Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T23:36:03.007Z Has data issue: false hasContentIssue false

Part V - Genome Editing in Disease Biology

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 313 - 420
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Annunziato, S, Kas, SM, Nethe, M, et al. 2016. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev 30: 14701480.CrossRefGoogle ScholarPubMed
Antal, CE, Hudson, AM, Kang, E, et al. 2015. Cancer-associated protein kinase C mutations reveal kinase’s role as tumor suppressor. Cell 160: 489502.CrossRefGoogle ScholarPubMed
Aubrey, BJ, Kelly, GL, Kueh, AJ, et al. 2015. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep 10: 14221432.CrossRefGoogle ScholarPubMed
Balkwill, FR, Capasso, M, Hagemann, T. 2012. The tumor microenvironment at a glance. J Cell Sci 125: 55915596.CrossRefGoogle ScholarPubMed
Bibikova, M, Beumer, K, Trautman, JK, Carroll, D. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science 300: 764.CrossRefGoogle ScholarPubMed
Blasco, RB, Karaca, E, Ambrogio, C, et al. 2014. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep 9: 12191227.CrossRefGoogle ScholarPubMed
Braun, CJ, Bruno, PM, Horlbeck, MA, et al. 2016. Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proc Natl Acad Sci USA 113: E3892E3900.CrossRefGoogle ScholarPubMed
Brinster, RL, Chen, HY, Trumbauer, M, et al. 1981. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27: 223231.CrossRefGoogle ScholarPubMed
Buchholz, CJ, Friedel, T, Buning, H. 2015. Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends Biotechnol 33: 777790.CrossRefGoogle ScholarPubMed
Carbery, ID, Ji, D, Harrington, A, et al. 2010. Targeted genome modification in mice using zinc-finger nucleases. Genetics 186: 451459.CrossRefGoogle ScholarPubMed
Castro, NP, Fedorova-Abrams, ND, Merchant, AS, et al. 2015. Cripto-1 as a novel therapeutic target for triple negative breast cancer. Oncotarget 6: 1191011929.CrossRefGoogle ScholarPubMed
Chen, C, Liu, Y, Rappaport, AR, et al. 2014. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25: 652665.CrossRefGoogle ScholarPubMed
Chen, S, Sanjana, NE, Zheng, K, et al. 2015. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160: 12461260.CrossRefGoogle Scholar
Chen, Z, Cheng, K, Walton, Z, et al. 2012. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483: 613617.CrossRefGoogle ScholarPubMed
Chiou, SH, Winters, IP, Wang, J, et al. 2015. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev 29: 15761585.CrossRefGoogle ScholarPubMed
Cho, SW, Kim, S, Kim, Y, et al. 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24: 132141.CrossRefGoogle ScholarPubMed
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819823.CrossRefGoogle ScholarPubMed
Costantini, F, Lacy, E. 1981. Introduction of a rabbit beta-globin gene into the mouse germ line. Nature 294: 9294.CrossRefGoogle ScholarPubMed
Dean, DA, Machado-Aranda, D, Blair-Parks, K, Yeldandi, AV, Young, JL. 2003. Electroporation as a method for high-level nonviral gene transfer to the lung. Gene Ther 10: 16081615.CrossRefGoogle ScholarPubMed
Dow, LE, Fisher, J, O’Rourke, KP, et al. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33: 390394.CrossRefGoogle ScholarPubMed
Drost, J, Van Jaarsveld, RH, Ponsioen, B, et al. 2015. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521: 4347.CrossRefGoogle ScholarPubMed
Engelman, JA, Chen, L, Tan, X, et al. 2008. Effective use of PI3 K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047 R murine lung cancers. Nat Med 14: 13511356.CrossRefGoogle Scholar
Flemr, M, Buhler, M. 2015. Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep 12: 709716.CrossRefGoogle ScholarPubMed
Frese, KK, Tuveson, DA. 2007. Maximizing mouse cancer models. Nat Rev Cancer 7: 645658.CrossRefGoogle ScholarPubMed
Fujiki, H. 2014. Gist of Dr. Katsusaburo Yamagiwa’s papers entitled “Experimental study on the pathogenesis of epithelial tumors” (I to VI reports). Cancer Sci 105: 143149.CrossRefGoogle Scholar
Gelperina, S, Kisich, K, Iseman, MD, Heifets, L. 2005. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172: 14871490.CrossRefGoogle ScholarPubMed
Gilbert, LA, Horlbeck, MA, Adamson, B, et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159: 647661.CrossRefGoogle ScholarPubMed
Gordon, JW, Ruddle, FH. 1981. Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214: 12441246.CrossRefGoogle ScholarPubMed
Heckl, D, Kowalczyk, MS, Yudovich, D, et al. 2014. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 32: 941946.CrossRefGoogle ScholarPubMed
Hong, AL, Tseng, YY, Cowley, GS, et al. 2016. Integrated genetic and pharmacologic interrogation of rare cancers. Nat Commun 7: 11987.CrossRefGoogle ScholarPubMed
Hutchinson, JN, Muller, WJ. 2000. Transgenic mouse models of human breast cancer. Oncogene 19: 61306137.CrossRefGoogle ScholarPubMed
Li, F, Cowley, DO, Banner, D, et al. 2014. Efficient genetic manipulation of the NOD-Rag1-/-IL2RgammaC-null mouse by combining in vitro fertilization and CRISPR/Cas9 technology. Sci Rep 4: 5290.CrossRefGoogle ScholarPubMed
Li, T, Huang, S, Jiang, WZ, et al. 2011. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39: 359372.CrossRefGoogle ScholarPubMed
Li, W, Teng, F, Li, T, Zhou, Q. 2013. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol 31: 684686.CrossRefGoogle ScholarPubMed
Li, Y, Park, AI, Mou, H, et al. 2015. A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biol 16: 111.CrossRefGoogle ScholarPubMed
Lok, BH, Gardner, EE, Schneeberger, VE, et al. 2016. PARP inhibitor activity correlates with SLFN11 expression and demonstrates synergy with temozolomide in small cell lung cancer. Clin Cancer Res 23(2): 523535.CrossRefGoogle ScholarPubMed
Macleod, KF, Jacks, T. 1999. Insights into cancer from transgenic mouse models. J Pathol 187: 4360.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Maddalo, D, Machado, E, Concepcion, CP, et al. 2014. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516: 423427.CrossRefGoogle ScholarPubMed
Malina, A, Mills, JR, Cencic, R, et al. 2013. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev 27: 26022614.CrossRefGoogle ScholarPubMed
Maresch, R, Mueller, S, Veltkamp, C, et al. 2016. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun 7: 10770.CrossRefGoogle ScholarPubMed
Maruyama, T, Dougan, SK, Truttmann, MC, et al. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33: 538542.CrossRefGoogle ScholarPubMed
Matano, M, Date, S, Shimokawa, M, et al. 2015. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21: 256262.CrossRefGoogle ScholarPubMed
Nihongaki, Y, Yamamoto, S, Kawano, F, Suzuki, H, Sato, M. 2015. CRISPR-Cas9-based photoactivatable transcription system. Chem Biol 22: 169174.CrossRefGoogle ScholarPubMed
Niu, Y, Shen, B, Cui, Y, et al. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156: 836843.CrossRefGoogle ScholarPubMed
O’Connell, MR, Oakes, BL, Sternberg, SH, et al. 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516: 263266.CrossRefGoogle ScholarPubMed
Olive, KP, Tuveson, DA, Ruhe, ZC, et al. 2004. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119: 847860.CrossRefGoogle ScholarPubMed
Platt, RJ, Chen, S, Zhou, Y, et al. 2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159: 440455.CrossRefGoogle ScholarPubMed
Qi, LS, Larson, MH, Gilbert, LA, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 11731183.CrossRefGoogle ScholarPubMed
Quick, L, Young, R, Henrich, IC, et al. 2016. Jak1-STAT3 signals are essential effectors of the USP6/TRE17 oncogene in tumorigenesis. Cancer Res 76: 53375347.CrossRefGoogle ScholarPubMed
Ran, FA, Hsu, PD, Lin, CY, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 13801389.CrossRefGoogle ScholarPubMed
Sanchez-Rivera, FJ, Papagiannakopoulos, T, Romero, R, et al. 2014. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516: 428431.CrossRefGoogle ScholarPubMed
Shalem, O, Sanjana, NE, Hartenian, E, et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343: 8487.CrossRefGoogle ScholarPubMed
Shi, J, Wang, E, Milazzo, JP, et al. 2015. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 33: 661667.CrossRefGoogle ScholarPubMed
Shimkin, MB, Stoner, GD. 1975. Lung tumors in mice: application to carcinogenesis bioassay. Adv Cancer Res 21: 158.CrossRefGoogle ScholarPubMed
Sommer, D, Peters, AE, Baumgart, AK, Beyer, M. 2015. TALEN-mediated genome engineering to generate targeted mice. Chromosome Res 23: 4355.CrossRefGoogle ScholarPubMed
Stehelin, D, Varmus, HE, Bishop, JM, Vogt, PK. 1976. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260: 170173.CrossRefGoogle Scholar
Thun, MJ, Delancey, JO, Center, MM, Jemal, A, Ward, EM. 2010. The global burden of cancer: priorities for prevention. Carcinogenesis 31: 100110.CrossRefGoogle ScholarPubMed
Togashi, Y, Mizuuchi, H, Tomida, S, et al. 2015. MET gene exon 14 deletion created using the CRISPR/Cas9 system enhances cellular growth and sensitivity to a MET inhibitor. Lung Cancer 90: 590597.CrossRefGoogle ScholarPubMed
Torres, R, Martin, MC, Garcia, A, et al. 2014. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun 5: 3964.CrossRefGoogle ScholarPubMed
Valton, J, Dupuy, A, Daboussi, F, et al. 2012. Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287: 3842738432.CrossRefGoogle ScholarPubMed
Vojta, A, Dobrinic, P, Tadic, V, et al. 2016. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44: 56155628.CrossRefGoogle ScholarPubMed
Walrath, JC, Hawes, JJ, Van Dyke, T, Reilly, KM. 2010. Genetically engineered mouse models in cancer research. Adv Cancer Res 106: 113164.CrossRefGoogle ScholarPubMed
Wang, H, Yang, H, Shivalila, CS, et al. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153: 910918.CrossRefGoogle ScholarPubMed
Weber, J, Ollinger, R, Friedrich, M, et al. 2015. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc Natl Acad Sci USA 112: 1398213987.CrossRefGoogle ScholarPubMed
Xiao, A, Wang, Z, Hu, Y, et al. 2013. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41: e141.CrossRefGoogle ScholarPubMed
Xue, W, Chen, S, Yin, H, et al. 2014. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514: 380384.CrossRefGoogle ScholarPubMed
Yang, H, Wang, H, Shivalila, CS, et al. 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154: 13701379.CrossRefGoogle ScholarPubMed
Zuckermann, M, Hovestadt, V, Knobbe-Thomsen, CB, et al. 2015. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun 6: 7391.CrossRefGoogle ScholarPubMed
Zuris, JA, Thompson, DB, Shu, Y, et al. 2015. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33: 7380.CrossRefGoogle ScholarPubMed

References

Banaszynski, LA, Chen, LC, Maynard-Smith, LA, Ooi, AG, Wandless, TJ. 2006. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126(5): 9951004.CrossRefGoogle ScholarPubMed
Banaszynski, LA, Sellmyer, MA, Contag, CH, Wandless, TJ, Thorne, SH. 2008. Chemical control of protein stability and function in living mice. Nat Med 14(10): 11231127.CrossRefGoogle ScholarPubMed
Bell, JB, Podetz-Pedersen, KM, Aronovich, EL, et al. 2007. Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection. Nat Protoc 2(12): 31533165.CrossRefGoogle ScholarPubMed
Boj, SF, Hwang, CI, Baker, LA, et al. 2015. Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1–2): 324338.CrossRefGoogle ScholarPubMed
Bonger, KM, Chen, LC, Liu, CW, Wandless, TJ. 2011. Small-molecule displacement of a cryptic degron causes conditional protein degradation. Nat Chem Biol 7(8): 531537.CrossRefGoogle ScholarPubMed
Chavez, A, Scheiman, J, Vora, S, et al. 2015. Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12(4): 326328.CrossRefGoogle ScholarPubMed
Clackson, T, Yang, W, Rozamus, LW, et al. 1998. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci USA 95(18): 1043710442.CrossRefGoogle ScholarPubMed
Davis, KM, Pattanayak, V, Thompson, DB, Zuris, JA, Liu, DR. 2015. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol 11(5): 316318.CrossRefGoogle ScholarPubMed
Doudna, JA, Charpentier, E. 2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346(6213): 1258096.CrossRefGoogle ScholarPubMed
Doudna, JA, Sontheimer, EJ. 2014. Methods in enzymology. The use of CRISPR/Cas9, ZFNs, and TALENs in generating site-specific genome alterations. Preface. Methods Enzymol 546: xixxx.CrossRefGoogle ScholarPubMed
Dow, LE, Fisher, J, O’Rourke, KP, et al. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33(4): 390394.CrossRefGoogle ScholarPubMed
Dow, LE, Lowe, SW. 2012.Life in the fast lane: mammalian disease models in the genomics era. Cell 148(6): 10991109.CrossRefGoogle ScholarPubMed
DuPage, M, Dooley, AL, Jacks, T. 2009. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 4(7): 10641072.CrossRefGoogle ScholarPubMed
Dutta, A, Stillman, B. 1992. cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J 11(6): 21892199.CrossRefGoogle ScholarPubMed
Hanahan, D, Weinberg, RA. 2011. Hallmarks of cancer: the next generation. Cell 144(5): 646674.CrossRefGoogle ScholarPubMed
Iwamoto, M, Bjorklund, T, Lundberg, C, Kirik, D, Wandless, TJ. 2010. A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol 17(9): 981988.CrossRefGoogle ScholarPubMed
Jinek, M, Chylinski, K, Fonfara, I, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096): 816821.CrossRefGoogle ScholarPubMed
Konermann, S, Brigham, MD, Trevino, AE, et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536): 583588.CrossRefGoogle ScholarPubMed
Maddalo, D, Manchado, E, Concepcion, CP, et al. 2014. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516(7531): 423427.CrossRefGoogle ScholarPubMed
McJunkin, K, Mazurek, A, Premsrirut, PK, et al. 2011. Reversible suppression of an essential gene in adult mice using transgenic RNA interference. Proc Natl Acad Sci USA 108(17): 71137118.CrossRefGoogle ScholarPubMed
Nihongaki, Y, Kawano, F, Nakajima, T, Sato, M. 2015. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 33(7): 755760.CrossRefGoogle ScholarPubMed
Platt, RJ, Chen, S, Zhou, Y, et al. 2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2): 440455.CrossRefGoogle ScholarPubMed
Premsrirut, PK, Dow, LE, Kim, SY, et al. 2011. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145(1): 145158.CrossRefGoogle ScholarPubMed
Senturk, S, Shirole, NH, Nowak, DG, et al. 2017. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nat Commun 8: 14370.CrossRefGoogle ScholarPubMed
Shi, J, Wang, E, Milazzo, JP, et al. 2015. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 33(6): 661667.CrossRefGoogle ScholarPubMed
Singh, P, Schimenti, JC, Bolcun-Filas, E. 2015. A mouse geneticist’s practical guide to CRISPR applications. Genetics 199(1): 115.CrossRefGoogle ScholarPubMed
Sternberg, SH, Redding, S, Jinek, M, Greene, EC, Doudna, JA. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490): 6267.CrossRefGoogle ScholarPubMed
Swiech, L, Heidenreich, M, Banerjee, A, et al. 2015. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33(1): 102106.CrossRefGoogle ScholarPubMed
Tyner, SD, Venkatachalam, S, Choi, J, et al. 2002. p53 mutant mice that display early ageing-associated phenotypes. Nature 415(6867): 4553.CrossRefGoogle ScholarPubMed
Utomo, AR, Nikitin, AY, Lee, WH. 1999. Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat Biotechnol 17(11): 10911096.CrossRefGoogle ScholarPubMed
Ventura, A, Kirsch, DG, McLaughlin, ME, et al. 2007. Restoration of p53 function leads to tumour regression in vivo. Nature 445(7128): 661665.CrossRefGoogle ScholarPubMed
Wang, T, Birsoy, K, Hughes, NW, et al. 2015. Identification and characterization of essential genes in the human genome. Science 350(6264): 10961101.CrossRefGoogle ScholarPubMed
Wright, AV, Nunez, JK, Doudna, JA. 2016. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164(1–2): 2944.CrossRefGoogle Scholar
Wright, AV, Sternberg, SH, Taylor, DW, et al. 2015. Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci USA 112(10): 29842989.CrossRefGoogle ScholarPubMed
Xue, W, Chen, S, Yin, H, et al. 2014. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514(7522): 380384.CrossRefGoogle ScholarPubMed
Yang, H, Wang, H, Jaenisch, R. 2014. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9(8): 19561968.CrossRefGoogle ScholarPubMed
Yang, H, Wang, H, Shivalila, CS, et al. 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6): 13701379.CrossRefGoogle ScholarPubMed
Yao, Z, Fenoglio, S, Gao, DC, et al. 2010. TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci USA 107(35): 1553515540.CrossRefGoogle ScholarPubMed
Zou, L, Elledge, SJ. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300(5625): 15421548.CrossRefGoogle ScholarPubMed
Zou, Y, Liu, Y, Wu, X, Shell, SM. 2006. Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 208(2): 267273.CrossRefGoogle ScholarPubMed
Zuber, J, Shi, J, Wang, E, et al. 2011. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478(7370): 524528.CrossRefGoogle ScholarPubMed

References

Azvolinsky, A. 2015. Gene therapy “cure” for blindness wanes. Nat Biotechnol 33: 678.CrossRefGoogle ScholarPubMed
Bainbridge, JW, Stephens, C, Parsley, K, et al. 2001. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther 8: 16651668.CrossRefGoogle Scholar
Bakondi, B, Lv, W, Lu, B, et al. 2016. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24: 556563.CrossRefGoogle ScholarPubMed
Berger, W, Kloeckener-Gruissem, B, Neidhardt, J. 2010. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 29: 335375.CrossRefGoogle ScholarPubMed
Botta, S, Marrocco, E, De Prisco, N, et al. 2016. Rhodopsin targeted transcriptional silencing by DNA-binding. Elife 5: e12242.CrossRefGoogle ScholarPubMed
Burnight, ER, Wiley, LA, Drack, AV, et al. 2014. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype. Gene Ther 21: 662672.CrossRefGoogle ScholarPubMed
Cajal, SRY. 1892. La Rétine des Vértebrés (La Cellule, English Trans.; S. Thorpe and M. Glickstein, trans., 1972). Springfield, IL: Charles C. Thomas.Google Scholar
Craige, B, Tsao, CC, Diener, DR, et al. 2010. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 190: 927940.CrossRefGoogle Scholar
Da Cruz, L, Chen, FK, Ahmado, A, Greenwood, J, Coffey, P. 2007. RPE transplantation and its role in retinal disease. Prog Retin Eye Res 26: 598635.CrossRefGoogle ScholarPubMed
Dalkara, D, Byrne, LC, Klimczak, RR, et al. 2013. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5: 189ra76.CrossRefGoogle ScholarPubMed
Dalkara, D, Goureau, O, Marazova, K, Sahel, JA. 2016. Let there be light: gene and cell therapy for blindness. Hum Gene Ther 27: 134147.CrossRefGoogle ScholarPubMed
Dalkara, D, Sahel, JA. 2014. Gene therapy for inherited retinal degenerations. C R Biol 337: 185192.CrossRefGoogle ScholarPubMed
Day, TP, Byrne, LC, Schaffer, DV, Flannery, JG. 2014. Advances in AAV vector development for gene therapy in the retina. Adv Exp Med Biol 801: 687693.CrossRefGoogle ScholarPubMed
Den Hollander, AI, Koenekoop, RK, Yzer, S, et al. 2006. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79: 556561.CrossRefGoogle ScholarPubMed
Dinculescu, A, Glushakova, L, Min, SH, Hauswirth, WW. 2005. Adeno-associated virus-vectored gene therapy for retinal disease. Hum Gene Ther 16: 649663.CrossRefGoogle ScholarPubMed
Dong, B, Nakai, H, Xiao, W. 2010. Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 18: 8792.CrossRefGoogle ScholarPubMed
Doudna, JA, Charpentier, E. 2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.CrossRefGoogle ScholarPubMed
Drivas, TG, Holzbaur, EL, Bennett, J. 2013. Disruption of CEP290 microtubule/membrane-binding domains causes retinal degeneration. J Clin Invest 123: 45254539.CrossRefGoogle ScholarPubMed
Dryja, TP, McGee, TL, Hahn, LB, et al. 1990a. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N Engl J Med 323: 13021307.CrossRefGoogle ScholarPubMed
Dryja, TP, McGee, TL, Reichel, E, et al. 1990b. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343: 364366.CrossRefGoogle ScholarPubMed
Dyka, FM, Boye, SL, Chiodo, VA, Hauswirth, WW, Boye, SE. 2014. Dual adeno-associated virus vectors result in efficient in vitro and in vivo expression of an oversized gene, MYO7A. Hum Gene Ther Methods 25: 166177.CrossRefGoogle ScholarPubMed
Fine, EJ, Appleton, CM, White, DE, et al. 2015. Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Sci Rep 5: 10777.CrossRefGoogle ScholarPubMed
Fonfara, I, Le Rhun, A, Chylinski, K, et al. 2014. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42: 25772590.CrossRefGoogle ScholarPubMed
Friedland, AE, Baral, R, Singhal, P, et al. 2015. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 16: 257.CrossRefGoogle ScholarPubMed
Gaj, T, Epstein, BE, Schaffer, DV. 2016. Genome engineering using adeno-associated virus: basic and clinical research applications. Mol Ther 24: 458464.CrossRefGoogle ScholarPubMed
Gorbatyuk, MS, Pang, JJ, Thomas, J Jr., Hauswirth, WW, Lewin, AS. 2005. Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach. Mol Vis 11: 648656.Google ScholarPubMed
Gregory-Evans, K, Bashar, AM, Tan, M. 2012. Ex vivo gene therapy and vision. Curr Gene Ther 12: 103115.CrossRefGoogle ScholarPubMed
Hou, Z, Zhang, Y, Propson, NE, et al. 2013. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA 110(39): 1564415649.CrossRefGoogle ScholarPubMed
Hsu, PD, Lander, ES, Zhang, F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 12621278.CrossRefGoogle Scholar
Jain, D, Singh, K, Chirumamilla, S, et al. 2010. Ocular MECP2 protein expression in patients with and without Rett syndrome. Pediatr Neurol 43: 3540.CrossRefGoogle ScholarPubMed
Jaskula-Ranga, V, Zack, DJ. 2016. grID: a CRISPR-Cas9 guide RNA database and resource for genome-editing. bioRxiv, 097352.Google Scholar
Kamao, H, Mandai, M, Okamoto, S, et al. 2014. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2: 205218.CrossRefGoogle ScholarPubMed
Kiang, AS, Palfi, A, Ader, M, et al. 2005. Toward a gene therapy for dominant disease: validation of an RNA interference-based mutation-independent approach. Mol Ther 12: 555561.CrossRefGoogle Scholar
Kleinstiver, BP, Pattanayak, V, Prew, MS, et al. 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587): 490495.CrossRefGoogle ScholarPubMed
Komor, AC, Badran, AH, Liu, DR. 2017. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168: 2036.CrossRefGoogle ScholarPubMed
Latella, MC, Di Salvo, MT, Cocchiarella, F, et al. 2016. In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina. Mol Ther Nucleic Acids 5: e389.CrossRefGoogle ScholarPubMed
Liang, Y, Fotiadis, D, Maeda, T, et al. 2004. Rhodopsin signaling and organization in heterozygote rhodopsin knockout mice. J Biol Chem 279: 4818948196.CrossRefGoogle ScholarPubMed
Lipinski, DM, Barnard, AR, Charbel Issa, P, et al. 2014. Vesicular stomatitis virus glycoprotein- and Venezuelan equine encephalitis virus-derived glycoprotein-pseudotyped lentivirus vectors differentially transduce corneal endothelium, trabecular meshwork, and human photoreceptors. Hum Gene Ther 25: 5062.CrossRefGoogle ScholarPubMed
Maeder, ML, Gersbach, CA. 2016. Genome-editing technologies for gene and cell therapy. Mol Ther 24: 430446.CrossRefGoogle ScholarPubMed
Maguire, AM, Simonelli, F, Pierce, EA, et al. 2008. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358: 22402248.CrossRefGoogle ScholarPubMed
Millington-Ward, S, Chadderton, N, O’Reilly, M, et al. 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19: 642649.CrossRefGoogle Scholar
Moser, RJ, Hirsch, ML. 2016. AAV vectorization of DSB-mediated gene editing technologies. Curr Gene Ther 16: 207219.CrossRefGoogle ScholarPubMed
Mussolino, C, Sanges, D, Marrocco, E, et al. 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol Med 3: 118128.CrossRefGoogle Scholar
O’Reilly, M, Palfi, A, Chadderton, N, et al. 2007. RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet 81: 127135.CrossRefGoogle ScholarPubMed
Olsson, JE, Gordon, JW, Pawlyk, BS, et al. 1992. Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron 9: 815830.CrossRefGoogle ScholarPubMed
Perez, VL, Saeed, AM, Tan, Y, Urbieta, M, Cruz-Guilloty, F. 2013. The eye: a window to the soul of the immune system. J Autoimmun 45: 714.CrossRefGoogle Scholar
Petrs-Silva, H, Dinculescu, A, Li, Q, et al. 2011. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 19: 293301.CrossRefGoogle ScholarPubMed
Puppo, A, Cesi, G, Marrocco, E, et al. 2014. Retinal transduction profiles by high-capacity viral vectors. Gene Ther 21: 855865.CrossRefGoogle ScholarPubMed
Ran, FA, Cong, L, Yan, WX, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546): 186191.CrossRefGoogle ScholarPubMed
Reichel, MB, Ali, RR, Thrasher, AJ, et al. 1998. Immune responses limit adenovirally mediated gene expression in the adult mouse eye. Gene Ther 5: 10381046.CrossRefGoogle ScholarPubMed
Rothe, M, Schambach, A, Biasco, L. 2014. Safety of gene therapy: new insights to a puzzling case. Curr Gene Ther 14: 429436.CrossRefGoogle ScholarPubMed
Samulski, RJ, Muzyczka, N. 2014. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 1: 427451.CrossRefGoogle ScholarPubMed
Schimmer, J, Breazzano, S. 2015. Investor outlook: significance of the positive LCA2 gene therapy phase III results. Hum Gene Ther Clin Dev 26: 208210.CrossRefGoogle ScholarPubMed
Scholl, HP, Strauss, RW, Singh, MS, et al. 2016. Emerging therapies for inherited retinal degeneration. Sci Transl Med 8: 368rv6.CrossRefGoogle ScholarPubMed
Schwartz, SD, Hubschman, JP, Heilwell, G, et al. 2012. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379: 713720.CrossRefGoogle ScholarPubMed
Schwartz, SD, Regillo, CD, Lam, BL, et al. 2015. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385: 509516.CrossRefGoogle ScholarPubMed
Seo, S, Mullins, RF, Dumitrescu, AV, et al. 2013. Subretinal gene therapy of mice with Bardet-Biedl syndrome type 1. Invest Ophthalmol Vis Sci 54: 61186132.CrossRefGoogle ScholarPubMed
Slaymaker, IM, Gao, L, Zetsche, B, et al. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351: 8488.CrossRefGoogle ScholarPubMed
Song, C, Feodorova, Y, Guy, J, et al. 2014. DNA methylation reader MECP2: cell type- and differentiation stage-specific protein distribution. Epigenetics Chromatin 7: 17.CrossRefGoogle ScholarPubMed
Staahl, BT, Benekareddy, M, Coulon-Bainier, C., et al. 2017. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol 35(5): 431434.CrossRefGoogle ScholarPubMed
Stilwell, JL, Samulski, RJ. 2004. Role of viral vectors and virion shells in cellular gene expression. Mol Ther 9: 337346.CrossRefGoogle ScholarPubMed
Streilein, JW. 2003. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3: 879889.CrossRefGoogle ScholarPubMed
Swiech, L, Heidenreich, M, Banerjee, A, et al. 2015. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33: 102106.CrossRefGoogle ScholarPubMed
Tan, E, Wang, Q, Quiambao, AB, et al. 2001. The relationship between opsin overexpression and photoreceptor degeneration. Invest Ophthalmol Vis Sci 42: 589600.Google ScholarPubMed
Thompson, DA, Ali, RR, Banin, E, et al. 2015. Advancing therapeutic strategies for inherited retinal degeneration: recommendations from the Monaciano Symposium. Invest Ophthalmol Vis Sci 56: 918931.CrossRefGoogle ScholarPubMed
Truong, DJ, Kuhner, K, Kuhn, R, et al. 2015. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res 43: 64506458.CrossRefGoogle ScholarPubMed
Tsang, WY, Bossard, C, Khanna, H, et al. 2008. CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Dev Cell 15: 187197.CrossRefGoogle ScholarPubMed
Wang, L, Li, F, Dang, L, et al. 2016. In vivo delivery systems for therapeutic genome editing. Int J Mol Sci 17(5): E626.CrossRefGoogle ScholarPubMed
Watanabe, S, Sanuki, R, Ueno, S, et al. 2013. Tropisms of AAV for subretinal delivery to the neonatal mouse retina and its application for in vivo rescue of developmental photoreceptor disorders. PLoS One 8: e54146.CrossRefGoogle Scholar
Willett, K, Bennett, J. 2013. Immunology of AAV-mediated gene transfer in the eye. Front Immunol 4: 261.CrossRefGoogle ScholarPubMed
Williams, DR. 2011. Imaging single cells in the living retina. Vision Res 51: 13791396.CrossRefGoogle ScholarPubMed
Wu, Z, Yang, H, Colosi, P. 2010. Effect of genome size on AAV vector packaging. Mol Ther 18: 8086.CrossRefGoogle ScholarPubMed
Yanez-Munoz, RJ, Balaggan, KS, MacNeil, A, et al. 2006. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12: 348353.CrossRefGoogle ScholarPubMed

References

Anderson, DM, Anderson, KM, Chang, CL, et al. 2015. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160(4): 595606.CrossRefGoogle ScholarPubMed
Andrews, SJ, Rothnagel, JA. 2014. Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 15(3): 193204.CrossRefGoogle ScholarPubMed
Aparicio-Prat, E, Arnan, C, Sala, I, et al. 2015. DECKO: single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs. BMC Genomics 16(1): 846.CrossRefGoogle ScholarPubMed
Bartel, DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2): 281297.CrossRefGoogle ScholarPubMed
Bassett, AR, Akhtar, A, Barlow, DP, et al. 2014. Considerations when investigating lncRNA function in vivo. eLife 3: e03058.CrossRefGoogle ScholarPubMed
Bond, AM, Vangompel, MJ, Sametsky, EA, et al. 2009. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 12(8): 10201027.CrossRefGoogle ScholarPubMed
Bondue, A, Lapouge, G, Paulissen, C, et al. 2008. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3(1): 6984.CrossRefGoogle ScholarPubMed
Bu, D, Yu, K, Sun, S, et al. 2012. NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res 40(Database issue): D210D215.CrossRefGoogle ScholarPubMed
Canver, MC, Bauer, DE, Dass, A, et al. 2014. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem 289(31): 2131221324.CrossRefGoogle ScholarPubMed
Chu, C, Qu, K, Zhong, FL, Artandi, SE, Chang, HY. 2011. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44(4): 667678.CrossRefGoogle ScholarPubMed
Congrains, A, Kamide, K, Oguro, R, et al. 2012. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis 220(2): 449455.CrossRefGoogle ScholarPubMed
da Rocha, ST, Edwards, CA, Ito, M, Ogata, T, Ferguson-Smith, AC. 2008. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 24(6): 306316.CrossRefGoogle ScholarPubMed
Djebali, S, Davis, CA, Merkel, A, et al. 2012. Landscape of transcription in human cells. Nature 489(7414): 101108.CrossRefGoogle ScholarPubMed
Engreitz, JM, Pandya-Jones, A, McDonel, P, et al. 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341(6147): 12379731237973.CrossRefGoogle ScholarPubMed
Engreitz, JM, Sirokman, K, McDonel, P, et al. 2014. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell 159(1): 188199.CrossRefGoogle ScholarPubMed
Farazi, TA, Hoell, JI, Morozov, P, Tischl, T. 2013. MicroRNAs in human cancer. In MicroRNA Cancer Regulation, Schmitz, U, Wolkenhauer, O, Vera, J, eds., Dordrecht, the Netherlands: Springer, pp. 120.Google Scholar
Feng, Y, Hu, X, Zhang, Y, et al. 2014. Methods for the study of long noncoding RNA in cancer cell signaling. Methods Mol Biol 1165: 115143.CrossRefGoogle Scholar
Gagnon, KT, Li, L, Chu, Y, et al. 2014. RNAi factors are present and active in human cell nuclei. Cell Rep 6(1): 211221.CrossRefGoogle ScholarPubMed
Gilbert, C, Svejstrup, JQ. 2006. RNA immunoprecipitation for determining RNA-protein associations in vivo. Curr Protoc Mol Biology Chapter 27: Unit 27.4.CrossRefGoogle Scholar
Gilbert, LA, Larson, MH, Morsut, L, et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2): 442451.CrossRefGoogle ScholarPubMed
Goff, LA, Rinn, JL. 2015. Linking RNA biology to lncRNAs. Genome Res 25(10): 14561465.CrossRefGoogle ScholarPubMed
Grote, P, Wittler, L, Hendrix, D, et al. 2013. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24(2): 206214.CrossRefGoogle ScholarPubMed
Gutschner, T. 2015. Silencing long noncoding RNAs with genome-editing tools. Methods Mol Biol 1239: 241250.CrossRefGoogle ScholarPubMed
Gutschner, T, Baas, M, Diederichs, S. 2011. Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Res 21(11): 19441954.CrossRefGoogle ScholarPubMed
Gutschner, T, Hämmerle, M, Eissmann, M, et al. 2013. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73(3): 11801189.CrossRefGoogle ScholarPubMed
Han, J, Zhang, J, Chen, L, et al. 2014a. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol 11(7): 829835.CrossRefGoogle ScholarPubMed
Han, P, Li, W, Lin, CH, et al. 2014b. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514(7520): 102106.CrossRefGoogle ScholarPubMed
He, S, Liu, C, Skogerbø, G, et al. 2008. NONCODE v2.0: decoding the non-coding. Nucleic Acids Res 36(Database issue): D170D172.CrossRefGoogle ScholarPubMed
Hill, JA, Olson, EN. 2008. Cardiac plasticity. N Engl J Med 358(13): 13701380.CrossRefGoogle ScholarPubMed
Ho, T-T, Zhou, N, Huang, J, et al. 2015. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res 43(3): e17.CrossRefGoogle ScholarPubMed
Holdt, LM, Beutner, F, Scholz, M, et al. 2010. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscl Thromb Vasc Biol 30(3): 620627.CrossRefGoogle ScholarPubMed
Hwang, H-WH, Mendell, JTJ. 2006. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94(6): 776780.CrossRefGoogle ScholarPubMed
Kapranov, P, Cheng, J, Dike, S, et al. 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830): 14841488.CrossRefGoogle Scholar
Katayama, S, Tomaru, Y, Kasukawa, T, et al. 2005. Antisense transcription in the mammalian transcriptome. Science 309(5740): 15641566.CrossRefGoogle ScholarPubMed
Khalil, AM, Guttman, M, Huarte, M, et al. 2009. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106(28): 1166711672.CrossRefGoogle ScholarPubMed
Klattenhoff, CA, Scheuermann, JC, Surface, LE, et al. 2013. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152(3): 570583.CrossRefGoogle ScholarPubMed
Kotzin, JJ, Spencer, SP, McCright, SJ, et al. 2016. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537(7619): 239243.CrossRefGoogle Scholar
Latos, PA, Pauler, FM, Koerner, MV, et al. 2012. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2 r silencing. Science 338(6113): 14691472.CrossRefGoogle ScholarPubMed
Lee, S, Kopp, F, Chang, TC, et al. 2016. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164(1–2): 6980.CrossRefGoogle ScholarPubMed
Leucci, E, Vendramin, R, Spinazzi, M, et al. 2016. Melanoma addiction to the long non-coding RNA SAMMSON. Nature 531(7595): 518522.CrossRefGoogle Scholar
Libby, P, Ridker, PM, Hansson, GK. 2011. Progress and challenges in translating the biology of atherosclerosis. Nature 473(7347): 317325.CrossRefGoogle ScholarPubMed
Liu, C, Bai, B, Skogerbø, G, et al. 2005. NONCODE: an integrated knowledge database of non-coding RNAs. Nucleic Acids Res 33(Database issue): D112D115.CrossRefGoogle ScholarPubMed
Maeder, ML, Linder, SJ, Cascio, VM, et al. 2013. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10(10): 977979.CrossRefGoogle ScholarPubMed
Michalik, KM, You, X, Manavski, Y, et al. 2014. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114(9): 13891397.CrossRefGoogle ScholarPubMed
Moore, CB, Guthrie, EH, Huang, MT, Taxman, DJ. 2010. Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. Methods Mol Biol 629: 141158.Google ScholarPubMed
Okazaki, Y, Furuno, M, Kasukawa, T, et al. 2002. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420(6915): 563573.Google Scholar
Ounzain, S, Micheletti, R, Arnan, C, et al. 2015. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J Mol Cell Cardiol 89(Pt A): 98112.CrossRefGoogle Scholar
Palmer, AC, Egan, JB, Shearwin, KE. 2011. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors. Transcription 2(1): 914.CrossRefGoogle ScholarPubMed
Perez-Pinera, P, Kocak, DD, Vockley, CM, et al. 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10(10): 973976.CrossRefGoogle ScholarPubMed
Quinn, JJ, Ilik, IA, Qu, K, et al. 2014. Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat Biotechnol 32(9): 933940.CrossRefGoogle ScholarPubMed
Ran, FA, Hsu, PD, Lin, CY, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6): 13801389.CrossRefGoogle ScholarPubMed
Rinn, JL, Chang, HY. 2012. Genome regulation by long noncoding RNAs. Annu Rev Biochem 81(1): 145166.CrossRefGoogle ScholarPubMed
Royo, H, Cavaillé, J. 2008. Non-coding RNAs in imprinted gene clusters. Biol Cell 100(3): 149166.CrossRefGoogle ScholarPubMed
Sallam, T, Jones, MC, Gilliland, T, et al. 2016. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature 534(7605): 124128.CrossRefGoogle ScholarPubMed
Samani, NJ, Erdmann, J, Hall, AS, et al. 2007. Genomewide association analysis of coronary artery disease. N Engl J Med 357(5): 443453.CrossRefGoogle ScholarPubMed
Sander, JD, Joung, JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4): 347355.CrossRefGoogle ScholarPubMed
Sauvageau, M, Goff, LA, Lodato, S, et al. 2013. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2: e01749.CrossRefGoogle ScholarPubMed
Sleutels, F, Zwart, R, Barlow, DP. 2002. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415(6873): 810813.CrossRefGoogle ScholarPubMed
Uchida, S, Dimmeler, S. 2015. Long noncoding RNAs in cardiovascular diseases. Circ Res 116(4): 737750.CrossRefGoogle ScholarPubMed
Viereck, J, Kumarswamy, R, Foinquinos, A, et al. 2016. Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Medicine 8(326): 326ra22.CrossRefGoogle ScholarPubMed
Wang, K, Liu, F, Zhou, LY, et al. 2014. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114(9): 13771388.CrossRefGoogle Scholar
Wang, Z, Zhang, XJ, Ji, YX, et al. 2016. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22(10): 11311139.CrossRefGoogle Scholar
Ward, LD, Kellis, M. 2012. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40(Database issue): D930D934.CrossRefGoogle ScholarPubMed
Washietl, S, Kellis, M, Garber, M. 2014. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res 24(4): 616628.CrossRefGoogle ScholarPubMed
Xie, C, Yuan, J, Li, H, et al. 2014. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res 42(Database issue): D98D103.CrossRefGoogle ScholarPubMed
Xue, Z, Hennelly, S, Doyle, B, et al. 2016. A G-rich motif in the lncRNA braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol Cell 64(1): 3750.CrossRefGoogle ScholarPubMed
Zelcer, N, Tontonoz, P. 2006. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 116(3): 607614.CrossRefGoogle ScholarPubMed
Zhang, B, Arun, G, Mao, YS, et al. 2012. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2(1): 111123.CrossRefGoogle Scholar
Zhao, Y, Li, H, Fang, S, et al. 2016. NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 44(D1): D203D208.CrossRefGoogle ScholarPubMed

References

Akkina, R. 2013. New generation humanized mice for virus research: comparative aspects and future prospects. Virology 435: 1428.CrossRefGoogle ScholarPubMed
Anderson, J, Li, MJ, Palmer, B, et al. 2007. Safety and efficacy of a lentiviral vector containing three anti-HIV genes – CCR5 ribozyme, tat-rev siRNA, and TAR decoy – in SCID-hu mouse-derived T cells. Mol Ther 15: 11821188.CrossRefGoogle ScholarPubMed
Berkhout, B. 2004. RNA interference as an antiviral approach: targeting HIV-1. Curr Opin Mol Ther 6: 141145.Google ScholarPubMed
Bobbin, ML, Burnett, JC, Rossi, JJ. 2015. RNA interference approaches for treatment of HIV-1 infection. Genome Med 7: 50.CrossRefGoogle ScholarPubMed
Choi, JG, Dang, Y, Abraham, S, et al. 2016. Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther 23: 627633.CrossRefGoogle ScholarPubMed
Hou, P, Chen, S, Wang, S, et al. 2015. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep 5: 15577.CrossRefGoogle ScholarPubMed
Kaminski, R, Bella, R, Yin, C, et al. 2016a. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther 23: 696.CrossRefGoogle ScholarPubMed
Kaminski, R, Chen, Y, Salkind, J, et al. 2016b. Negative feedback regulation of HIV-1 by gene editing strategy. Sci Rep 6: 31527.CrossRefGoogle ScholarPubMed
Keefe, AD, Pai, S, Ellington, A. 2010. Aptamers as therapeutics. Nat Rev Drug Disc 9: 537550.CrossRefGoogle ScholarPubMed
Kim, SS, Peer, D, Kumar, P, et al. 2010. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther 18: 370376.CrossRefGoogle ScholarPubMed
Kumar, P, Ban, HS, Kim, SS, et al. 2008. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134: 577586.CrossRefGoogle ScholarPubMed
Li, L, Krymskaya, L, Wang, J, et al. 2013. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther 21: 12591269.CrossRefGoogle ScholarPubMed
Liang, C, Wainberg, MA, Das, AT, Berkhout, B. 2016. CRISPR/Cas9: a double-edged sword when used to combat HIV infection. Retrovirology 13: 37.CrossRefGoogle ScholarPubMed
Limsirichai, P, Gaj, T, Schaffer, DV. 2016. CRISPR-mediated activation of latent HIV-1 expression. Mol Ther 24: 499507.CrossRefGoogle ScholarPubMed
Lin, A, Klase, Z. 2016. A CRISPR approach for reactivating latent HIV-1. Mol Ther 24: 416418.CrossRefGoogle ScholarPubMed
Maier, DA, Brennan, AL, Jiang, S, et al. 2013. Efficient clinical scale gene modification via zinc finger nuclease-targeted disruption of the HIV co-receptor CCR5. Hum Gene Ther 24: 245258.CrossRefGoogle ScholarPubMed
Malecova, B, Morris, KV. 2010. Transcriptional gene silencing through epigenetic changes mediated by non-coding RNAs. Curr Opin Mol Ther 12: 214222.Google ScholarPubMed
Mussolino, C, Morbitzer, R, Lutge, F, et al. 2011. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39: 92839293.CrossRefGoogle ScholarPubMed
Neff, CP, Zhou, J, Remling, L, et al. 2011. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci Transl Med 3: 66ra6.CrossRefGoogle ScholarPubMed
Perez, EE, Wang, J, Miller, JC, et al. 2008. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26: 808816.CrossRefGoogle ScholarPubMed
Saayman, SM, Lazar, DC, Scott, TA, et al. 2016. Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex. Mol Ther 24: 488498.CrossRefGoogle ScholarPubMed
Saayman, S, Roberts, TC, Morris, KV, Weinberg, MS. 2015. HIV latency and the noncoding RNA therapeutic landscape. Adv Exp Med Biol 848: 169189.CrossRefGoogle ScholarPubMed
Tebas, P, Stein, D, Tang, WW, et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370: 901910.CrossRefGoogle ScholarPubMed
Thiel, KW, Giangrande, PH. 2010. Intracellular delivery of RNA-based therapeutics using aptamers. Ther Del 1: 849861.CrossRefGoogle ScholarPubMed
Ueda, S, Ebina, H, Kanemura, Y, Misawa, N, Koyanagi, Y. 2016. Anti-HIV-1 potency of the CRISPR/Cas9 system insufficient to fully inhibit viral replication. Microbiol Immunol 60: 483496.CrossRefGoogle ScholarPubMed
Wang, G, Zhao, N, Berkhout, B, Das, AT. 2016a. CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther 24: 522526.CrossRefGoogle ScholarPubMed
Wang, Z, Pan, Q, Gendron, P, et al. 2016b. CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep 15: 481489.CrossRefGoogle ScholarPubMed
Whatley, AS, Ditzler, MA, Lange, MJ, et al. 2013. Potent inhibition of HIV-1 reverse transcriptase and replication by nonpseudoknot, “UCAA-motif” RNA aptamers. Mol Ther Nucleic Acids 2: e71.CrossRefGoogle ScholarPubMed
Wheeler, LA, Vrbanac, V, Trifonova, R, et al. 2013. Durable knockdown and protection from HIV transmission in humanized mice treated with gel-formulated CD4 aptamer-siRNA chimeras. Mol Ther 21: 13781389.CrossRefGoogle ScholarPubMed
Ye, L, Wang, J, Beyer, AI, et al. 2014. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA 111: 95919596.CrossRefGoogle Scholar
Yuan, J, Wang, J, Crain, K, et al. 2012. Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4(+) T cell resistance and enrichment. Mol Ther 20: 849859.CrossRefGoogle ScholarPubMed
Zhou, J, Satheesan, S, Li, H, et al. 2015. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity. Chem Biol 22: 379390.CrossRefGoogle ScholarPubMed
Zhou, J, Swiderski, P, Li, H, et al. 2009. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 37: 30943109.CrossRefGoogle ScholarPubMed
Zhu, W, Lei, R, Le Duff, Y, et al. 2015. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 12: 22.CrossRefGoogle ScholarPubMed

References

Abrahimi, P, Qin, L, Chang, WG, et al. 2016. Blocking MHC class II on human endothelium mitigates acute rejection. JCI Insight 1: e85293.CrossRefGoogle ScholarPubMed
Ahmad, G, Amiji, M. 2018. Use of CRISPR-Cas9 gene-editing tools for developing models in drug discovery. Drug Discov Today. Doi: 10.1016/j.drudis. 2018.01.04.CrossRefGoogle Scholar
Alagia, A, Eritja, R. 2016. siRNA and RNAi optimization. Wiley Interdiscipl Rev RNA 7: 316329.CrossRefGoogle ScholarPubMed
Assis, AF, Oliveira, EH, Donate, PB, et al. 2014. What is the transcriptome and how is it evaluated? In Passos, GA, ed., Transcriptomics in Health and Disease, Basel, Switzerland: Springer International Publishing, 344 pp.Google Scholar
Barré-Sinoussi, F, Chermann, JC, Rey, F, et al. 1983. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868871.CrossRefGoogle ScholarPubMed
Burnett, JC, Rossi, JJ, Tiemann, K. 2011. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6: 11301146.CrossRefGoogle ScholarPubMed
Chen, C, Liu, Y, Rappaport, AR, et al. 2014. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25: 652665.CrossRefGoogle ScholarPubMed
Chen, DS, Irving, BA, Hodi, FS. 2012. Molecular pathways: next-generation immunotherapy-inhibiting programmed death-ligand 1 and programmed death 1. Clin Cancer Res 18: 65806587.CrossRefGoogle ScholarPubMed
Chen, F, Wang, Y, Yuan, Y, et al. 2015. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas 9-mediated gene targeting. J Genet Genom 42: 437444.CrossRefGoogle Scholar
Cheong, T-C, Compagno, M, Chiarle, R. 2016. Editing of mouse and human immunoglobulin genes by CRISPR-Cas 9 system. Nat Comm 7: 10934.CrossRefGoogle Scholar
Chun, TW, Carrut, L, Finzi, D, et al. 1997. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387: 183188.CrossRefGoogle ScholarPubMed
Chun, TW, Justement, JS, Lempicki, RA, et al. 2003. Gene expression and viral production in latently infected, resting CD4+ T cells in viremic versus anemic HIV-infected individuals. Proc Natl Acad Sci USA 100: 19081913.CrossRefGoogle Scholar
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819823.CrossRefGoogle ScholarPubMed
Cyranoski, D. 2016. First trial of CRISPR in people: Chinese team approved to test gene-edited cells in people with lung cancer. Nature 535: 476477.CrossRefGoogle Scholar
Didigu, CA, Wilen, CB, Wang, J. 2014. Simultaneous zinc-finger nuclease editing of the HIV-1 coreceptors CCR5 and CXCR4 protects CD4+ T cells from HIV-1 infection. Blood 123: 6169.CrossRefGoogle ScholarPubMed
Doudna, JA, Charpentier, E. 2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas 9. Science 346: 1258096.CrossRefGoogle Scholar
Finzi, D, Hermankova, M, Pierson, T, et al. 1997. Identification of a reservoir for HIV-1 in patients in highly active antiretroviral therapy. Science 278: 12951300.CrossRefGoogle ScholarPubMed
Gallo, RC, Sarin, PS, Gelmann, EP, et al. 1983. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome. Science 220: 865867.CrossRefGoogle ScholarPubMed
Gilbert, LA, Horlbeck, MA, Adamson, B, et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159: 647661.CrossRefGoogle ScholarPubMed
Hall, B, Limaye, A, Kulkarni, AB. 2009. Overview: generation of gene knockout mice. Curr Protoc Cell Biol Chapter 19: Unit 19.12.19.12.1–17.CrossRefGoogle Scholar
Harrison, PT, Hart, S. 2017. A beginner’s guide to gene editing. Exp Physiol. Doi: 10.1113/EP086047.CrossRefGoogle Scholar
Heckl, D, Kowalczyk, MS, Yudovich, D, et al. 2014. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 32: 941946.CrossRefGoogle ScholarPubMed
Hermankova, M, Siliciano, JD, Zhou, Y, et al. 2003. Analysis of human immunodeficiency virus type 1 gene expression in latently infected resting CD4+ T lymphocytes in vivo. J Virol 77: 73887392.CrossRefGoogle ScholarPubMed
Hochheiser, K, Kueh, AJ, Gebhardt, T, et al. 2018. CRISPR-Cas9: a tool for immunological research. Eur J Immunol. Doi: 10.1002/eji.201747131.CrossRefGoogle Scholar
Hou, W, Fang, C, Liu, J, et al. 2015. Molecular insights into the inhibition of HIV-1 infection using a CD4 domain-1-specific monoclonal antibody. Antivir Res 122: 101111.CrossRefGoogle ScholarPubMed
Hsu, PD, Lander, ES, Zhang, F. 2014. Development and application of CRISPR-Cas9 for genome engineering. Cell 157: 12621278.CrossRefGoogle ScholarPubMed
Hu, W, Kaminski, R, Yang, F. et al. 2014. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA 111: 1146111466.CrossRefGoogle ScholarPubMed
Hütther, G, Nowak, D, Mossner, M, et al. 2009. Long-term control of HIV by CCR5 delta32/delta32 stem-cell transplantation. N Engl J Med 360: 692698.CrossRefGoogle Scholar
Jia, Y, Chen, L, Ma, Y, et al. 2015. To know how a gene works, we need to redefine it first but then, more importantly, to let the cell itself decide how to transcribe and process its RNAs. Int J Biol Sci 11: 14131423.CrossRefGoogle ScholarPubMed
Kaminski, R, Chen, Y, Fischer, T, et al. 2016. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas 9 gene editing. Sci Rep 6: 22555.CrossRefGoogle ScholarPubMed
Kang, H, Minder, P, Park, MA, et al. 2015. CCR-5 disruption in induced pluripotent stem cells using CRISPR/Cas 9 provides selective resistance of immune cells to CCR5-tropic HIV-1 virus. Mol Ther Nucleic Acids 4, e268.CrossRefGoogle Scholar
Kato, T, Takada, S. 2016. In vivo and in vitro disease modeling with CRISPR/Cas 9. Brief Funct Genom 2016: 112.Google Scholar
Kawai, T, Akira, S. 2010. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11: 373384.CrossRefGoogle ScholarPubMed
Khalili, K, Kaminski, R, Gordon, J, et al. 2015. Genome editing strategies: potential tools for eradicating HIV-1/AIDS. J Neurovirol 21: 310321.CrossRefGoogle ScholarPubMed
Kim, JM, Chen, DS. 2016. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol 27: 14921504.CrossRefGoogle Scholar
Kondo, T, Kawai, T, Akira, S. 2012. Dissecting negative regulation of toll-like receptor signaling. Trends Immunol 33: 449458.CrossRefGoogle ScholarPubMed
Li, C, Guan, X, Jin, W, et al. 2015. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas 9. J Gen Virol 96: 23812393.CrossRefGoogle Scholar
Liu, R, Paxton, WA, Choe, S, et al. 1996. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86: 367377.CrossRefGoogle ScholarPubMed
Mandal, PK, Ferreira, LM, Collins, R, et al. 2014. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas 9. Cell Stem Cell 15: 643652.CrossRefGoogle Scholar
Mali, P, Aach, J, Stranges, PB, et al. 2013a. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31: 833838.CrossRefGoogle ScholarPubMed
Mali, P, Yang, L, Esvelt, KM, et al. 2013b. RNA-guided human genome engineering via Cas9. Science 339: 823826.CrossRefGoogle ScholarPubMed
Malina, A, Mills, JR, Cencic, R, et al. 2013. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Devel 27: 26022614.CrossRefGoogle ScholarPubMed
Reardon, S. 2016. First CRISPR clinical trial gets green light from US panel: the technique’s first test in people could begin as early as the end of the year. Nature News, 22 June. Doi:10.1038/nature.2016.20137.CrossRefGoogle Scholar
Samson, M, Libert, F, Doranz, BJ, et al. 1996. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382: 722725.CrossRefGoogle ScholarPubMed
Sánchez-Rivera, FJ, Jacks, T. 2015. Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer 15: 387395.CrossRefGoogle ScholarPubMed
Sánchez-Rivera, FJ, Papagiannakopoulos, T, Romero, R, et al. 2014. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516: 428431.CrossRefGoogle ScholarPubMed
Schumann, K, Lin, S, Boyer, E, et al. 2015. Generation of knock-in primary human T cells using Cas 9 ribonucleoproteins. Proc Natl Acad Sci USA 112: 1043710442.CrossRefGoogle Scholar
Shalem, O, Sanjana, NE, Hartenian, E, et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343: 8487.CrossRefGoogle ScholarPubMed
Siliciano, JD, Kajdas, J, Finzi, D, et al. 2003. Long-term follow up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9: 727728.CrossRefGoogle ScholarPubMed
Su, S, Hu, B, Shao, J, et al. 2016. Crispr-Cas 9 medaited efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 6: 20070.CrossRefGoogle Scholar
Tang, S, Chen, T, Yu, Z, et al. 2014. RasGRP3 limits toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Comm 5: 4657.CrossRefGoogle ScholarPubMed
Tebas, P, Stein, D, Tang, W, et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV-1. N Engl J Med 370: 901910.CrossRefGoogle Scholar
Thurtle-Schmidt, DM, Lo, TW. 2018. Molecular biology at the cutting edge: a review on CRISPR-Cas9 gene editing for undergraduates. Biochem Mol Biol Educ. Doi: 10.1002/bmb.21108.CrossRefGoogle Scholar
Wang, G, Zhao, N, Berkhout, B, et al. 2016. CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther 24: 522526.CrossRefGoogle ScholarPubMed
Wong, JK, Hezaret, M, Günthard, HF, et al. 1997. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278: 12911295.CrossRefGoogle ScholarPubMed
Xia, P, Wang, S, Xiang, Z, et al. 2015. IRTKS negatively regulates antiviral immunity through PCBP2 sumoylation-mediated MAVS degradation. Nat Comm 6: 8132.CrossRefGoogle ScholarPubMed
Xue, HY, Ji, LJ, Gao, AM, et al. 2015. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. J Med Genet 53: 9197.CrossRefGoogle ScholarPubMed
Xue, W, Chen, S, Yin, H, et al. 2014. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514: 380384.CrossRefGoogle ScholarPubMed
Ye, L, Wang, J, Beyer, AI, et al. 2014. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA 111: 95919596.CrossRefGoogle Scholar

References

Atianand, MK, Fitzgerald, KA. 2014. Long non-coding RNAs and control of gene expression in the immune system. Trends Mol Med 20: 623631.CrossRefGoogle ScholarPubMed
Atianand, MK, Hu, W, Satpathy, AT, et al. 2016. A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165: 16721685.CrossRefGoogle ScholarPubMed
Carpenter, S, Aiello, D, Atianand, MK, et al. 2013. A long noncoding RNA mediates both activation and repression of immune response genes. Science 341: 789792.CrossRefGoogle ScholarPubMed
Cech, TR, Steitz, JA. 2014. The noncoding RNA revolution – trashing old rules to forge new ones. Cell 157: 7794.CrossRefGoogle ScholarPubMed
Chan, J, Atianand, M, Jiang, Z, et al. 2015. Cutting edge: a natural antisense transcript, AS-IL1alpha, controls inducible transcription of the proinflammatory cytokine IL-1alpha. J Immunol 195: 13591363.CrossRefGoogle Scholar
Gomez, JA, Wapinski, OL, Yang, YW, et al. 2013. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus. Cell 152: 743754.CrossRefGoogle ScholarPubMed
Hu, G, Gong, AY, Wang, Y, et al. 2016. LncRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. J Immunol 196: 27992808.CrossRefGoogle Scholar
Hu, G, Tang, Q, Sharma, S, et al. 2013. Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nat Immunol 14: 11901198.CrossRefGoogle Scholar
Huang, W, Thomas, B, Flynn, RA, et al. 2015. DDX5 and its associated lncRNA Rmrp modulate TH17 cell effector functions. Nature 528: 517522.CrossRefGoogle ScholarPubMed
Imamura, K, Imamachi, N, Akizuki, G, et al. 2014. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell 53: 393406.CrossRefGoogle ScholarPubMed
Kotzin, JJ, Spencer, SP, McCright, SJ, et al. 2016. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537: 239243.CrossRefGoogle Scholar
Krawczyk, M, Emerson, BM. 2014. p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-kappaB complexes. eLife 3: e01776.CrossRefGoogle ScholarPubMed
Maass, PG, Luft, FC, Bahring, S. 2014. Long non-coding RNA in health and disease. J Mol Med 92: 337346.CrossRefGoogle ScholarPubMed
Mayama, T, Marr, AK, Kino, T. 2016. Differential expression of glucocorticoid receptor noncoding RNA repressor Gas5 in autoimmune and inflammatory diseases. Horm Metab Res 48: 550557.Google ScholarPubMed
Messemaker, TC, Frank-Bertoncelj, M, Marques, RB, et al. 2016. A novel long non-coding RNA in the rheumatoid arthritis risk locus TRAF1-C5 influences C5 mRNA levels. Genes Immun 17: 8592.CrossRefGoogle ScholarPubMed
Muller, N, Doring, F, Klapper, M, et al. 2014. Interleukin-6 and tumour necrosis factor-alpha differentially regulate lincRNA transcripts in cells of the innate immune system in vivo in human subjects with rheumatoid arthritis. Cytokine 68: 6568.CrossRefGoogle ScholarPubMed
Pang, KC, Dinger, ME, Mercer, TR, et al. 2009. Genome-wide identification of long noncoding RNAs in CD8+ T cells. J Immunol 182: 77387748.CrossRefGoogle ScholarPubMed
Peng, X, Gralinski, L, Armour, CD, et al. 2010. Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. MBio 1(5): e00206-10.CrossRefGoogle ScholarPubMed
Qiao, YQ, Huang, ML, Xu, AT, et al. 2013. LncRNA DQ786243 affects Treg related CREB and Foxp3 expression in Crohn’s disease. J Biomed Sci 20: 87.CrossRefGoogle ScholarPubMed
Ranzani, V, Rossetti, G, Panzeri, I, et al. 2015. The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nat Immunol 16: 318325.CrossRefGoogle Scholar
Rapicavoli, NA, Qu, K, Zhang, J, et al. 2013. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. eLife 2: e00762.CrossRefGoogle Scholar
Sharma, S, Findlay, GM, Bandukwala, HS, et al. 2011. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc Natl Acad Sci USA 108: 1138111386.CrossRefGoogle ScholarPubMed
Sun, L, Xue, H, Jiang, C, et al. 2016. LncRNA DQ786243 contributes to proliferation and metastasis of colorectal cancer both in vitro and in vivo. Biosci Rep 36(3): e00328.CrossRefGoogle ScholarPubMed
Wang, P, Xue, Y, Han, Y, et al. 2014. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344: 310313.CrossRefGoogle ScholarPubMed
Wang, Y, Zhong, H, Xie, X, et al. 2015. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc Natl Acad Sci USA 112: E3883E3892.Google ScholarPubMed
Xia, F, Dong, F, Yang, Y, et al. 2014. Dynamic transcription of long non-coding RNA genes during CD4+ T cell development and activation. PLoS One 9: e101588.CrossRefGoogle ScholarPubMed
Zhao, G, Su, Z, Song, D, Mao, Y, Mao, X. 2016. The long noncoding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-kappaB. FEBS Lett 590: 28842895.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×