Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T02:23:33.408Z Has data issue: false hasContentIssue false

8 - Plane wave propagation

Published online by Cambridge University Press:  05 June 2012

Bhag Singh Guru
Affiliation:
Kettering University, Michigan
Hüseyin R. Hiziroglu
Affiliation:
Kettering University, Michigan
Get access

Summary

Introduction

We have stated a⃗ this in Chapter 7 and we state it again: Maxwell's equations contain all the information necessary to characterize the electromagnetic fields at any point in a medium. For the electromagnetic (EM) fields to exist they must satisfy the four Maxwell equations at the source where they are generated, at any point in a medium through which they propagate, and at the load where they are received or absorbed.

In this chapter, we concentrate mainly on the propagation of EM fields in a source-free medium. As the fields must satisfy the four coupled Maxwell equations involving four unknown variables, we first obtain an equation in terms of one unknown variable. Similar equations can then be obtained for the other variables. We refer to these equations as the general wave equations. We will show in Chapter 11 that the fields generated by time-varying sources propagate as spherical waves. However, in a small region far away from the radiating source, the spherical wave may be approximated as a plane wave, that is, one in which all the field quantities are in a plane normal to the direction of its propagation (the transverse plane). Consequently, a plane wave does not have any field component in its direction of propagation (the longitudinal direction).

We first seek the solution of a plane wave in an unbounded dielectric medium and show that the wave travels with the speed of light in free space.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×