. Sedimentary Geology, 48, 115.Google Scholar
Nielson, J., Kocurek, G., 1987. Surface processes, deposits, and development of star dunes: Dumont dune field, California. Geological Society of America Bulletin, 99, 177186.Google Scholar
Nishimori, H., Yamasaki, M., Andersen, K. H., 1998. A simple model for the various pattern dynamics of dunes. International Journal of Modern Physics, B, 12, 257272.Google Scholar
Norris, R. M., 1966. Barchan dunes of Imperial Valley, California. Journal of Geology, 74, 292307.Google Scholar
Norris, R. M., Norris, K. S., 1961. Algodones dunes of southeastern California. Geological Society of America Bulletin, 72, 605620.Google Scholar
Ould Ahmedou, D., Ould Mahfoudh, A., Dupont, P., et al., 2007. Barchan dune mobility in Mauritania related to dune and interdune sand fluxes. Journal of Geophysical Research, Earth Surface, 112, F02106.Google Scholar
Owen, P. R., 1964. Saltation of uniform grains in air. Journal of Fluid Mechanics, 20, 225242.Google Scholar
Pähtz, T., Liu, Y., Xia, Y., et al., 2021. Unified model of sediment transport threshold and rate across weak and intense subaqueous bedload, windblown sand, and windblown snow. Journal of Geophysical Research: Earth Surface, 126, e2020JF005859.Google Scholar
Paisley, E. C. I., Lancaster, N., Gaddis, L., Greeley, R., 1991. Discrimination of active and inactive sands by remote sensing: Kelso Dunes, Mojave Desert California. Remote Sensing of Environment, 37, 153166.Google Scholar
Parsons, D. R., Walker, I. J., Wiggs, G. F. S., 2004. Numerical modelling of flow structures over an idealised transverse dunes of varying geometry. Geomorphology, 59, 149164.Google Scholar
Parteli, E., Duran, O., Tsoar, H., Schwammle, V., Herrmann, H., 2009a. Dune formation under bimodal winds. Proceedings of the National Academy of Sciences, 106, 2208522089.Google Scholar
Parteli, E. J. R., Durán, O., Herrmann, H. J., 2007. Minimal size of a barchan dune. Physical Review E, 75, 011301.Google Scholar
Parteli, E. J. R., Durán, O., Tsoar, H., Schwämmle, V., Herrmann, H. J., 2009b. Dune formation under bimodal winds. Proceedings of the National Academy of Sciences, 106, 2208522089.Google Scholar
Parteli, E. J. R., Kroy, K., Tsoar, H., Andrade, J. S., Pöschel, T., 2014. Morphodynamic modeling of aeolian dunes: Review and future plans. The European Physical Journal Special Topics, 223, 22692283.Google Scholar
Pastore, G., Baird, T., Vermeesch, P., et al., 2021. Provenance and recycling of Sahara Desert sand. Earth-Science Reviews, 216, 103606.Google Scholar
Pedersen, A., Kocurek, G., Mohrig, D., Smith, V., 2015. Dune deformation in a multi-directional wind regime: White Sands Dune Field, New Mexico. Earth Surface Processes and Landforms, 40, 925941.Google Scholar
Pell, S. D., Chivas, A. R., Williams, I. S., 2000. The Simpson, Strzelecki and Tirari Deserts: Development and sand provenance. Sedimentary Geology, 130, 107130.Google Scholar
Pell, S. D., Chivas, A. R., Williams, I. S., 2001. The Mallee dunefield: Development and sand provenance. Journal of Arid Environments, 48, 149170.Google Scholar
Pell, S. D., Williams, I. S., Chivas, A. R., 1997. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands. Sedimentary Geology, 109, 233260.Google Scholar
Pelletier, J. D., 2009. Controls on the height and spacing of eolian ripples and transverse dunes: A numerical modeling investigation. Geomorphology, 105, 322333.Google Scholar
Pelletier, J. D., 2013. Deviations from self-similarity in barchan form and flux: The case of the Salton Sea dunes, California. Journal of Geophysical Research: Earth Surface, 118, 2013JF002867.Google Scholar
Pelletier, J. D., Jerolmack, D. J., 2014. Multiscale bedform interactions and their implications for the abruptness and stability of the downwind dune-field margin at White Sands New Mexico, U.S.A. Journal of Geophysical Research: Earth Surface, 119, 23962411.Google Scholar
Peng, J., Dong, Z., Han, F., Gao, L., 2016. Aeolian activity in the south margin of the Tengger Desert in northern China since the Late Glacial Period revealed by luminescence chronology. Palaeogeography, Palaeoclimatology, Palaeoecology, 457, 330341.Google Scholar
Phillips, J. D., Ewing, R. C., Bowling, R., et al., 2019. Low-angle eolian deposits formed by protodune migration, and insights into slipface development at White Sands Dune Field, New Mexico. Aeolian Research, 36, 926.Google Scholar
Pickford, M., Senut, B., 1999. Geology and Palaeobiology of the Namib Desert, Southwestern Africa, Memoir 18. Geological Survey of Namibia, Windhoek, Namibia.Google Scholar
Ping, L., Narteau, C., Dong, Z., Zhang, Z., Courrech du Pont, S., 2014. Emergence of oblique dunes in a landscape-scale experiment. Nature Geoscience, 7, 99103.Google Scholar
Prigozhin, L., 1999. Nonlinear dynamics of Aeolian sand ripples. Physical Review E, 60, 729733.Google Scholar
Pye, K. , 1987. Aeolian Dust and Dust Deposits. Academic Press, London.Google Scholar
Pye, K., Tsoar, H., 1990. Aeolian Sand and Sand Dunes. Unwin Hyman, London.Google Scholar
Qian, G., Yang, Z., Luo, W., et al., 2019. Morphological and sedimentary characteristics of dome dunes in the northeastern Qaidam Basin, China. Geomorphology, 228, 714722.Google Scholar
Qian, G., Yang, Z., Tian, M., et al., 2021. From dome dune to barchan dune: Airflow structure changes measured with particle image velocimetry in a wind tunnel. Geomorphology, 382, 107681.Google Scholar
Radebaugh, J., Lorenz, R., Farr, T., et al., 2010. Linear dunes on Titan and earth: Initial remote sensing comparisons. Geomorphology, 121, 122132.Google Scholar
Radebaugh, J., Lorenz, R. D., Lunine, J. I., et al., 2008. Dunes on Titan observed by Cassini Radar. Icarus, 194, 690703.Google Scholar
Radies, D., Preusser, F., Matter, A., Mange, M., 2004. Eustatic and climatic controls on the development of the Wahiba Sand Sea, Sultanate of Oman. Sedimentology, 51, 13591386.Google Scholar
Ramsey, M. S., Christensen, P. R., Lancaster, N., Howard, D. A., 1999. Identification of sand sources and transport pathways at the Kelso Dunes, California using thermal infrared remote sensing. Geological Society of America Bulletin, 111, 646662.Google Scholar
Rasmussen, K. R., Iversen, J. D., Rautaheimo, P., 1996. Saltation and wind flow interaction in a variable slope wind tunnel. Geomorphology, 17, 1928.Google Scholar
Rasmussen, K. R., Valance, A., Merrison, J., 2015. Laboratory studies of aeolian sediment transport processes on planetary surfaces. Geomorphology, 244, 7494.Google Scholar
Redsteer, M. H., 2020. Sand dunes, modern and ancient, on southern Colorado Plateau tribal lands, southwestern USA. In Lancaster, N., Hesp, P. (Eds.), Inland Dunes of North America. Springer International Publishing, Cham, pp. 287310.Google Scholar
Reffet, E., Courrech du Pont, S., Hersen, P., Douady, S., 2010. Formation and stability of transverse and longitudinal sand dunes. Geology, 38, 491494.Google Scholar
Reitz, M. D., Jerolmack, D. J., Ewing, R. C., Martin, R. L., 2010. Barchan-parabolic dune pattern transition from vegetation stability threshold. Geophysical Research Letters, 37, L19402.Google Scholar
Rittner, M., Vermeesch, P., Carter, A., et al., 2016. The provenance of Taklamakan desert sand. Earth and Planetary Science Letters, 437, 127137.Google Scholar
Rodriguez, S., Garcia, A., Lucas, A., et al., 2014. Global mapping and characterization of Titan’s dune fields with Cassini: Correlation between RADAR and VIMS observations. Icarus, 230, 168179.Google Scholar
Rodríguez-López, J. P., Clemmensen, L. B., Lancaster, N., Mountney, N. P., Veiga, G. D., 2014. Archean to Recent aeolian sand systems and their sedimentary record: Current understanding and future prospects. Sedimentology, 61, 14871534.Google Scholar
Roskin, J., Blumberg, D. G., Katra, I., 2014. Last millennium development and dynamics of vegetated linear dunes inferred from ground-penetrating radar and optically stimulated luminescence ages. Sedimentology, 61, 12401260.Google Scholar
Roskin, J., Blumberg, D. G., Porat, N., Tsoar, H., Rozenstein, O., 2012. Do dune sands redden with age? The case of the northwestern Negev dunefield, Israel. Aeolian Research, 5, 6375.Google Scholar
Roskin, J., Porat, N., Tsoar, H., Blumberg, D. G., Zander, A. M., 2011a. Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev Desert (Israel). Quaternary Science Reviews, 30, 16491674.Google Scholar
Roskin, J., Tsoar, H., Porat, N., Blumberg, D. G., 2011b. Palaeoclimate interpretations of Late Pleistocene vegetated linear dune mobilization episodes: Evidence from the northwestern Negev dunefield, Israel. Quaternary Science Reviews, 30, 33643380.Google Scholar
Rowell, A., Thomas, D., Bailey, R., et al., 2018. Controls on sand ramp formation in southern Namibia. Earth Surface Processes and Landforms, 43, 150171.Google Scholar
Rubin, D. M., 1984. Factors determining desert dune type (discussion). Nature, 309, 9192.Google Scholar
Rubin, D. M., 1990. Lateral migration of linear dunes in the Strzelecki Desert, Australia. Earth Surface Processes and Landforms, 14, 114.Google Scholar
Rubin, D. M., Hesp, P. A., 2009. Multiple origins of linear dunes on Earth and Titan. Nature Geoscience, 2, 653658.Google Scholar
Rubin, D. M., Hunter, R. E., 1982. Bedform climbing in theory and nature. Sedimentology, 29, 121138.Google Scholar
Rubin, D. M., Hunter, R. E., 1985. Why deposits of longitudinal dunes are rarely recognized in the geologic record. Sedimentology, 32, 147157.Google Scholar
Rubin, D. M., Hunter, R. E., 1987. Bedform alignment in directionally varying flows. Science, 237, 276278.Google Scholar
Rubin, D. M., Ikeda, H., 1990. Flume experiments on the alignment of transverse, oblique and longitudinal dunes in directionally varying flows. Sedimentology, 37, 673684.Google Scholar
Rubin, D. M., Tsoar, H., Blumberg, D. G., 2008. A second look at western Sinai seif dunes and their lateral migration. Geomorphology, 93, 335342.Google Scholar
Sarnthein, M., 1978. Sand deserts during glacial maximum and climatic optima. Nature, 272, 4346.Google Scholar
Sarnthein, M., Diester-Haas, L., 1977. Eolian sand turbidites. Journal of Sedimentary Petrology, 47, 868890.Google Scholar
Sauermann, G., Kroy, K., Herrmann, H. J., 2001. Continuum saltation model for sand dunes. Physical Review E, 64, 031305.Google Scholar
Saunders, R. S., Pettengill, G. H., Arvidson, R. E., et al., 1990. The Magellan Venus radar mapping mission. Journal of Geophysical Research, 96, 83398355.Google Scholar
Schatz, V., Herrman, H. J., 2006. Flow separation in the lee side of transverse dunes. Geomorphology, 81, 207216.Google Scholar
Schatz, V., Tsoar, H., Edgett, K. S., Parteli, E. J. R., Hermann, H. J., 2006. Evidence for indurated sand dunes in the Martian north polar region. Journal of Geophysical Research, 111, E04006.Google Scholar
Scheidt, S., Lancaster, N., Ramsey, M. S., 2011. Eolian dynamics and sediment mixing in the Gran Desierto, Mexico determined from thermal infrared spectroscopy and remote sensing data. Geological Society of America Bulletin, 123, 16281644.Google Scholar
Scheidt, S. P., Lancaster, N., 2013. The application of COSI-Corr to determine dune system dynamics in the southern Namib Desert using ASTER data. Earth Surface Processes and Landforms, 38, 10041019.Google Scholar
Schenk, C. J., Gautier, D. L., Olhoeft, G. R., Lucius, J. E., 1993. Internal structure of an aeolian dune using ground-penetrating radar. In Pye, K., Lancaster, N. (Eds.), Aeolian Sediments: Ancient and Modern. IAS Special Publication. Blackwell, Oxford, pp. 6170.Google Scholar
Schmeisser McKean, R. L., Goble, R. J., Mason, J. B., Swinehart, J. B., Loope, D. B., 2015. Temporal and spatial variability in dune reactivation across the Nebraska Sand Hills, USA. The Holocene, 25, 523535.Google Scholar
Schmeisser, R. L., Loope, D. B., Mason, J. A., 2010. Modern and late Holocene wind regimes over the Great Plains (central U.S.A.). Quaternary Science Reviews, 29, 554566.Google Scholar
Schwämmle, V., Herrmann, H., 2004. Modelling transverse dunes. Earth Surface Processes and Landforms, 29, 769784.Google Scholar
Scuderi, L., 2019. The fingerprint of linear dunes. Aeolian Research, 39, 112.Google Scholar
Scuderi, L., Weissmann, G., Kindilien, P., Yang, X., 2015. Evaluating the potential of database technology for documenting environmental change in China’s deserts. Catena, 134, 8797.Google Scholar
Scuderi, L. A., Weissmann, G. S., Hartley, A. J., Yang, X., Lancaster, N., 2017. Application of database approaches to the study of Earth’s aeolian environments: Community needs and goals. Aeolian Research, 27, 79109.Google Scholar
Segalen, L., Rognon, P., Pickford, M., et al., 2004. Reconstitution of dune morphologies and palaeowind regimes in the Proto-Namib since the Miocene. Bulletin de la Societe Geologique de France, 175, 537546.Google Scholar
Senut, B., Pickford, M., Mein, P., 1995. Les falaises d’Awasib: une coupe-type pour le Cenozoique continental de Namibie. Comptes Rendus de l’Academie des Sciences, Serie II, Sciences de la Terre et des Planetes, 321, 775780.Google Scholar
Seppälä, M., Linde, K., 1978. Wind tunnel studies of ripple formation. Geografiska Annaler, 60, 2942.Google Scholar
Shao, Y., Lu, H., 2000. A simple expression for wind erosion threshold friction velocity. Journal of Geophysical Research: Atmospheres, 105, 2243722443.Google Scholar
Sharp, R. P., 1963. Wind ripples. Journal of Geology, 71, 617636.Google Scholar
Sharp, R. P., 1966. Kelso Dunes, Mohave Desert, California. Geological Society of America Bulletin, 77, 10451074.Google Scholar
Shehata, W., Bader, T., Irtem, O., et al., 1992. Rate and mode of barchan dunes advance in the central part of the Jafurah sand sea. Journal of Arid Environments, 23, 117.Google Scholar
Shotton, F. W., 1937. The Lower Bunter sandstones of north Worcestershire and east Shropshire (England). Geological Magazine, 74, 534553.Google Scholar
Shumack, S., Farebrother, W., Hesse, P., 2022. Quantifying vegetation and its effect on aeolian sediment transport: A UAS investigation on longitudinal dunes. Aeolian Research, 54, 100768.Google Scholar
Shumack, S., Hesse, P., 2017. Assessing the geomorphic disturbance from fires on coastal dunes near Esperance, Western Australia: Implications for dune de-stabilisation. Aeolian Research, 31, 29–49.Google Scholar
Shumack, S., Hesse, P., Farebrother, W., 2020. Deep learning for dune pattern mapping with the AW3D30 global surface model. Earth Surface Processes and Landforms, 45, 24172431.Google Scholar
Simons, F. S., 1956. A note on Pur-Pur Dune, Viru Valley, Peru. Journal of Geology, 64, 517521.Google Scholar
Singhvi, A. K., Porat, N., 2008. Impact of luminescence dating on geomorphological and palaeoclimate research in drylands. Boreas, 37, 536558.Google Scholar
Singhvi, A. R., Sharma, Y. P., Agrawal, D. P., 1982. Thermoluminescence dating of sand dunes in Rajasthan, India. Nature, 295, 313315.Google Scholar
Slattery, M. C., 1990. Barchan migration on the Kuiseb River Delta, Namibia. South African Geographical Journal, 72, 510.Google Scholar
Smith, H. T. U., 1965. Dune morphology and chronology in central and western Nebraska. Journal of Geology, 73, 557578.Google Scholar
Sridhar, V., Loope, D. B., Swinehart, J. B., et al., 2006. Large wind shift on the Great Plains during the Medieval Warm Period. Science, 313, 345347.Google Scholar
Srivastava, A., Thomas, D. S. G., Durcan, J. A., 2019. Holocene dune activity in the Thar Desert, India. Earth Surface Processes and Landforms, 44, 14071418.Google Scholar
Srivastava, A., Thomas, D. S. G., Durcan, J. A., Bailey, R. M., 2020. Holocene palaeoenvironmental changes in the Thar Desert: An integrated assessment incorporating new insights from aeolian systems. Quaternary Science Reviews, 233, 106214.Google Scholar
Stetler, L. D., Gaylord, D. R., 1996. Evaluating eolian-climatic influences using a regional climate model from Hanford, Washington (USA). Geomorphology, 17, 99113.Google Scholar
Stokes, S., 1992. Optical dating of young (modern) sediments using quartz: Results from a selection of modern environments. Quaternary Science Reviews, 11, 153159.Google Scholar
Stokes, S., Bray, H. E., 2005. Late Pleistocene eolian history of the Liwa region, Arabian Peninsula. Geological Society of America Bulletin, 117, 14661480.Google Scholar
Stokes, S., Breed, C. S., 1993. A chronostratigraphic re-evaluation of the Tusayan Dunes, Moenkopi Plateau and Ward Terrace, Northeastern Arizona. In Pye, K. (Ed.), The Dynamics and Environmental Context of Aeolian Sedimentary Systems. Geological Society, London, pp. 7590.Google Scholar
Stokes, S., Goudie, A. S., Ballard, J., et al., 1999. Accurate dune displacement and morphometric data using kinematic GPS. Zeistchrift für Geomorphologie Supplementbände, 11, 195214.Google Scholar
Stokes, S., Haynes, G., Thomas, D. S. G., Higginson, M., Malifa, M., 1998. Punctuated aridity in southern Africa during the last glacial cycle: The chronology of linear dune construction in the northeastern Kalahari. Palaeogeography, Palaeoeclimatology, Palaeocology, 137, 305322.Google Scholar
Stokes, S., Kocurek, G., Pye, K., Winspear, N. R., 1997a. New evidence for the timing of aeolian sand supply to the Algodones dunefield and East Mesa area, southeastern California, USA. Palaeogeography, Palaeoeclimatology, Palaeocology, 128, 6375.Google Scholar
Stokes, S., Thomas, D. S. G., Shaw, P. A., 1997b. New chronological evidence for the nature and timing of linear dune development in the southwest Kalahari Desert. Geomorphology, 20, 8194.Google Scholar
Stokes, W. L., 1968. Multiple parallel-truncation bedding planes: A feature of wind-deposited sandstone. Journal of Sedimentary Petrology, 55, 361365.Google Scholar
Stone, A. E. C., Thomas, D. S. G., 2008. Linear dune accumulation chronologies from the southwest Kalahari, Namibia: Challenges of reconstructing late Quaternary palaeoenvironments from aeolian landforms. Quaternary Science Reviews, 27, 16671681.Google Scholar
Stout, J. E., Zobeck, T. M., 1997. Intermittent saltation. Sedimentology, 44, 959970.Google Scholar
Sullivan, R., Kok, J. F., 2017. Aeolian saltation on Mars at low wind speeds. Journal of Geophysical Research: Planets, 122, 21112143.Google Scholar
Sullivan, R., Kok, J. F., Katra, I., Yizhaq, H., 2020. A broad continuum of aeolian impact ripple morphologies on Mars is enabled by low wind dynamic pressures. Journal of Geophysical Research: Planets, 125, e2020JE006485.Google Scholar
Sun, J., Muhs, D. R., 2007. Mid latitude dune fields. In Elias, S. A. (Ed.), Encyclopedia of Quaternary Science. Elsevier, Amsterdam, pp. 607626.Google Scholar
Sutton, S. L. F., McKenna Neuman, C., Nickling, W., 2013. Lee slope sediment processes leading to avalanche initiation on an aeolian dune. Journal of Geophysical Research: Earth Surface, 118, 17541766.Google Scholar
Swanson, T., Mohrig, D., Kocurek, G., 2016. Aeolian dune sediment flux variability over an annual cycle of wind. Sedimentology, 63, 17531764.Google Scholar
Sweeney, M. R., Forman, S. L., McDonald, E. V., 2021. Contemporary and future dust sources and emission fluxes from gypsum- and quartz-dominated eolian systems, New Mexico and Texas, USA. Geology, 50, 356360.Google Scholar
Sweet, M. L., Kocurek, G., 1990. An empirical model of aeolian dune lee-face airflow. Sedimentology, 37, 10231038.Google Scholar
Sweet, M. L., Nielson, J., Havholm, K., Farralley, J., 1988. Algodones dune field of southeastern California: Case history of a migrating modern dune field. Sedimentology, 35, 939952.Google Scholar
Swezey, C., 2001. Eolian sediment responses to late Quaternary climate changes: Temporal and spatial patterns in the Sahara. Palaeogeography, Palaeoeclimatology, Palaeocology, 167, 119155.Google Scholar
Swezey, C., Lancaster, N., Kocurek, G., et al., 1999. Response of aeolian systems to Holocene climatic and hydrologic changes on the northern margin of the Sahara: A high resolution record from the Chott Rharsa basin, Tunisia. The Holocene, 9, 141148.Google Scholar
Szynkiewicz, A., Ewing, R. C., Moore, C. H., et al., 2010. Origin of terrestrial gypsum dunes: Implications for Martian gypsum-rich dunes of Olympia Undae. Geomorphology, 121, 6983.Google Scholar
Talbot, M. R., 1984. Late Pleistocene dune building and rainfall in the Sahel. Palaeoecology of Africa, 16, 203214.Google Scholar
Talbot, M. R., Williams, M. A. J., 1978. Erosion of fixed dunes in the Sahel, central Niger. Earth Surface Processes, 3, 107113.Google Scholar
Tchakerian, V. P., 1991. Late Quaternary aeolian geomorphology of the Dale Lake sand sheet, southern Mojave Desert, California. Physical Geography, 12, 347369.Google Scholar
Telfer, M. W., 2011. Growth by extension, and reworking, of a south-western Kalahari linear dune. Earth Surface Processes and Landforms, 36, 11251135.Google Scholar
Telfer, M. W., Parteli Eric, J. R., Radebaugh, J., et al., 2018. Dunes on Pluto. Science, 360, 992997.Google Scholar
Telfer, M., 2022. 7.19 – Vegetated Dune Systems. In Shroder, J. F. (Ed.), Treatise on Geomorphology (Second Edition). Academic Press, Oxford, pp. 496519.Google Scholar
Telfer, M. W., Bailey, R. M., Burrough, S. L., et al., 2010. Understanding linear dune chronologies: Insights from a simple accumulation model. Geomorphology, 120, 195208.Google Scholar
Telfer, M. W., Fyfe, R. M., Lewin, S., 2015. Automated mapping of linear dunefield morphometric parameters from remotely-sensed data. Aeolian Research, 19, 215224.Google Scholar
Telfer, M. W., Hesse, P. P., 2013. Palaeoenvironmental reconstructions from linear dunefields: Recent progress, current challenges and future directions. Quaternary Science Reviews, 78, 121.Google Scholar
Telfer, M. W., Hesse, P. P., Perez-Fernandez, M., et al., 2017. Morphodynamics, boundary conditions and pattern evolution within a vegetated linear dunefield. Geomorphology, 290, 85100.Google Scholar
Telfer, M. W., Thomas, D. S. G., 2006. Complex Holocene lunette dune development, South Africa: Implications for paleoclimate and models of pan development in arid regions. Geology, 34, 853856.Google Scholar
Telfer, M. W., Thomas, D. S. G., 2007. Late Quaternary linear dune accumulation and chronostratigraphy of the south western Kalahari: Implications for aeolian palaeoclimatic reconstructions and predictions of future dynamics. Quaternary Science Reviews, 26, 26172630.Google Scholar
Thomas, D. S. G., 1984. Ancient ergs of the former arid zones of Zimbabwe, Zambia, and Angola. Transactions of the Institute of British Geographers (NS), 9, 7588.Google Scholar
Thomas, D. S. G., 1986. Dune pattern statistics applied to the Kalahari Dune Desert, Southen Africa. Zeitschrift für Geomorphologie, 30, 231242.Google Scholar
Thomas, D. S. G., 1988. Analysis of linear dune sediment-form relationships in the Kalahari dune desert. Earth Surface Processes and Landforms, 13, 545554.Google Scholar
Thomas, D. S. G., 1992. Desert dune activity: Concepts and significance. Journal of Arid Environments, 22, 3138.Google Scholar
Thomas, D. S. G., Bailey, R. M., 2017. Is there evidence for global-scale forcing of Southern Hemisphere Quaternary desert dune accumulation? A quantitative method for testing hypotheses of dune system development. Earth Surface Processes and Landforms, 42, 22802294.Google Scholar
Thomas, D. S. G., Bailey, R. M., 2019. Analysis of late Quaternary dunefield development in Asia using the accumulation intensity model. Aeolian Research, 39, 3346.Google Scholar
Thomas, D. S. G., Burrough, S. L., 2012. Interpreting geoproxies of late Quaternary climate change in African drylands: Implications for understanding environmental change and early human behaviour. Quaternary International, 253, 517.Google Scholar
Thomas, D. S. G., Burrough, S. L., 2016. Luminescence-based dune chronologies in southern Africa: Analysis and interpretation of dune database records across the subcontinent. Quaternary International, 410, 3045.Google Scholar
Thomas, D. S. G., Knight, M., Wiggs, G. F. S., 2005. Remobilization of southern African desert dune systems by twenty-first century global warming. Nature, 435, 12181221.Google Scholar
Thomas, D. S. G., Leason, H. C., 2005. Dunefield activity response to climate variability in the southwest Kalahari. Geomorphology, 64, 117132.Google Scholar
Thomas, D. S. G., Shaw, P. A., 1991. The Kalahari Environment. Cambridge University Press, Cambridge.Google Scholar
Thomas, D. S. G., Tsoar, H., 1990. The geomorphological role of vegetation in desert dune systems. In Thornes, J. B. (Ed.), Vegetation and Erosion. John Wiley & Sons Ltd., Chichester, pp. 471489.Google Scholar
Thomas, D. S. G., Wiggs, G. F. S., 2008. Aeolian system responses to global change: Challenges of scale, process, and temporal integration. Earth Surface Processes and Landforms, 33, 13961418.Google Scholar
Tokano, T., 2008. Dune-forming winds on Titan and the influence of topography. Icarus, 194, 243262.Google Scholar
Tokano, T., 2010. Relevance of fast westerlies at equinox for the eastward elongation of Titan’s dunes. Aeolian Research, 2, 113127.Google Scholar
Tripaldi, A., Zárate, M. A., 2014. A review of Late Quaternary inland dune systems of South America east of the Andes. Quaternary International, 410, 96110.Google Scholar
Tripaldi, A., Zárate, M. A., Brook, G. A., Li, G.-Q., 2011. Late Quaternary paleoenvironments and paleoclimatic conditions in the distal Andean piedmont, southern Mendoza, Argentina. Quaternary Research, 76, 253263.Google Scholar
Tseo, G., 1990. Reconnaissance of the dynamic characteristics of an active Strzelecki Desert longitudinal dune, southcentral Australia. Zeitschrift für Geomorphologie N.F., 34, 1935.Google Scholar
Tsoar, H., 1978. The Dynamics of Longitudinal Dunes. Final Technical Report: U.S. Army European Research Office. US Army European Research Office, London.Google Scholar
Tsoar, H., 1982. Internal structure and surface geometry of longitudinal (seif) dunes. Journal of Sedimentary Petrology, 52, 08230831.Google Scholar
Tsoar, H., 1983a. Dynamic processes acting on a longitudinal (seif) dune. Sedimentology, 30, 567578.Google Scholar
Tsoar, H., 1983b. Wind tunnel modeling of echo and climbing dunes. In Brookfield, M. E., Ahlbrandt, T. S. (Eds.), Eolian Sediments and Processes. Developments in Sedimentology 38. Elsevier, Amsterdam, pp. 247259.Google Scholar
Tsoar, H., 1984. The formation of seif dunes from barchans: T discussion. Zeitschrift für Geomorphologie, 28, 99103.Google Scholar
Tsoar, H., 1985. Profile analysis of sand dunes and their steady state significance. Geografiska Annaler, 67A, 4759.Google Scholar
Tsoar, H., 1989. Linear dunes: Forms and formation. Progress in Physical Geography, 13, 507528.Google Scholar
Tsoar, H., Blumberg, D. G., 2002. Formation of parabolic dunes from barchan and transverse dunes along Israel’s Mediterranean coast. Earth Surface Processes and Landforms, 27, 11471162.Google Scholar
Tsoar, H., Blumberg, D. G., Stoler, Y., 2004. Elongation and migration of sand dunes. Geomorphology, 57, 293302.Google Scholar
Tsoar, H., Greeley, R., Peterfreund, A. R., 1979. Mars: The North Polar sand sea and related wind patterns. Journal of Geophysical Research, 84, 81678180.Google Scholar
Tsoar, H., Møller, J. T., 1986. The role of vegetation in the formation of linear sand dunes. In Nickling, W. G. (Ed.), Aeolian Geomorphology. Allen and Unwin, Boston, London, Sydney, pp. 7595.Google Scholar
Tsoar, H., White, B., Berman, E., 1996. The effects of slopes on sand transport: Numerical modelling. Landscape and Urban Planning, 34, 171181.Google Scholar
Twidale, C. R., 1972. Evolution of sand dunes in the Simpson Desert, central Australia. Transactions of the Institute of British Geographers, 56, 77110.Google Scholar
Ungar, J. E., Haff, P. K., 1987. Steady-state saltation in air. Sedimentology, 34, 289299.Google Scholar
Valdez, A., Zimbelman, J. R., 2020. Great Sand Dunes. In Lancaster, N., Hesp, P. (Eds.), Inland Dunes of North America. Springer International Publishing, Cham, pp. 239285.Google Scholar
Vaz, D. A., Sarmento, P. T. K., Barata, M. T., et al., 2015. Object-based dune analysis: Automated dune mapping and pattern characterization for Ganges Chasma and Gale crater, Mars. Geomorphology, 250, 128139.Google Scholar
Vermeesch, P., Drake, N. A., 2008. Remotely sensed dune celerity and sand flux measurements of the world’s fastest barchans (Bodélé, Chad). Geophysical Research Letters, 35, L24404.Google Scholar
Vermeesch, P., Fenton, C. R., Kober, F., et al., 2010. Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides. Nature Geoscience, 3, 862865.Google Scholar
Vermeesch, P., Leprince, S., 2012. A 45-year time series of dune mobility indicating constant windiness over the central Sahara. Geophysical Research Letters, 39, L14401.Google Scholar
Vimpere, L., Watkins, S. E., Castelltort, S., 2021. Continental interior parabolic dunes as a potential proxy for past climates. Global and Planetary Change, 206, 103622.Google Scholar
Vincent, P., 1986. Differentiation of modern beach and coastal dune sands: A logistic regression approach using the parameters of the hyperbolic function. Sedimentary Geology, 49, 167176.Google Scholar
Vincent, P. J., 1988. The response diagram and sand mixtures. Zeitschrift für Geomorphologie, 32, 221226.Google Scholar
Visher, G. S., 1969. Grain size distributions and depositional processes. Journal of Sedimentary Petrology, 39, 10741106.Google Scholar
Vriend, N. M., Hunt, M. L., Clayton, R. W., 2012. Sedimentary structure of large sand dunes: Examples from Dumont and Eureka dunes, California. Geophysical Journal International, 190, 981992.Google Scholar
Walden, J., White, K., 1997. Investigation of the controls on dune colour in the Namib Sand Sea using mineral magnetic analyses. Earth and Planetary Science Letters, 152, 187201.Google Scholar
Walker, I. J., Nickling, W. G., 2003. Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes in a wind tunnel. Earth Surface Processes and Landforms, 28, 11111124.Google Scholar
Walker, I. J., 1999. Secondary airflow and sediment transport in the lee of a reversing dune. Earth Surface Processes and Landforms, 24, 437448.Google Scholar
Walker, I. J., Hesp, P. A., 2013. 11.7 Fundamentals of Aeolian Sediment Transport: Airflow over Dunes, In Shroder, J.F. (Ed.) Treatise on Geomorphology. Academic Press, San Diego, pp. 109133.Google Scholar
Walker, I. J., Nickling, W. G., 2002. Dynamics of secondary airflow and sediment transport over and the lee of transverse dunes. Progress in Physical Geography, 26, 4775.Google Scholar
Walker, T. R., 1979. Red color in dune sands. In McKee, E. D. (Ed.), A Study of Global Sand Seas. United Professional Paper 1052 States Geological Survey, pp. 6182.Google Scholar
Wang, F., Sun, D., Chen, F., et al., 2015. Formation and evolution of the Badain Jaran Desert, North China, as revealed by a drill core from the desert centre and by geological survey. Palaeogeography, Palaeoclimatology, Palaeoecology, 426, 139158.Google Scholar
Wang, P., Feng, S., Zheng, X., Sung, H. J., 2019a. The scale characteristics and formation mechanism of aeolian sand streamers based on large eddy simulation. Journal of Geophysical Research: Atmospheres, 124, 1137211388.Google Scholar
Wang, T., Zhang, W., Dong, Z., et al., 2005. The dynamic characteristics and migration of a pyramid dune. Sedimentology, 52, 429440.Google Scholar
Wang, X., Chen, F., Dong, Z., 2006. The relative role of climatic and human factors in desertification in semiarid China. Global Environmental Change, 16, 4857.Google Scholar
Wang, X., Chen, F.-H., Hasi, E., Li, J., 2008a. Desertification in China: An assessment. Earth Science Reviews, 88, 188206.Google Scholar
Wang, X., Dong, Z., Liu, L., Qu, J., 2004. Sand sea activity and interactions with climatic parameters in the Taklimakan Sand Sea, China. Journal of Arid Environments, 57, 225238.Google Scholar
Wang, X., Dong, Z., Zhang, J., Chen, G., 2002. Geomorphology of sand dunes in the northeast Taklimakan Desert. Geomorphology, 42, 183195.Google Scholar
Wang, X., Dong, Z., Zhang, J., Qu, J., Zhao, H., 2003. Grain size characteristics of dune sands in the central Taklimakan Sand Sea. Sedimentary Geology, 161, 114.Google Scholar
Wang, X., Yang, Y., Dong, Z., Zhang, C., 2009. Responses of dune activity and desertification in China to global warming in the twenty-first century. Global and Planetary Change, 67, 167185.Google Scholar
Wang, Z., Wu, Y., Tan, L., et al., 2019b. Provenance studies of aeolian sand in Mu Us Desert based on heavy-mineral analysis. Aeolian Research, 40, 1522.Google Scholar
Wang, Z.-T., Tao, S.-C., Xie, Y.-W., Dong, G.-H., 1997. Barchans of Minqin: Morphometry. Geomorphology, 89, 405411.Google Scholar
Wang, Z.-T., Zhang, J.-W., Zhang, Q.-H., et al., 2008b. Barchans of Minqin: Sediment transport. Geomorphology, 96, 233238.Google Scholar
Ward, J. D., 1988. Eolian fluvial and pan (playa) facies of the Tertiary Tsondab sandstone formation in the Central Namib Desert, Namibia. Sedimentary Geology, 55, Special Issue: Eolian Sediments, Hesp, P. and Fryberger, S. G. (eds.), 143162.Google Scholar
Ward, J. D., von Brunn, V., 1985. Sand dynamics along the Kuiseb River. In Huntley, B. J. (Ed.), The Kuiseb Environment: The Development of a Monitoring Baseline. Foundation for Research Development, Council for Scientific and Industrial Research, Pretoria, pp. 5172.Google Scholar
Warren, A., 1970. Dune trends and their implications in the central Sudan. Zeitschrift für Geomorphologie, Supplement, 154180.Google Scholar
Warren, A., 1972. Observations on dunes and bimodal sands in the Tenere desert. Sedimentology, 19, 3744.Google Scholar
Warren, A., Allison, D., 1998. The palaeoenvironmental significance of dune size hierarchies. Palaeogeography, Palaeoeclimatology, Palaeocology, 137, 289303.Google Scholar
Warren, A., Kay, S., 1987. Dune networks. In Frostick, L. E., Reid, I. (Eds.), Desert Sediments: Ancient and Modern. Blackwell Scientific Publications, Oxford, pp. 205212.Google Scholar
Wasson, R. J., 1983a. The Cainozoic history of the Strzelecki and Simpson dunefields (Australia) and the origin of the desert dunes. Zeitschrift für Geomorphologie, Supplement, 45, 85115.Google Scholar
Wasson, R. J., 1983b. Dune sediment types, sand colour, sediment provenance and hydrology in the Strzelecki-Simpson Dunefield, Australia. In Brookfield, M. E., Ahlbrandt, T. S. (Eds.), Eolian Sediments and Processes. Developments in Sedimentology 38. Elsevier, Amsterdam, pp. 165195.Google Scholar
Wasson, R. J., Fitchett, K., Mackey, B., Hyde, R., 1988. Large-scale patterns of dune type, spacing, and orientation in the Australian continental dunefield. Australian Geographer, 19, 89104.Google Scholar
Wasson, R. J., Hyde, R., 1983a. Factors determining desert dune type. Nature, 304, 337339.Google Scholar
Wasson, R. J., Hyde, R., 1983b. A test of granulometric control of desert dune geometry. Earth Surface Processes and Landforms, 8, 301312.Google Scholar
Wasson, R. J., Rajaguru, S. N., Misra, V. N., et al., 1983. Geomorphology, late Quaternary stratigraphy and paleoclimatology of the Thar dunefield. Zeitschrift für Geomorphologie, Supplement, 45, 117151.Google Scholar
Watson, A., 1985. The control of wind blown sand and moving dunes: A review of methods of sand control in deserts, with observations from Saudi Arabia. Quarterly Journal of Engineering Geology, 18, 237252.Google Scholar
Watson, A., 1986. Grain-size variations on a longitudinal dune and a barchan dune. Sedimentary Geology, 46, 4966.Google Scholar
Weaver, C. M., Wiggs, G. F. S., 2011. Field measurements of mean and turbulent airflow over a barchan sand dune. Geomorphology, 128, 3241.Google Scholar
Weitz, C. M., Plaut, J. J., Greeley, R., Saunders, R. S., 1994. Dunes and microdunes on Venus: Why were so few found in the Magellan data? Icarus, 112, 282295.Google Scholar
Wells, S. G., McFadden, L. D., Schultz, J. D., 1990. Eolian landscape evolution and soil formation in the Chaco dune field, southern Colorado Plateau, New Mexico. In Knuepfer, P. L. K., McFadden, L. D. (Eds.), Soils and Landscape Evolution. Proceedings of the 21st Binghamton Symposium in Geomorphology. Amsterdam, Elsevier, pp. 517546.Google Scholar
Weng, W. S., Hunt, J. C. R., Carruthers, D. J., et al., 1991. Air flow and sand transport over sand dunes. Acta Mechanica Supplement, 2, 122.Google Scholar
Werner, B. T., 1995. Eolian dunes: Computer simulations and attractor interpretation. Geology, 23, 11071110.Google Scholar
Werner, B. T., Kocurek, G., 1997. Bed-form dynamics: Does the tail wag the dog? Geology, 25, 771774.Google Scholar
Werner, C. M., Mason, J. A., Hanson, P. R., 2010. Non-linear connections between dune activity and climate in the High Plains, Kansas. Quaternary Research, 75, 267277.Google Scholar
White, B. R., Schultz, J. C., 1977. Magnus effect in saltation. Journal of Fluid Mechanics, 81, 497512.Google Scholar
White, K., Bullard, J., 2009. Abrasion control on dune colour: Muleshoe Dunes, SW USA. Geomorphology, 105, 5966.Google Scholar
White, K., Bullard, J., Livingstone, I., Moran, L., 2015. A morphometric comparison of the Namib and southwest Kalahari dunefields using ASTER GDEM data. Aeolian Research, 19, 8795.Google Scholar
White, K., Goudie, A. S., Parker, A., Al-Farraj, A., 2001. Mapping the geochemistry of the northern Rub’ al Khali using multispectal remote sensing techniques. Earth Surface Processes and Landforms, 26, 735748.Google Scholar
White, K., Walden, J., Gurney, S. D., 2007. Spectral properties, iron oxide content and provenance of Namib dune sands. Geomorphology, 86, 219229.Google Scholar
Whitney, J. W., 2006. Geology, Water, and Wind in the Lower Helmand Basin, Southern Afghanistan. Scientific Investigations Report 2006–5182 United States Geological Survey, Reston, VA.Google Scholar
Whitney, J. W., Breit, G. N., Buckingham, S. E., et al., 2015. Aeolian responses to climate variability during the past century on Mesquite Lake Playa, Mojave Desert. Geomorphology, 230, 1325.Google Scholar
Wiegand, J. P., 1977. Dune morphology and sedimentology at Great Sand Dunes National Monument, M.S. thesis, Colorado State University.Google Scholar
Wiggs, G. F. S., 1993. Desert dune dynamics and the evaluation of shear velocity: An integrated approach. In Pye, K. (Ed.), The Dynamics and Environmental Context of Aeolian Sedimentary Systems. Geological Society, London, pp. 3748.Google Scholar
Wiggs, G. F. S., 2001. Desert dune processes and dynamics. Progress in Physical Geography, 25, 5379.Google Scholar
Wiggs, G. F. S., Baird, A. J., Atherton, R. J., 2004. The dynamic effects of moisture on the entrainment and transport of sand by wind. Geomorphology, 59, 1330.Google Scholar
Wiggs, G. F. S., Livingstone, I., Warren, A., 1996. The role of streamline curvature in sand dune dynamics: Evidence from field and wind tunnel measurements. Geomorphology, 17, 2946.Google Scholar
Wiggs, G. F. S., Thomas, D. S. G., Bullard, J. E., Livingstone, I., 1995. Dune mobility and vegetation cover in the southwest Kalahari Desert. Earth Surface Processes and Landforms, 20, 515530.Google Scholar
Wilson, I. G., 1971. Desert sandflow basins and a model for the development of ergs. Geographical Journal, 137, 180199.Google Scholar
Wilson, I. G., 1972. Aeolian bedforms: Their development and origins. Sedimentology, 19, 173210.Google Scholar
Wilson, I. G., 1973. Ergs. Sedimentary Geology, 10, 77106.Google Scholar
Wolfe, S. A., Hugenholtz, C. H., 2009. Barchan dunes stabilized under recent climate warming on the northern Great Plains. Geology, 37, 10391042.Google Scholar
Wolfe, S. A., Huntley, D. J., David, P. P., et al., 2001. Late 18th century drought-induced sand dune activity, Great Sand Hills, Saskatchewan. Canadian Journal of Earth Science, 38, 105117.Google Scholar
Wolfe, S. A., Nickling, W. G., 1996. Shear stress partitioning in sparsely vegetated desert canopies. Earth Surface Processes and Landforms, 21, 607620.Google Scholar
Wopfner, A., Twidale, G. R., 1967. Geomorphological history of the Lake Eyre basin. In Jennings, J. N., Mabbutt, J. A. (Eds.), Landform Studies from Australia and New Guinea. Cambridge University Press, Cambridge.Google Scholar
Xu, Z., Mason, J. A., Xu, C., et al., 2020. Critical transitions in Chinese dunes during the past 12,000 years. Science Advances, 6, eaay8020.Google Scholar
Yalin, M. S., 1972. Mechanics of Sediment Transport. Pergamon Press, Oxford.Google Scholar
Yan, N., Baas, A. C. W., 2017. Environmental controls, morphodynamic processes, and ecogeomorphic interactions of barchan to parabolic dune transformations. Geomorphology, 278, 209237.Google Scholar
Yang, X., Li, H., Conacher, A., 2012. Large-scale controls on the development of sand seas in northern China. Quaternary International, 250, 7483.Google Scholar
Yang, X., Ma, N., Dong, J., et al., 2010. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China. Quaternary Research, 73, 1019.Google Scholar
Yang, X., Scuderi, L., Paillou, P., et al., 2011. Quaternary environmental changes in the drylands of China – a critical review. Quaternary Science Reviews, 30, 32193233.Google Scholar
Yang, X., Wang, X., Liu, Z., et al., 2013. Initiation and variation of the dune fields in semi-arid China – with a special reference to the Hunshandake Sandy Land, Inner Mongolia. Quaternary Science Reviews, 78, 369380.Google Scholar
Yizhaq, H., Askenazy, Y., Tsoar, H., 2007. Why do active and stabilized dunes coexist under the same climatic conditions. Physical Review Letters, 98, 188001.Google Scholar
Yizhaq, H., Askenazy, Y., Tsoar, H., 2009. Sand dune dynamics and climate change: A modeling approach. Journal of Geophysical Research, 114, F01023.Google Scholar
Yizhaq, H., Katra, I., 2015. Longevity of aeolian megaripples. Earth and Planetary Science Letters, 422, 2832.Google Scholar
Yizhaq, H., Katra, I., Isenberg, O., Tsoar, H., 2012. Evolution of megaripples from a flat bed. Aeolian Research, 6, 112.Google Scholar
Zárate, M. A., Tripaldi, A., 2012. The aeolian system of central Argentina. Aeolian Research, 3, 401417.Google Scholar
Zhang, D., Narteau, C., Rozier, O., Courrech du Pont, S., 2012. Morphology and dynamics of star dunes from numerical modelling. Nature Geoscience, 5, 463467.Google Scholar
Zhang, P., Sherman, D., Pelletier, J., et al., 2022. Quantification and classification of grainflow morphology on natural dunes. Earth Surface Processes and Landforms, 47, 18081819.Google Scholar
Zhang, P., Sherman, D. J., Li, B., 2021. Aeolian creep transport: A review. Aeolian Research, 51, 100711.Google Scholar
Zhang, W., Qu, J., Dong, Z., Li, X., Wang, W., 2000. The airflow field and dynamic processes of pyramid dunes. Journal of Arid Environments, 45, 357368.Google Scholar
Zhang, W., Qu, J., Tan, L., et al., 2016. Environmental dynamics of a star dune. Geomorphology, 273, 2838.Google Scholar
Zhou, J., Zhu, Y., Yuan, C., 2013. Origin and lateral migration of linear dunes in the Qaidam Basin of NW China revealed by dune sediments, internal structures, and optically stimulated luminescence ages, with implications for linear dunes on Titan: Reply. Geological Society of America Bulletin, 125, 19471949CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Nicholas Lancaster
  • Book: Geomorphology of Desert Dunes
  • Online publication: 03 March 2023
  • Chapter DOI: https://doi.org/10.1017/9781108355568.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Nicholas Lancaster
  • Book: Geomorphology of Desert Dunes
  • Online publication: 03 March 2023
  • Chapter DOI: https://doi.org/10.1017/9781108355568.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Nicholas Lancaster
  • Book: Geomorphology of Desert Dunes
  • Online publication: 03 March 2023
  • Chapter DOI: https://doi.org/10.1017/9781108355568.019
Available formats
×